首页 > 最新文献

Scandinavian Journal of Statistics最新文献

英文 中文
Martingale posterior distributions for cumulative hazard functions 累积危害函数的马丁格尔后验分布
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-07 DOI: 10.1111/sjos.12712
Stephen G. Walker
This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.
本文介绍使用马氏后验分布建立累积危险函数模型的方法。重点是从非参数的角度对不确定性进行量化。在这种情况下,基础贝叶斯模型是贝塔过程,经典估计器是 Nelson-Aalen 估计器。我们使用一系列估计器,这些估计器构成了一个马氏模型,以便从马氏模型后验中获得随机累积危险函数。我们建立了与贝塔过程的联系,并给出了一些例证。
{"title":"Martingale posterior distributions for cumulative hazard functions","authors":"Stephen G. Walker","doi":"10.1111/sjos.12712","DOIUrl":"https://doi.org/10.1111/sjos.12712","url":null,"abstract":"This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"8 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a computable Skorokhod's integral‐based estimator of the drift parameter in fractional SDE 关于分数 SDE 中漂移参数的可计算斯科罗霍德积分估计器
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-23 DOI: 10.1111/sjos.12711
Nicolas Marie
This paper deals with a Skorokhod's integral‐based least squares‐ (LS) type estimator of the drift parameter computed from multiple (possibly dependent) copies of the solution of a stochastic differential equation (SDE) driven by a fractional Brownian motion of Hurst index . On the one hand, some convergence results are established on our LS estimator when . On the other hand, when , Skorokhod's integral‐based estimators cannot be computed from data, but in this paper some convergence results are established on a computable approximation of our LS estimator.
本文论述了一种基于斯科洛克霍德积分的最小二乘法(LS)型漂移参数估计器,该估计器由赫斯特指数为.的分数布朗运动驱动的随机微分方程(SDE)解的多个(可能依赖的)副本计算得出。一方面,当......时,我们的 LS 估计器建立了一些收敛结果。另一方面,当 , 时,Skorokhod 基于积分的估计器无法从数据中计算出来,但本文对我们的 LS 估计器的可计算近似值建立了一些收敛结果。
{"title":"On a computable Skorokhod's integral‐based estimator of the drift parameter in fractional SDE","authors":"Nicolas Marie","doi":"10.1111/sjos.12711","DOIUrl":"https://doi.org/10.1111/sjos.12711","url":null,"abstract":"This paper deals with a Skorokhod's integral‐based least squares‐ (LS) type estimator of the drift parameter computed from multiple (possibly dependent) copies of the solution of a stochastic differential equation (SDE) driven by a fractional Brownian motion of Hurst index . On the one hand, some convergence results are established on our LS estimator when . On the other hand, when , Skorokhod's integral‐based estimators cannot be computed from data, but in this paper some convergence results are established on a computable approximation of our LS estimator.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"124 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical inference for generative adversarial networks and other minimax problems 生成式对抗网络和其他最小问题的统计推理
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-21 DOI: 10.1111/sjos.12710
Mika Meitz
This paper studies generative adversarial networks (GANs) from the perspective of statistical inference. A GAN is a popular machine learning method in which the parameters of two neural networks, a generator and a discriminator, are estimated to solve a particular minimax problem. This minimax problem typically has a multitude of solutions and the focus of this paper are the statistical properties of these solutions. We address two key statistical issues for the generator and discriminator network parameters, consistent estimation and confidence sets. We first show that the set of solutions to the sample GAN problem is a (Hausdorff) consistent estimator of the set of solutions to the corresponding population GAN problem. We then devise a computationally intensive procedure to form confidence sets and show that these sets contain the population GAN solutions with the desired coverage probability. Small numerical experiments and a Monte Carlo study illustrate our results and verify our theoretical findings. We also show that our results apply in general minimax problems that may be nonconvex, nonconcave, and have multiple solutions.
