首页 > 最新文献

Scandinavian Journal of Statistics最新文献

英文 中文
Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions 线性网络上由变换高斯过程驱动的考克斯过程--回顾与新贡献
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-14 DOI: 10.1111/sjos.12720
Jesper Møller, Jakob G. Rasmussen
There is a lack of point process models on linear networks. For an arbitrary linear network, we consider new models for a Cox process with an isotropic pair correlation function obtained in various ways by transforming an isotropic Gaussian process which is used for driving the random intensity function of the Cox process. In particular, we introduce three model classes given by log Gaussian, interrupted, and permanental Cox processes on linear networks, and consider for the first time statistical procedures and applications for parametric families of such models. Moreover, we construct new simulation algorithms for Gaussian processes on linear networks and discuss whether the geodesic metric or the resistance metric should be used for the kind of Cox processes studied in this paper.
线性网络缺乏点过程模型。对于任意线性网络,我们考虑了具有各向同性对相关函数的 Cox 过程的新模型,该模型是通过转换各向同性高斯过程(用于驱动 Cox 过程的随机强度函数)以各种方式获得的。特别是,我们引入了线性网络上对数高斯过程、间断过程和永久考克斯过程给出的三类模型,并首次考虑了此类模型参数族的统计程序和应用。此外,我们还为线性网络上的高斯过程构建了新的模拟算法,并讨论了本文研究的这类 Cox 过程应该使用大地度量还是阻力度量。
{"title":"Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions","authors":"Jesper Møller, Jakob G. Rasmussen","doi":"10.1111/sjos.12720","DOIUrl":"https://doi.org/10.1111/sjos.12720","url":null,"abstract":"There is a lack of point process models on linear networks. For an arbitrary linear network, we consider new models for a Cox process with an isotropic pair correlation function obtained in various ways by transforming an isotropic Gaussian process which is used for driving the random intensity function of the Cox process. In particular, we introduce three model classes given by log Gaussian, interrupted, and permanental Cox processes on linear networks, and consider for the first time statistical procedures and applications for parametric families of such models. Moreover, we construct new simulation algorithms for Gaussian processes on linear networks and discuss whether the geodesic metric or the resistance metric should be used for the kind of Cox processes studied in this paper.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"209 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On maximizing the likelihood function of general geostatistical models 论一般地质统计模型似然函数的最大化
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-07 DOI: 10.1111/sjos.12722
Tingjin Chu
General geostatistical models are powerful tools for analyzing spatial datasets. A two‐step estimation based on the likelihood function is widely used by researchers, but several theoretical and computational challenges remain to be addressed. First, it is unclear whether there is a unique global maximizer of the log‐likelihood function, a seemingly simple but theoretically challenging question. The second challenge is the convexity of the log‐likelihood function. Besides these two challenges in maximizing the likelihood function, we also study the theoretical property of the two‐step estimation. Unlike many previous works, our results can apply to the non‐twice differentiable covariance functions. In the simulation studies, three optimization algorithms are evaluated in terms of maximizing the log‐likelihood functions.
一般地质统计模型是分析空间数据集的强大工具。研究人员广泛使用基于似然函数的两步估计法,但仍有一些理论和计算难题有待解决。首先,对数似然函数是否存在唯一的全局最大化尚不清楚,这是一个看似简单但在理论上极具挑战性的问题。第二个挑战是对数似然函数的凸性。除了最大化似然函数的这两个挑战,我们还研究了两步估计的理论属性。与之前的许多研究不同,我们的结果可以适用于非两次可微分协方差函数。在模拟研究中,我们从最大化对数似然函数的角度评估了三种优化算法。
{"title":"On maximizing the likelihood function of general geostatistical models","authors":"Tingjin Chu","doi":"10.1111/sjos.12722","DOIUrl":"https://doi.org/10.1111/sjos.12722","url":null,"abstract":"General geostatistical models are powerful tools for analyzing spatial datasets. A two‐step estimation based on the likelihood function is widely used by researchers, but several theoretical and computational challenges remain to be addressed. First, it is unclear whether there is a unique global maximizer of the log‐likelihood function, a seemingly simple but theoretically challenging question. The second challenge is the convexity of the log‐likelihood function. Besides these two challenges in maximizing the likelihood function, we also study the theoretical property of the two‐step estimation. Unlike many previous works, our results can apply to the non‐twice differentiable covariance functions. In the simulation studies, three optimization algorithms are evaluated in terms of maximizing the log‐likelihood functions.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"2016 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mahalanobis balancing: A multivariate perspective on approximate covariate balancing 马哈拉诺比斯平衡:近似协变量平衡的多变量视角
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-26 DOI: 10.1111/sjos.12721
Yimin Dai, Ying Yan
In the past decade, various exact balancing‐based weighting methods were introduced to the causal inference literature. It eliminates covariate imbalance by imposing balancing constraints in a certain optimization problem, which can nevertheless be infeasible when there is bad overlap between the covariate distributions in the treated and control groups or when the covariates are high dimensional. Recently, approximate balancing was proposed as an alternative balancing framework. It resolves the feasibility issue by using inequality moment constraints instead. However, it can be difficult to select the threshold parameters. Moreover, moment constraints may not fully capture the discrepancy of covariate distributions. In this paper, we propose Mahalanobis balancing to approximately balance covariate distributions from a multivariate perspective. We use a quadratic constraint to control overall imbalance with a single threshold parameter, which can be tuned by a simple selection procedure. We show that the dual problem of Mahalanobis balancing is an norm‐based regularized regression problem, and establish interesting connection to propensity score models. We derive asymptotic properties, discuss the high‐dimensional scenario, and make extensive numerical comparisons with existing balancing methods.
