Pub Date : 2022-12-01DOI: 10.1177/00375497221138943
Yamika Patel, V. Rastogi, W. Borutzky
Dynamic interaction between train wheel and high-speed slab is an important issue when evaluating the contact force at the wheel–rail interface under the influence of an irregularity either on the train wheel or on the rail. In this paper, an influence of amplitude of irregularity along with the vehicle speed on the dynamics of wheel–rail interaction for high-speed railway tracks is being analyzed. For this purpose, single-wheel high-speed railway (HSR) track interaction models are developed using the bond graph modeling technique. The HSR track model consists of two layers of beam, i.e., rail and concrete slab. Both the rail and slab track is modeled using the Euler–Bernoulli beam theory. The Hertzian contact theory at the wheel–rail interface has been considered for this analysis. The vertical dynamic interaction between a train wheel and a high-speed slab track is compiled in the time domain using a bond graph approach coupled with a technique known as modal superposition. Irregularity present on the wheel is characterized as smooth, moderate, and severe depending upon the variation of irregularity amplitude. An expeditious increase of maximum contact force has been observed between the speed range of 200 and 250 km/h. Beyond the speed of 250 km/h, there is a gradual increment of contact force up to its peak value. When the train speed is beyond 288 km/h, there is a gradual decrease in maximum contact force. This kind of several other useful dynamic responses in terms of wheel acceleration and wheel–rail overlap are also evaluated.
{"title":"Simulation study on the influence of wheel irregularity on the vertical dynamics of wheel–rail interaction for high-speed railway track using bond graph","authors":"Yamika Patel, V. Rastogi, W. Borutzky","doi":"10.1177/00375497221138943","DOIUrl":"https://doi.org/10.1177/00375497221138943","url":null,"abstract":"Dynamic interaction between train wheel and high-speed slab is an important issue when evaluating the contact force at the wheel–rail interface under the influence of an irregularity either on the train wheel or on the rail. In this paper, an influence of amplitude of irregularity along with the vehicle speed on the dynamics of wheel–rail interaction for high-speed railway tracks is being analyzed. For this purpose, single-wheel high-speed railway (HSR) track interaction models are developed using the bond graph modeling technique. The HSR track model consists of two layers of beam, i.e., rail and concrete slab. Both the rail and slab track is modeled using the Euler–Bernoulli beam theory. The Hertzian contact theory at the wheel–rail interface has been considered for this analysis. The vertical dynamic interaction between a train wheel and a high-speed slab track is compiled in the time domain using a bond graph approach coupled with a technique known as modal superposition. Irregularity present on the wheel is characterized as smooth, moderate, and severe depending upon the variation of irregularity amplitude. An expeditious increase of maximum contact force has been observed between the speed range of 200 and 250 km/h. Beyond the speed of 250 km/h, there is a gradual increment of contact force up to its peak value. When the train speed is beyond 288 km/h, there is a gradual decrease in maximum contact force. This kind of several other useful dynamic responses in terms of wheel acceleration and wheel–rail overlap are also evaluated.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"1 1","pages":"643 - 656"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90695804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-28DOI: 10.1177/00375497221132574
Mohammad Dehghanimohammadabadi, Mandana Rezaeiahari, Javad Seif
Appointment scheduling is one of the critical factors for improving patient satisfaction with healthcare services. A practical and robust appointment scheduling solution allows clinics to efficiently utilize medical devices, equipment, and other resources. This study introduces a Multi-Objective Patient Appointment Scheduling (MO-PASS) framework to enhance clinic operations and quality of care. The proposed framework integrates three modules: (1) Optimization (using MATLAB), (2) Data-Exchange (MS Excel), and (3) Simulation (Simio). To implement MO-PASS, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is coded in MATLAB, and a Simio API is developed, which exchanges simulated scenarios with MOPSO via Excel. The efficiency of the proposed framework is evaluated in a breast cancer clinic with multiple physicians and patient types. Two objective functions are defined for evaluating the solutions of the AS problem: (1) minimizing the total service time and (2) maximizing the number of (admitted) patients with zero overtime. Finally, the performance of MO-PASS is tested against three heuristic approaches with respect to objective functions. The computational experiment results show that the proposed MO-PASS outperforms the existing heuristic benchmarks. Also, the framework is accompanied by all the necessary details to make it practical and easy to implement.