本文从统计推断的角度研究生成对抗网络(GAN)。生成式对抗网络(GAN)是一种流行的机器学习方法,通过估算生成器和判别器这两个神经网络的参数来解决一个特定的最小问题。这个最小问题通常有多种解决方案,本文的重点是这些解决方案的统计特性。我们探讨了生成器和判别器网络参数的两个关键统计问题:一致估计和置信集。我们首先证明,样本 GAN 问题的解集是相应群体 GAN 问题解集的(豪斯多夫)一致性估计。然后,我们设计了一种计算密集型程序来形成置信集,并证明这些置信集包含具有所需覆盖概率的群体 GAN 解。小型数值实验和蒙特卡罗研究说明了我们的结果,并验证了我们的理论发现。我们还证明,我们的结果适用于一般的最小问题,这些问题可能是非凸、非凹和多解的。
{"title":"Statistical inference for generative adversarial networks and other minimax problems","authors":"Mika Meitz","doi":"10.1111/sjos.12710","DOIUrl":"https://doi.org/10.1111/sjos.12710","url":null,"abstract":"This paper studies generative adversarial networks (GANs) from the perspective of statistical inference. A GAN is a popular machine learning method in which the parameters of two neural networks, a generator and a discriminator, are estimated to solve a particular minimax problem. This minimax problem typically has a multitude of solutions and the focus of this paper are the statistical properties of these solutions. We address two key statistical issues for the generator and discriminator network parameters, consistent estimation and confidence sets. We first show that the set of solutions to the sample GAN problem is a (Hausdorff) consistent estimator of the set of solutions to the corresponding population GAN problem. We then devise a computationally intensive procedure to form confidence sets and show that these sets contain the population GAN solutions with the desired coverage probability. Small numerical experiments and a Monte Carlo study illustrate our results and verify our theoretical findings. We also show that our results apply in general minimax problems that may be nonconvex, nonconcave, and have multiple solutions.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"15 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient drift parameter estimation for ergodic solutions of backward SDEs 后向 SDE 的遍历解的高效漂移参数估计
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-27 DOI: 10.1111/sjos.12709
Teppei Ogihara, Mitja Stadje
We derive consistency and asymptotic normality results for quasi-maximum likelihood methods for drift parameters of ergodic stochastic processes observed in discrete time in an underlying continuous-time setting. The special feature of our analysis is that the stochastic integral part is unobserved and nonparametric. Additionally, the drift may depend on the (unknown and unobserved) stochastic integrand. Our results hold for ergodic semi-parametric diffusions and backward SDEs. Simulation studies confirm that the methods proposed yield good convergence results.
我们推导了在连续时间背景下,离散时间观测到的遍历随机过程漂移参数的准极大似然法的一致性和渐近正态性结果。我们分析的特点是随机积分部分是非观测和非参数的。此外,漂移可能取决于(未知且无法观测的)随机积分。我们的结果适用于遍历半参数扩散和后向 SDE。模拟研究证实,所提出的方法具有良好的收敛性。
{"title":"Efficient drift parameter estimation for ergodic solutions of backward SDEs","authors":"Teppei Ogihara, Mitja Stadje","doi":"10.1111/sjos.12709","DOIUrl":"https://doi.org/10.1111/sjos.12709","url":null,"abstract":"We derive consistency and asymptotic normality results for quasi-maximum likelihood methods for drift parameters of ergodic stochastic processes observed in discrete time in an underlying continuous-time setting. The special feature of our analysis is that the stochastic integral part is unobserved and nonparametric. Additionally, the drift may depend on the (unknown and unobserved) stochastic integrand. Our results hold for ergodic semi-parametric diffusions and backward SDEs. Simulation studies confirm that the methods proposed yield good convergence results.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"170 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic inference of the ARMA model with time-functional variance noises 具有时间函数方差噪声的 ARMA 模型的渐近推论
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-02-05 DOI: 10.1111/sjos.12708
Bibi Cai, Enwen Zhu, Shiqing Ling
This paper studies the autoregressive and moving average (ARMA) model with time-functional variance (TFV) noises, called the ARMA-TFV model. We first establish the consistency and asymptotic normality of its least squares estimator (LSE). The Wald tests and portmanteau tests are constructed based on the theory for variable selection and model checking. A simulation study is carried out to assess the performance of our approach in finite samples, and two real examples are given. It should be mentioned that the process generated from the ARMA-TFV model is not stationary, and the technique in this paper is nonstandard and may provide insights for future research in this area.