在过去十年中,各种基于精确平衡的加权方法被引入因果推理文献。这种方法通过在某个优化问题中施加平衡约束来消除协变量的不平衡,但当治疗组和对照组的协变量分布存在严重重叠或协变量维度较高时,这种方法可能并不可行。最近,有人提出了近似平衡作为另一种平衡框架。它通过使用不等矩约束来解决可行性问题。然而,选择阈值参数可能比较困难。此外,矩约束可能无法完全捕捉协变量分布的差异。在本文中,我们提出了马哈拉诺比斯平衡法,从多变量的角度近似平衡协变量分布。我们使用二次约束来控制整体不平衡,只需一个阈值参数,该参数可通过简单的选择程序进行调整。我们证明了 Mahalanobis 平衡的对偶问题是一个基于规范的正则化回归问题,并与倾向评分模型建立了有趣的联系。我们推导了渐近特性,讨论了高维情况,并与现有的平衡方法进行了广泛的数值比较。
{"title":"Mahalanobis balancing: A multivariate perspective on approximate covariate balancing","authors":"Yimin Dai, Ying Yan","doi":"10.1111/sjos.12721","DOIUrl":"https://doi.org/10.1111/sjos.12721","url":null,"abstract":"In the past decade, various exact balancing‐based weighting methods were introduced to the causal inference literature. It eliminates covariate imbalance by imposing balancing constraints in a certain optimization problem, which can nevertheless be infeasible when there is bad overlap between the covariate distributions in the treated and control groups or when the covariates are high dimensional. Recently, approximate balancing was proposed as an alternative balancing framework. It resolves the feasibility issue by using inequality moment constraints instead. However, it can be difficult to select the threshold parameters. Moreover, moment constraints may not fully capture the discrepancy of covariate distributions. In this paper, we propose Mahalanobis balancing to approximately balance covariate distributions from a multivariate perspective. We use a quadratic constraint to control overall imbalance with a single threshold parameter, which can be tuned by a simple selection procedure. We show that the dual problem of Mahalanobis balancing is an norm‐based regularized regression problem, and establish interesting connection to propensity score models. We derive asymptotic properties, discuss the high‐dimensional scenario, and make extensive numerical comparisons with existing balancing methods.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"36 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic properties of resampling‐based processes for the average treatment effect in observational studies with competing risks 具有竞争风险的观察性研究中基于重采样过程的平均治疗效果的渐近特性
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-25 DOI: 10.1111/sjos.12714
Jasmin Rühl, Sarah Friedrich
In observational studies with time‐to‐event outcomes, the g‐formula can be used to estimate a treatment effect in the presence of confounding factors. However, the asymptotic distribution of the corresponding stochastic process is complicated and thus not suitable for deriving confidence intervals or time‐simultaneous confidence bands for the average treatment effect. A common remedy are resampling‐based approximations, with Efron's nonparametric bootstrap being the standard tool in practice. We investigate the large sample properties of three different resampling approaches and prove their asymptotic validity in a setting with time‐to‐event data subject to competing risks. The usage of these approaches is demonstrated by an analysis of the effect of physical activity on the risk of knee replacement among patients with advanced knee osteoarthritis.