{"title":"Multi-Objective Patient Appointment Scheduling Framework (MO-PASS): a data-table input simulation–optimization approach","authors":"Mohammad Dehghanimohammadabadi, Mandana Rezaeiahari, Javad Seif","doi":"10.1177/00375497221132574","DOIUrl":"https://doi.org/10.1177/00375497221132574","url":null,"abstract":"Appointment scheduling is one of the critical factors for improving patient satisfaction with healthcare services. A practical and robust appointment scheduling solution allows clinics to efficiently utilize medical devices, equipment, and other resources. This study introduces a Multi-Objective Patient Appointment Scheduling (MO-PASS) framework to enhance clinic operations and quality of care. The proposed framework integrates three modules: (1) Optimization (using MATLAB), (2) Data-Exchange (MS Excel), and (3) Simulation (Simio). To implement MO-PASS, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is coded in MATLAB, and a Simio API is developed, which exchanges simulated scenarios with MOPSO via Excel. The efficiency of the proposed framework is evaluated in a breast cancer clinic with multiple physicians and patient types. Two objective functions are defined for evaluating the solutions of the AS problem: (1) minimizing the total service time and (2) maximizing the number of (admitted) patients with zero overtime. Finally, the performance of MO-PASS is tested against three heuristic approaches with respect to objective functions. The computational experiment results show that the proposed MO-PASS outperforms the existing heuristic benchmarks. Also, the framework is accompanied by all the necessary details to make it practical and easy to implement.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"22 1","pages":"363 - 383"},"PeriodicalIF":1.6,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84674956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-19DOI: 10.1177/00375497221133846
Sajad Shafiekhani, N. Gheibi, Azam Janati Esfahani
Blockade of programmed death-ligand-1 (PD-L1) as a new method of immunotherapy for cancers has shown limited efficacy in hepatocellular carcinoma (HCC). The combination of anti-PD-L1 and radiotherapy (RT) enhances the antitumor effect in HCC cancer. The efficacy and interactions of these treatments can be addressed by a mathematical model. We developed a mathematical model using a set of ordinary differential equations (ODEs). The variables include cancer cells, cytotoxic T lymphocytes (CTLs), programmed cell death-1 (PD-1), PD-L1, anti-PD-L1, and ionizing radiation. The model is parameterized with imprecise data set of murine HCC model and the effect of parametric uncertainty is assessed by the fuzzy theorem. The global sensitivity analysis (GSA) is performed to assess model robustness against perturbation in parameters and to identify the most influential parameters on the dynamics of cells and proteins. In silico predictions are consistent with experimental data. The model simulation shows that anti-PD-L1 and RT have a synergistic effect. In silico assessment of treatments’ efficacy in the fuzzy setting of parameters revealed that anti-PD-L1 therapy, RT, and combination treatment caused the uncertainty band of tumor cells to lead to lower populations. This model as a validated rigorous simulation framework can be used to deepen our understanding of tumor and immune cell interactions and helps clinicians to investigate the efficacy of different time schedules of anti-PD-L1, RT, and combination therapy. The fuzzy theorem in conjunction with the classical ODE model that is parameterized by imprecise data was used to predict reliable outcomes of treatment.