本文研究具有时间函数方差(TFV)噪声的自回归移动平均(ARMA)模型,称为 ARMA-TFV 模型。我们首先建立了其最小二乘估计器(LSE)的一致性和渐近正态性。根据变量选择和模型检验理论,构建了 Wald 检验和 portmanteau 检验。为了评估我们的方法在有限样本中的性能,我们进行了模拟研究,并给出了两个实际例子。需要指出的是,ARMA-TFV 模型产生的过程不是静态的,本文中的技术是非标准的,可能会为该领域的未来研究提供启示。
{"title":"Asymptotic inference of the ARMA model with time-functional variance noises","authors":"Bibi Cai, Enwen Zhu, Shiqing Ling","doi":"10.1111/sjos.12708","DOIUrl":"https://doi.org/10.1111/sjos.12708","url":null,"abstract":"This paper studies the autoregressive and moving average (ARMA) model with time-functional variance (TFV) noises, called the ARMA-TFV model. We first establish the consistency and asymptotic normality of its least squares estimator (LSE). The Wald tests and portmanteau tests are constructed based on the theory for variable selection and model checking. A simulation study is carried out to assess the performance of our approach in finite samples, and two real examples are given. It should be mentioned that the process generated from the ARMA-TFV model is not stationary, and the technique in this paper is nonstandard and may provide insights for future research in this area.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"22 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139759892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of treatment effect among treatment responders with a time-to-event endpoint 以时间为终点估算治疗应答者的治疗效果
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-01-18 DOI: 10.1111/sjos.12706
Andreas Nordland, Torben Martinussen
In a placebo-controlled clinical study one may calculate the average treatment effect to convey the effect of the active treatment on some outcome. However, if it is speculated that the treatment only has an effect if the patient responds to the treatment defined by a certain biomarker response, then it is arguably more relevant to estimate the treatment effect among such responders. We present such a causal parameter that is based on principal stratification and is identified under the exclusion of a treatment effect among the non-responders. We focus on time-;to-event outcomes allowing for right censoring, and construct a doubly robust and efficient estimator based on the associated efficient influence function. The properties of the estimator are showcased in a simulation study and the methodology is applied to the Leader trial investigating the effect of liraglutide on the occurrence of cardiovascular events.
在安慰剂对照临床研究中,我们可以计算平均治疗效果,以反映积极治疗对某些结果的影响。但是,如果推测只有当患者对治疗产生反应时,治疗才会产生效果,而这种反应是由某种生物标记物的反应所决定的,那么估计这种反应者的治疗效果可能更有意义。我们提出了这样一个基于主分层的因果参数,它是在排除非应答者治疗效果的情况下确定的。我们将重点放在允许右删减的时间-事件结果上,并根据相关的有效影响函数构建了一个双重稳健有效的估计器。我们在模拟研究中展示了该估计器的特性,并将该方法应用于调查利拉鲁肽对心血管事件发生影响的 Leader 试验。
{"title":"Estimation of treatment effect among treatment responders with a time-to-event endpoint","authors":"Andreas Nordland, Torben Martinussen","doi":"10.1111/sjos.12706","DOIUrl":"https://doi.org/10.1111/sjos.12706","url":null,"abstract":"In a placebo-controlled clinical study one may calculate the average treatment effect to convey the effect of the active treatment on some outcome. However, if it is speculated that the treatment only has an effect if the patient responds to the treatment defined by a certain biomarker response, then it is arguably more relevant to estimate the treatment effect among such responders. We present such a causal parameter that is based on principal stratification and is identified under the exclusion of a treatment effect among the non-responders. We focus on time-;to-event outcomes allowing for right censoring, and construct a doubly robust and efficient estimator based on the associated efficient influence function. The properties of the estimator are showcased in a simulation study and the methodology is applied to the Leader trial investigating the effect of liraglutide on the occurrence of cardiovascular events.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"56 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139501684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric plug-in classifier for multiclass classification of S.D.E. paths 用于 S.D.E. 路径多类分类的非参数插件分类器
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-01-15 DOI: 10.1111/sjos.12702
Christophe Denis, Charlotte Dion-Blanc, Eddy Ella-Mintsa, Viet Chi Tran
We study the multiclass classification problem where the features come from a mixture of time-homogeneous diffusion.Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown.In this framework, we build a plug-in classifier which relies on nonparamateric estimators of the drift and diffusion functions.We first establish the consistency of our classification procedure under mild assumptions and then provide rates of convergence under different setof assumptions. Finally, a numerical study supports our theoretical findings.