在具有时间到事件结果的观察性研究中,g 公式可用于估计存在混杂因素时的治疗效果。不过,相应随机过程的渐近分布比较复杂,因此不适合用于推导平均治疗效果的置信区间或时间同步置信带。常用的补救方法是基于重采样的近似方法,其中埃夫隆的非参数自举法是实践中的标准工具。我们研究了三种不同的重采样方法的大样本特性,并证明了它们在具有竞争风险的时间到事件数据中的渐近有效性。通过分析体育锻炼对晚期膝关节骨性关节炎患者膝关节置换风险的影响,证明了这些方法的用途。
{"title":"Asymptotic properties of resampling‐based processes for the average treatment effect in observational studies with competing risks","authors":"Jasmin Rühl, Sarah Friedrich","doi":"10.1111/sjos.12714","DOIUrl":"https://doi.org/10.1111/sjos.12714","url":null,"abstract":"In observational studies with time‐to‐event outcomes, the g‐formula can be used to estimate a treatment effect in the presence of confounding factors. However, the asymptotic distribution of the corresponding stochastic process is complicated and thus not suitable for deriving confidence intervals or time‐simultaneous confidence bands for the average treatment effect. A common remedy are resampling‐based approximations, with Efron's nonparametric bootstrap being the standard tool in practice. We investigate the large sample properties of three different resampling approaches and prove their asymptotic validity in a setting with time‐to‐event data subject to competing risks. The usage of these approaches is demonstrated by an analysis of the effect of physical activity on the risk of knee replacement among patients with advanced knee osteoarthritis.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"105 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimax estimation of functional principal components from noisy discretized functional data 从噪声离散函数数据中最小估计函数主成分
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-24 DOI: 10.1111/sjos.12719
Ryad Belhakem, Franck Picard, Vincent Rivoirard, Angelina Roche
Functional Principal Component Analysis is a reference method for dimension reduction of curve data. Its theoretical properties are now well understood in the simplified case where the sample curves are fully observed without noise. However, functional data are noisy and necessarily observed on a finite discretization grid. Common practice consists in smoothing the data and then to compute the functional estimates, but the impact of this denoising step on the procedure's statistical performance are rarely considered. Here we prove new convergence rates for functional principal component estimators. We introduce a double asymptotic framework: one corresponding to the sampling size and a second to the size of the grid. We prove that estimates based on projection onto histograms show optimal rates in a minimax sense. Theoretical results are illustrated on simulated data and the method is applied to the visualization of genomic data.
函数主成分分析法是一种用于降低曲线数据维度的参考方法。在简化的情况下,即样本曲线完全被观测到而没有噪声,人们现在已经很好地理解了它的理论特性。然而,函数数据是有噪声的,而且必须在有限离散网格上进行观测。通常的做法是对数据进行平滑处理,然后计算函数估计值,但很少考虑这一去噪步骤对程序统计性能的影响。在此,我们证明了函数式主成分估计器的新收敛率。我们引入了双重渐近框架:一个与采样大小相对应,另一个与网格大小相对应。我们证明,基于投影到直方图的估计值显示出最小值意义上的最优率。我们在模拟数据上对理论结果进行了说明,并将该方法应用于基因组数据的可视化。
{"title":"Minimax estimation of functional principal components from noisy discretized functional data","authors":"Ryad Belhakem, Franck Picard, Vincent Rivoirard, Angelina Roche","doi":"10.1111/sjos.12719","DOIUrl":"https://doi.org/10.1111/sjos.12719","url":null,"abstract":"Functional Principal Component Analysis is a reference method for dimension reduction of curve data. Its theoretical properties are now well understood in the simplified case where the sample curves are fully observed without noise. However, functional data are noisy and necessarily observed on a finite discretization grid. Common practice consists in smoothing the data and then to compute the functional estimates, but the impact of this denoising step on the procedure's statistical performance are rarely considered. Here we prove new convergence rates for functional principal component estimators. We introduce a double asymptotic framework: one corresponding to the sampling size and a second to the size of the grid. We prove that estimates based on projection onto histograms show optimal rates in a minimax sense. Theoretical results are illustrated on simulated data and the method is applied to the visualization of genomic data.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"101 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two‐step estimation procedure for semiparametric mixture cure models 半参数混合治愈模型的两步估计程序
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-19 DOI: 10.1111/sjos.12713
Eni Musta, Valentin Patilea, Ingrid Van Keilegom
In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets.