{"title":"Combination of anti-PD-L1 and radiotherapy in hepatocellular carcinoma: a mathematical model with uncertain parameters","authors":"Sajad Shafiekhani, N. Gheibi, Azam Janati Esfahani","doi":"10.1177/00375497221133846","DOIUrl":"https://doi.org/10.1177/00375497221133846","url":null,"abstract":"Blockade of programmed death-ligand-1 (PD-L1) as a new method of immunotherapy for cancers has shown limited efficacy in hepatocellular carcinoma (HCC). The combination of anti-PD-L1 and radiotherapy (RT) enhances the antitumor effect in HCC cancer. The efficacy and interactions of these treatments can be addressed by a mathematical model. We developed a mathematical model using a set of ordinary differential equations (ODEs). The variables include cancer cells, cytotoxic T lymphocytes (CTLs), programmed cell death-1 (PD-1), PD-L1, anti-PD-L1, and ionizing radiation. The model is parameterized with imprecise data set of murine HCC model and the effect of parametric uncertainty is assessed by the fuzzy theorem. The global sensitivity analysis (GSA) is performed to assess model robustness against perturbation in parameters and to identify the most influential parameters on the dynamics of cells and proteins. In silico predictions are consistent with experimental data. The model simulation shows that anti-PD-L1 and RT have a synergistic effect. In silico assessment of treatments’ efficacy in the fuzzy setting of parameters revealed that anti-PD-L1 therapy, RT, and combination treatment caused the uncertainty band of tumor cells to lead to lower populations. This model as a validated rigorous simulation framework can be used to deepen our understanding of tumor and immune cell interactions and helps clinicians to investigate the efficacy of different time schedules of anti-PD-L1, RT, and combination therapy. The fuzzy theorem in conjunction with the classical ODE model that is parameterized by imprecise data was used to predict reliable outcomes of treatment.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"15 1","pages":"313 - 325"},"PeriodicalIF":1.6,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75277596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-19DOI: 10.1177/00375497221132566
J. Nutaro, Ozgur Ozmen
When parallel algorithms for simulation were introduced in the 1970s, their development and use interested only experts in parallel computation. This circumstance changed as multi-core processors became commonplace, putting a parallel computer into the hands of every modeler. A natural outcome is growing interest in parallel simulation among persons not intimately familiar with parallel computing. At the same time, parallel simulation tools continue to be developed with the implicit assumption that the modeler is knowledgeable about parallel programming. The unintended consequence is a rapidly growing number of users of parallel simulation tools that are unlikely to recognize when the interaction of race conditions, partitioning strategies, and simultaneous action in their simulation models make results non-reproducible, thereby calling into question the validity of conclusions drawn from the simulation data. We illustrate the potential dangers of exposing parallel algorithms to users who are not experts in parallel computation with example models constructed using existing parallel simulation tools. By doing so, we hope to refocus tool developers on usability, even if this new focus incurs loss of some performance.
{"title":"Race conditions and data partitioning: risks posed by common errors to reproducible parallel simulations","authors":"J. Nutaro, Ozgur Ozmen","doi":"10.1177/00375497221132566","DOIUrl":"https://doi.org/10.1177/00375497221132566","url":null,"abstract":"When parallel algorithms for simulation were introduced in the 1970s, their development and use interested only experts in parallel computation. This circumstance changed as multi-core processors became commonplace, putting a parallel computer into the hands of every modeler. A natural outcome is growing interest in parallel simulation among persons not intimately familiar with parallel computing. At the same time, parallel simulation tools continue to be developed with the implicit assumption that the modeler is knowledgeable about parallel programming. The unintended consequence is a rapidly growing number of users of parallel simulation tools that are unlikely to recognize when the interaction of race conditions, partitioning strategies, and simultaneous action in their simulation models make results non-reproducible, thereby calling into question the validity of conclusions drawn from the simulation data. We illustrate the potential dangers of exposing parallel algorithms to users who are not experts in parallel computation with example models constructed using existing parallel simulation tools. By doing so, we hope to refocus tool developers on usability, even if this new focus incurs loss of some performance.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"63 1","pages":"417 - 427"},"PeriodicalIF":1.6,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83843025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-19DOI: 10.1177/00375497221133849
M. Abadeer, Sameh Magharious, S. Gorlatch
In this paper we develop an approach to modeling and simulating the process of infection transmission among individuals and the effectiveness of protective counter-measures. We base our approach on pedestrian dynamics and we implement it as an extension of the Vadere simulation framework. In order to enable a convenient simulation process for a variety of scenarios, we allow the user to interact with the simulated virtual environment (VE) during run time, for example, by dynamically opening/closing doors for room ventilation and moving/stopping agents for re-positioning their locations. We calibrate and evaluate our approach on a real-life case study—simulating COVID-19 infection transmission in two kinds of scenarios: large-scale (such as the city of Münster, Germany) and small-scale (such as the most common indoor environments—classrooms, restaurants, etc.). By using the tunable parameters of our modeling approach, we can simulate and predict the effectiveness of specific anti-COVID protective measures, such as social distancing, wearing masks, self-isolation, schools closing, etc.
