Stepped wedge trials are increasingly adopted because practical constraints necessitate staggered roll-out. While a complete design requires clusters to collect data in all periods, resource and patient-centered considerations may call for an incomplete stepped wedge design to minimize data collection burden. To study incomplete designs, we expand the metric of information content to discrete outcomes. We operate under a marginal model with general link and variance functions, and derive information content expressions when data elements (cells, sequences, periods) are omitted. We show that the centrosymmetric patterns of information content can hold for discrete outcomes with the variance-stabilizing link function. We perform numerical studies under the canonical link function, and find that while the patterns of information content for cells are approximately centrosymmetric for all examined underlying secular trends, the patterns of information content for sequences or periods are more sensitive to the secular trend, and may be far from centrosymmetric.
For statistical inference on regression models with a diverging number of covariates, the existing literature typically makes sparsity assumptions on the inverse of the Fisher information matrix. Such assumptions, however, are often violated under Cox proportion hazards models, leading to biased estimates with under-coverage confidence intervals. We propose a modified debiased lasso method, which solves a series of quadratic programming problems to approximate the inverse information matrix without posing sparse matrix assumptions. We establish asymptotic results for the estimated regression coefficients when the dimension of covariates diverges with the sample size. As demonstrated by extensive simulations, our proposed method provides consistent estimates and confidence intervals with nominal coverage probabilities. The utility of the method is further demonstrated by assessing the effects of genetic markers on patients' overall survival with the Boston Lung Cancer Survival Cohort, a large-scale epidemiology study investigating mechanisms underlying the lung cancer.