在生存分析中,人们开发了治愈模型,以考虑到永远不会发生相关事件的治愈受试者的存在。在实践中,采用发病率参数模型和易感人群生存率半参数模型的混合治愈模型尤为常见。由于存在潜伏的治愈状态,最大似然估计是通过迭代 EM 算法进行的。在此,我们将重点放在治愈概率上,并提出了一个两步程序,以改进样本量不大时的最大似然估计方法。新方法基于预平滑,首先构建一个非参数估计器,然后将其投影到所需的参数类别上。我们研究了由此产生的估计器的理论特性,并通过对 logistic-Cox 模型的大量模拟研究表明,它优于现有方法。我们通过两个黑色素瘤数据集说明了该方法的实际应用。
{"title":"A two‐step estimation procedure for semiparametric mixture cure models","authors":"Eni Musta, Valentin Patilea, Ingrid Van Keilegom","doi":"10.1111/sjos.12713","DOIUrl":"https://doi.org/10.1111/sjos.12713","url":null,"abstract":"In survival analysis, cure models have been developed to account for the presence of cured subjects that will never experience the event of interest. Mixture cure models with a parametric model for the incidence and a semiparametric model for the survival of the susceptibles are particularly common in practice. Because of the latent cure status, maximum likelihood estimation is performed via the iterative EM algorithm. Here, we focus on the cure probabilities and propose a two‐step procedure to improve upon the maximum likelihood estimator when the sample size is not large. The new method is based on presmoothing by first constructing a nonparametric estimator and then projecting it on the desired parametric class. We investigate the theoretical properties of the resulting estimator and show through an extensive simulation study for the logistic‐Cox model that it outperforms the existing method. Practical use of the method is illustrated through two melanoma datasets.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"87 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Martingale posterior distributions for cumulative hazard functions 累积危害函数的马丁格尔后验分布
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-07 DOI: 10.1111/sjos.12712
Stephen G. Walker
This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.
本文介绍使用马氏后验分布建立累积危险函数模型的方法。重点是从非参数的角度对不确定性进行量化。在这种情况下,基础贝叶斯模型是贝塔过程,经典估计器是 Nelson-Aalen 估计器。我们使用一系列估计器,这些估计器构成了一个马氏模型,以便从马氏模型后验中获得随机累积危险函数。我们建立了与贝塔过程的联系,并给出了一些例证。
{"title":"Martingale posterior distributions for cumulative hazard functions","authors":"Stephen G. Walker","doi":"10.1111/sjos.12712","DOIUrl":"https://doi.org/10.1111/sjos.12712","url":null,"abstract":"This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"8 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a computable Skorokhod's integral‐based estimator of the drift parameter in fractional SDE 关于分数 SDE 中漂移参数的可计算斯科罗霍德积分估计器
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-23 DOI: 10.1111/sjos.12711
Nicolas Marie
This paper deals with a Skorokhod's integral‐based least squares‐ (LS) type estimator of the drift parameter computed from multiple (possibly dependent) copies of the solution of a stochastic differential equation (SDE) driven by a fractional Brownian motion of Hurst index . On the one hand, some convergence results are established on our LS estimator when . On the other hand, when , Skorokhod's integral‐based estimators cannot be computed from data, but in this paper some convergence results are established on a computable approximation of our LS estimator.
本文论述了一种基于斯科洛克霍德积分的最小二乘法(LS)型漂移参数估计器,该估计器由赫斯特指数为.的分数布朗运动驱动的随机微分方程(SDE)解的多个(可能依赖的)副本计算得出。一方面,当......时,我们的 LS 估计器建立了一些收敛结果。另一方面,当 , 时,Skorokhod 基于积分的估计器无法从数据中计算出来,但本文对我们的 LS 估计器的可计算近似值建立了一些收敛结果。
{"title":"On a computable Skorokhod's integral‐based estimator of the drift parameter in fractional SDE","authors":"Nicolas Marie","doi":"10.1111/sjos.12711","DOIUrl":"https://doi.org/10.1111/sjos.12711","url":null,"abstract":"This paper deals with a Skorokhod's integral‐based least squares‐ (LS) type estimator of the drift parameter computed from multiple (possibly dependent) copies of the solution of a stochastic differential equation (SDE) driven by a fractional Brownian motion of Hurst index . On the one hand, some convergence results are established on our LS estimator when . On the other hand, when , Skorokhod's integral‐based estimators cannot be computed from data, but in this paper some convergence results are established on a computable approximation of our LS estimator.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"124 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical inference for generative adversarial networks and other minimax problems 生成式对抗网络和其他最小问题的统计推理
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-21 DOI: 10.1111/sjos.12710
Mika Meitz
This paper studies generative adversarial networks (GANs) from the perspective of statistical inference. A GAN is a popular machine learning method in which the parameters of two neural networks, a generator and a discriminator, are estimated to solve a particular minimax problem. This minimax problem typically has a multitude of solutions and the focus of this paper are the statistical properties of these solutions. We address two key statistical issues for the generator and discriminator network parameters, consistent estimation and confidence sets. We first show that the set of solutions to the sample GAN problem is a (Hausdorff) consistent estimator of the set of solutions to the corresponding population GAN problem. We then devise a computationally intensive procedure to form confidence sets and show that these sets contain the population GAN solutions with the desired coverage probability. Small numerical experiments and a Monte Carlo study illustrate our results and verify our theoretical findings. We also show that our results apply in general minimax problems that may be nonconvex, nonconcave, and have multiple solutions.