{"title":"Modeling and interactive simulation of measures against infection transmission","authors":"M. Abadeer, Sameh Magharious, S. Gorlatch","doi":"10.1177/00375497221133849","DOIUrl":"https://doi.org/10.1177/00375497221133849","url":null,"abstract":"In this paper we develop an approach to modeling and simulating the process of infection transmission among individuals and the effectiveness of protective counter-measures. We base our approach on pedestrian dynamics and we implement it as an extension of the Vadere simulation framework. In order to enable a convenient simulation process for a variety of scenarios, we allow the user to interact with the simulated virtual environment (VE) during run time, for example, by dynamically opening/closing doors for room ventilation and moving/stopping agents for re-positioning their locations. We calibrate and evaluate our approach on a real-life case study—simulating COVID-19 infection transmission in two kinds of scenarios: large-scale (such as the city of Münster, Germany) and small-scale (such as the most common indoor environments—classrooms, restaurants, etc.). By using the tunable parameters of our modeling approach, we can simulate and predict the effectiveness of specific anti-COVID protective measures, such as social distancing, wearing masks, self-isolation, schools closing, etc.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"10 1","pages":"327 - 346"},"PeriodicalIF":1.6,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78574026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-19DOI: 10.1177/00375497221132577
J. Possik, G. Zacharewicz, Anne Zouggar, B. Vallespir
Discrete event simulation (DES) is a method for digitally replicating the behavior and performance of real-world processes, systems, and facilities. DES is widely applied in manufacturing, logistics, healthcare, and military domains. In some cases, DES method is insufficient. On one hand, the simulation must be disassembled into subsystems and then distributed on a multiprocessing environment to enhance the simulation performance. On the other hand, to expand current functionality and prevent future application development, a set of interacting simulations is required. In this project, the IEEE high-level architecture (HLA) standard mechanisms are adopted to solve the interoperability problems between heterogeneous components. Time synchronization between federates is essential to have all DESs running in parallel. In this paper, we present a distributed simulation framework designed to assist decision-makers in making the best decisions and prioritizing the adoption of Lean tools and techniques.
{"title":"HLA-based time management and synchronization framework for lean manufacturing tools evaluation","authors":"J. Possik, G. Zacharewicz, Anne Zouggar, B. Vallespir","doi":"10.1177/00375497221132577","DOIUrl":"https://doi.org/10.1177/00375497221132577","url":null,"abstract":"Discrete event simulation (DES) is a method for digitally replicating the behavior and performance of real-world processes, systems, and facilities. DES is widely applied in manufacturing, logistics, healthcare, and military domains. In some cases, DES method is insufficient. On one hand, the simulation must be disassembled into subsystems and then distributed on a multiprocessing environment to enhance the simulation performance. On the other hand, to expand current functionality and prevent future application development, a set of interacting simulations is required. In this project, the IEEE high-level architecture (HLA) standard mechanisms are adopted to solve the interoperability problems between heterogeneous components. Time synchronization between federates is essential to have all DESs running in parallel. In this paper, we present a distributed simulation framework designed to assist decision-makers in making the best decisions and prioritizing the adoption of Lean tools and techniques.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"35 1","pages":"347 - 362"},"PeriodicalIF":1.6,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80483252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-18DOI: 10.1177/00375497221135630
A. Mesbahi, Maryam Sadeghian, Aisan Mesbahi, H. Smilowitz, J. Hainfeld
In this study, the effect of photon energy spectra on the dose enhancement factor (DEF) and other influencing parameters such as skull–tumor dose ratios were estimated for a confined tumor loaded with iodine nanoparticles (INPs). A mathematical brain phantom with a brain tumor was simulated by the MCNP6 Monte Carlo code. A validated commercial computed tomography model consisting of an X-ray tube, Al–Cu filters, and collimators was used to simulate the rotational conformal treatment of the tumor. INPs with a diameter of 20 nm and concentrations of 10–50 mg/g were introduced inside the tumor as homogenously distributed spherical particles. The dose distribution inside the phantom was scored for several orthovoltage beams with the peak voltages of 140, 200, and 320 kVp as well as two 3.5 and 6 MV megavoltage beams. A significant rise of DEF values with nanoparticle (NP) concentration for orthovoltage beams is revealed; no significant dose enhancement was obtained for megavoltage beams. The highest DEF and skull–tumor dose ratio were obtained for the 140 kVp beam which decreased with the number of directional fields. The clinically optimal plan for a brain tumor, with high DEFs of 2.81–2.24 and acceptable skull–tumor dose ratios of 0.61–0.51, would be feasible for treatment using 200 and 320 kVp beams, an iodine concentration of 20 mg/g, and 8–15 fields. Our calculations show that clinically significant radiation dose enhancements can be obtained for tumors loaded with INPs using orthovoltage beams. Optimal treatment regimens are feasible using a proper selection of photon beam spectrum and sufficient numbers of cross-firing beams. The limiting effect of skull bone could be minimized by increasing the number of radiation fields and the use of higher quality of orthovoltage beams.