本文从统计推断的角度研究生成对抗网络(GAN)。生成式对抗网络(GAN)是一种流行的机器学习方法,通过估算生成器和判别器这两个神经网络的参数来解决一个特定的最小问题。这个最小问题通常有多种解决方案,本文的重点是这些解决方案的统计特性。我们探讨了生成器和判别器网络参数的两个关键统计问题:一致估计和置信集。我们首先证明,样本 GAN 问题的解集是相应群体 GAN 问题解集的(豪斯多夫)一致性估计。然后,我们设计了一种计算密集型程序来形成置信集,并证明这些置信集包含具有所需覆盖概率的群体 GAN 解。小型数值实验和蒙特卡罗研究说明了我们的结果,并验证了我们的理论发现。我们还证明,我们的结果适用于一般的最小问题,这些问题可能是非凸、非凹和多解的。
{"title":"Statistical inference for generative adversarial networks and other minimax problems","authors":"Mika Meitz","doi":"10.1111/sjos.12710","DOIUrl":"https://doi.org/10.1111/sjos.12710","url":null,"abstract":"This paper studies generative adversarial networks (GANs) from the perspective of statistical inference. A GAN is a popular machine learning method in which the parameters of two neural networks, a generator and a discriminator, are estimated to solve a particular minimax problem. This minimax problem typically has a multitude of solutions and the focus of this paper are the statistical properties of these solutions. We address two key statistical issues for the generator and discriminator network parameters, consistent estimation and confidence sets. We first show that the set of solutions to the sample GAN problem is a (Hausdorff) consistent estimator of the set of solutions to the corresponding population GAN problem. We then devise a computationally intensive procedure to form confidence sets and show that these sets contain the population GAN solutions with the desired coverage probability. Small numerical experiments and a Monte Carlo study illustrate our results and verify our theoretical findings. We also show that our results apply in general minimax problems that may be nonconvex, nonconcave, and have multiple solutions.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"15 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient drift parameter estimation for ergodic solutions of backward SDEs 后向 SDE 的遍历解的高效漂移参数估计
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-27 DOI: 10.1111/sjos.12709
Teppei Ogihara, Mitja Stadje
We derive consistency and asymptotic normality results for quasi-maximum likelihood methods for drift parameters of ergodic stochastic processes observed in discrete time in an underlying continuous-time setting. The special feature of our analysis is that the stochastic integral part is unobserved and nonparametric. Additionally, the drift may depend on the (unknown and unobserved) stochastic integrand. Our results hold for ergodic semi-parametric diffusions and backward SDEs. Simulation studies confirm that the methods proposed yield good convergence results.
我们推导了在连续时间背景下,离散时间观测到的遍历随机过程漂移参数的准极大似然法的一致性和渐近正态性结果。我们分析的特点是随机积分部分是非观测和非参数的。此外,漂移可能取决于(未知且无法观测的)随机积分。我们的结果适用于遍历半参数扩散和后向 SDE。模拟研究证实,所提出的方法具有良好的收敛性。
{"title":"Efficient drift parameter estimation for ergodic solutions of backward SDEs","authors":"Teppei Ogihara, Mitja Stadje","doi":"10.1111/sjos.12709","DOIUrl":"https://doi.org/10.1111/sjos.12709","url":null,"abstract":"We derive consistency and asymptotic normality results for quasi-maximum likelihood methods for drift parameters of ergodic stochastic processes observed in discrete time in an underlying continuous-time setting. The special feature of our analysis is that the stochastic integral part is unobserved and nonparametric. Additionally, the drift may depend on the (unknown and unobserved) stochastic integrand. Our results hold for ergodic semi-parametric diffusions and backward SDEs. Simulation studies confirm that the methods proposed yield good convergence results.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"170 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Scandinavian Journal of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1