{"title":"In silico analysis of optimum photon energy spectra and beam parameters for iodine nanoparticle–aided orthovoltage radiation therapy of brain tumors","authors":"A. Mesbahi, Maryam Sadeghian, Aisan Mesbahi, H. Smilowitz, J. Hainfeld","doi":"10.1177/00375497221135630","DOIUrl":"https://doi.org/10.1177/00375497221135630","url":null,"abstract":"In this study, the effect of photon energy spectra on the dose enhancement factor (DEF) and other influencing parameters such as skull–tumor dose ratios were estimated for a confined tumor loaded with iodine nanoparticles (INPs). A mathematical brain phantom with a brain tumor was simulated by the MCNP6 Monte Carlo code. A validated commercial computed tomography model consisting of an X-ray tube, Al–Cu filters, and collimators was used to simulate the rotational conformal treatment of the tumor. INPs with a diameter of 20 nm and concentrations of 10–50 mg/g were introduced inside the tumor as homogenously distributed spherical particles. The dose distribution inside the phantom was scored for several orthovoltage beams with the peak voltages of 140, 200, and 320 kVp as well as two 3.5 and 6 MV megavoltage beams. A significant rise of DEF values with nanoparticle (NP) concentration for orthovoltage beams is revealed; no significant dose enhancement was obtained for megavoltage beams. The highest DEF and skull–tumor dose ratio were obtained for the 140 kVp beam which decreased with the number of directional fields. The clinically optimal plan for a brain tumor, with high DEFs of 2.81–2.24 and acceptable skull–tumor dose ratios of 0.61–0.51, would be feasible for treatment using 200 and 320 kVp beams, an iodine concentration of 20 mg/g, and 8–15 fields. Our calculations show that clinically significant radiation dose enhancements can be obtained for tumors loaded with INPs using orthovoltage beams. Optimal treatment regimens are feasible using a proper selection of photon beam spectrum and sufficient numbers of cross-firing beams. The limiting effect of skull bone could be minimized by increasing the number of radiation fields and the use of higher quality of orthovoltage beams.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"16 1","pages":"539 - 552"},"PeriodicalIF":1.6,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73022248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-14DOI: 10.1177/00375497221133847
Leonardo Sarmiento, Anna Förster
According to state-of-the-art research, mobile network simulation is preferred over real testbeds, especially to evaluate communication protocols used in Opportunistic Networks (OppNet) or Mobile Ad hoc NETworks (MANET). The main reason behind it is the difficulty of performing experiments in real scenarios. However, in a simulation, a mobility model is required to define users’ mobility patterns. Trace-based models can be used for this purpose, but they are difficult to obtain, and they are not flexible or scalable. Another option is TRAce-based ProbabILiStic (TRAILS). TRAILS mimics the spatial dependency, geographic restrictions, and temporal dependency from real scenarios. In addition, with TRAILS, it is possible to scale the number of mobile users and simulation time. In this paper, we dive into the algorithms used by TRAILS to generate mobility graphs from real scenarios and simulate human mobility. In addition, we compare mobility metrics of TRAILS simulations, real traces, and another synthetic mobility model such as Small Worlds in Motion (SWIM). Finally, we analyze the performance of an implementation of the TRAILS model in computation time and memory consumption. We observed that TRAILS simulations represent the interaction among users of real scenarios with higher accuracy than SWIM simulations. Furthermore, we found that a simulation with TRAILS requires less computation time than a simulation with real traces and that a TRAILS graph consumes less memory than traces.
根据最新的研究,移动网络模拟比真实的测试平台更受欢迎,特别是在评估机会网络(OppNet)或移动自组网(MANET)中使用的通信协议时。其背后的主要原因是在真实场景中进行实验的困难。然而,在模拟中,需要一个移动性模型来定义用户的移动性模式。基于跟踪的模型可以用于此目的,但是它们很难获得,并且它们不灵活或可伸缩。另一个选择是基于跟踪的概率(TRAILS)。TRAILS模拟了真实场景中的空间依赖性、地理限制和时间依赖性。此外,使用TRAILS还可以扩展移动用户的数量和模拟时间。在本文中,我们深入研究了TRAILS用于从真实场景生成移动性图并模拟人类移动性的算法。此外,我们还比较了TRAILS模拟、真实轨迹和另一种合成移动模型(如Small Worlds In Motion (SWIM))的移动度量。最后,我们分析了TRAILS模型在计算时间和内存消耗方面的性能。我们观察到,TRAILS模拟比SWIM模拟更准确地代表了真实场景中用户之间的交互。此外,我们发现使用TRAILS的模拟比使用真实轨迹的模拟需要更少的计算时间,并且TRAILS图比轨迹消耗更少的内存。
{"title":"TRAILS mobility model","authors":"Leonardo Sarmiento, Anna Förster","doi":"10.1177/00375497221133847","DOIUrl":"https://doi.org/10.1177/00375497221133847","url":null,"abstract":"According to state-of-the-art research, mobile network simulation is preferred over real testbeds, especially to evaluate communication protocols used in Opportunistic Networks (OppNet) or Mobile Ad hoc NETworks (MANET). The main reason behind it is the difficulty of performing experiments in real scenarios. However, in a simulation, a mobility model is required to define users’ mobility patterns. Trace-based models can be used for this purpose, but they are difficult to obtain, and they are not flexible or scalable. Another option is TRAce-based ProbabILiStic (TRAILS). TRAILS mimics the spatial dependency, geographic restrictions, and temporal dependency from real scenarios. In addition, with TRAILS, it is possible to scale the number of mobile users and simulation time. In this paper, we dive into the algorithms used by TRAILS to generate mobility graphs from real scenarios and simulate human mobility. In addition, we compare mobility metrics of TRAILS simulations, real traces, and another synthetic mobility model such as Small Worlds in Motion (SWIM). Finally, we analyze the performance of an implementation of the TRAILS model in computation time and memory consumption. We observed that TRAILS simulations represent the interaction among users of real scenarios with higher accuracy than SWIM simulations. Furthermore, we found that a simulation with TRAILS requires less computation time than a simulation with real traces and that a TRAILS graph consumes less memory than traces.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"55 1","pages":"385 - 402"},"PeriodicalIF":1.6,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88249661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-29DOI: 10.1177/00375497221130100
Damir V Sindik, Vladimir Kašćelan, Ljiljana Kašćelan
Economic disequilibrium theory (DT) more realistically represents modern macroeconomic systems than general equilibrium theory. DT coupled with applied mathematical economics and nonlinear dynamical analysis generates multi-dimensional phase spaces. Interdependencies of endogenous variables in state space create a flow of different and “parallel economic realities,” which depend on the initial conditions. By modeling variable changes using the nonlinear least squares (NLLS) method, we define the first-order nonlinear ordinary differential equation (NODE) system. The NODE system is impossible to solve analytically. The numerical solution and visualization requires the MATLAB software package, combined with its specialized applications pplane (two-dimensional (2D)) and MATCONT (three-dimensional (3D)). By analyzing the evolution of flow operators, we can predict the future qualitative behavior of the entire system, determine the model-optimal values, and perform inverse modeling for variables. The obtained data advocate better and more stable macroeconomic paths that economic policymakers can pursue. The proposed methodology’s boundaries have strong links to chaos theory. Chaotic behavior can arise after a certain number of periods. We found very high computation accuracy, transformation of discrete variables to continuous functions, and the implementation of high-order polynomial data fitting offset its effects in part and to some reasonable degree.
{"title":"Simulation of disequilibrium and chaos in aggregates of disposable income, wealth, and consumption in EU macroeconomics using nonlinear dynamic analysis","authors":"Damir V Sindik, Vladimir Kašćelan, Ljiljana Kašćelan","doi":"10.1177/00375497221130100","DOIUrl":"https://doi.org/10.1177/00375497221130100","url":null,"abstract":"Economic disequilibrium theory (DT) more realistically represents modern macroeconomic systems than general equilibrium theory. DT coupled with applied mathematical economics and nonlinear dynamical analysis generates multi-dimensional phase spaces. Interdependencies of endogenous variables in state space create a flow of different and “parallel economic realities,” which depend on the initial conditions. By modeling variable changes using the nonlinear least squares (NLLS) method, we define the first-order nonlinear ordinary differential equation (NODE) system. The NODE system is impossible to solve analytically. The numerical solution and visualization requires the MATLAB software package, combined with its specialized applications pplane (two-dimensional (2D)) and MATCONT (three-dimensional (3D)). By analyzing the evolution of flow operators, we can predict the future qualitative behavior of the entire system, determine the model-optimal values, and perform inverse modeling for variables. The obtained data advocate better and more stable macroeconomic paths that economic policymakers can pursue. The proposed methodology’s boundaries have strong links to chaos theory. Chaotic behavior can arise after a certain number of periods. We found very high computation accuracy, transformation of discrete variables to continuous functions, and the implementation of high-order polynomial data fitting offset its effects in part and to some reasonable degree.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"24 1","pages":"137 - 167"},"PeriodicalIF":1.6,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75457839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-08DOI: 10.1177/00375497221130097
T. Potuzak
A computer simulation of road traffic is a commonly used tool, which can help to manage constantly intensifying road traffic. It can help to analyze behavior of existing road traffic networks or to predict the behavior of new designed road traffic structures. There are several existing simulators designed or adapted to run in a distributed computing environment in order to achieve a faster execution. In this environment, the inter-process communication ensured by a high-level communication protocol is one of the main bottlenecks limiting the speed of the entire computation. Various high-level communication protocols can have various efficiency, applicability, and scalability. This paper describes an improved methodology for testing and assessment of high-level communication protocols for micro-scale (or microscopic) distributed road traffic simulations. The methodology investigates the dependencies of the communication protocols’ performance on various features of the simulation and enables to easily calculate score for each of the tested protocols. Using the scores, the tested protocols can be directly compared. This can be useful when designing or improving a distributed road traffic simulation as the best protocol can be used in this simulation to improve its performance (e.g., its speedup or communication time). The improved version of the methodology is an evolution of its original version. It newly incorporates the assessment of the error introduced into the simulation by lossy communication protocols and reduces overall number of performed tests. The improved methodology was tested using a case study assessing several communication protocols of our own design.
{"title":"Improved methodology for assessment of communication protocols for distributed road traffic simulation","authors":"T. Potuzak","doi":"10.1177/00375497221130097","DOIUrl":"https://doi.org/10.1177/00375497221130097","url":null,"abstract":"A computer simulation of road traffic is a commonly used tool, which can help to manage constantly intensifying road traffic. It can help to analyze behavior of existing road traffic networks or to predict the behavior of new designed road traffic structures. There are several existing simulators designed or adapted to run in a distributed computing environment in order to achieve a faster execution. In this environment, the inter-process communication ensured by a high-level communication protocol is one of the main bottlenecks limiting the speed of the entire computation. Various high-level communication protocols can have various efficiency, applicability, and scalability. This paper describes an improved methodology for testing and assessment of high-level communication protocols for micro-scale (or microscopic) distributed road traffic simulations. The methodology investigates the dependencies of the communication protocols’ performance on various features of the simulation and enables to easily calculate score for each of the tested protocols. Using the scores, the tested protocols can be directly compared. This can be useful when designing or improving a distributed road traffic simulation as the best protocol can be used in this simulation to improve its performance (e.g., its speedup or communication time). The improved version of the methodology is an evolution of its original version. It newly incorporates the assessment of the error introduced into the simulation by lossy communication protocols and reduces overall number of performed tests. The improved methodology was tested using a case study assessing several communication protocols of our own design.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"30 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83658951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}