我们研究的是多类分类问题,其中的特征来自于时间同质扩散的混合物。具体来说,类是通过它们的漂移函数来区分的,而扩散系数则是所有类共有的未知数。在这个框架下,我们建立了一个插件分类器,它依赖于漂移和扩散函数的非参数估计器。最后,一项数值研究支持了我们的理论发现。
{"title":"Nonparametric plug-in classifier for multiclass classification of S.D.E. paths","authors":"Christophe Denis, Charlotte Dion-Blanc, Eddy Ella-Mintsa, Viet Chi Tran","doi":"10.1111/sjos.12702","DOIUrl":"https://doi.org/10.1111/sjos.12702","url":null,"abstract":"We study the multiclass classification problem where the features come from a mixture of time-homogeneous diffusion.Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown.In this framework, we build a plug-in classifier which relies on nonparamateric estimators of the drift and diffusion functions.We first establish the consistency of our classification procedure under mild assumptions and then provide rates of convergence under different setof assumptions. Finally, a numerical study supports our theoretical findings.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"33 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of the working correlation on fitting models to longitudinal data 工作相关性对纵向数据模型拟合的影响
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-01-02 DOI: 10.1111/sjos.12704
Samuel Muller, Suojin Wang, A. H. Welsh
We present a detailed discussion of the theoretical properties of quadratic inference function estimators of the parameters in marginal linear regression models. We consider the effect of the choice of working correlation on fundamental questions including the existence of quadratic inference function estimators, their relationship with generalized estimating equations estimators, and the robustness and asymptotic relative efficiency of quadratic inference function and generalized estimating equations estimators. We show that the quadratic inference function estimators do not always exist and propose a way to handle this. We then show that they have unbounded influence functions and can be more or less asymptotically efficient than generalized estimating equations estimators. We also present empirical evidence to demonstrate these results. We conclude that the choice of working correlation can have surprisingly large effects.
我们详细讨论了边际线性回归模型参数二次推理函数估计器的理论特性。我们考虑了工作相关性的选择对基本问题的影响,包括二次推理函数估计器的存在性、它们与广义估计方程估计器的关系,以及二次推理函数估计器和广义估计方程估计器的稳健性和渐进相对效率。我们证明了二次推理函数估计子并不总是存在,并提出了一种处理方法。然后,我们证明它们的影响函数是无界的,其渐近效率可能高于或低于广义估计方程估计器。我们还提出了经验证据来证明这些结果。我们的结论是,工作相关性的选择可能会产生令人惊讶的巨大影响。
{"title":"The effect of the working correlation on fitting models to longitudinal data","authors":"Samuel Muller, Suojin Wang, A. H. Welsh","doi":"10.1111/sjos.12704","DOIUrl":"https://doi.org/10.1111/sjos.12704","url":null,"abstract":"We present a detailed discussion of the theoretical properties of quadratic inference function estimators of the parameters in marginal linear regression models. We consider the effect of the choice of working correlation on fundamental questions including the existence of quadratic inference function estimators, their relationship with generalized estimating equations estimators, and the robustness and asymptotic relative efficiency of quadratic inference function and generalized estimating equations estimators. We show that the quadratic inference function estimators do not always exist and propose a way to handle this. We then show that they have unbounded influence functions and can be more or less asymptotically efficient than generalized estimating equations estimators. We also present empirical evidence to demonstrate these results. We conclude that the choice of working correlation can have surprisingly large effects.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Log-density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods† 黎曼流形蒙特卡罗方法的对数密度梯度协方差和自动度量张量†。
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-26 DOI: 10.1111/sjos.12705
Tore Selland Kleppe
A metric tensor for Riemann manifold Monte Carlo particularly suited for non-linear Bayesian hierarchical models is proposed. The metric tensor is built from symmetric positive semidefinite log-density gradient covariance (LGC) matrices, which are also proposed and further explored here. The LGCs generalize the Fisher information matrix by measuring the joint information content and dependence structure of both a random variable and the parameters of said variable. Consequently, positive definite Fisher/LGC-based metric tensors may be constructed not only from the observation likelihoods as is current practice, but also from arbitrarily complicated non-linear prior/latent variable structures, provided the LGC may be derived for each conditional distribution used to construct said structures. The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question. When implemented in conjunction with a Riemann manifold variant of the recently proposed numerical generalized randomized Hamiltonian Monte Carlo processes, the proposed methodology is highly competitive, in particular for the more challenging target distributions associated with Bayesian hierarchical models.
本文提出了一种特别适用于非线性贝叶斯层次模型的黎曼流形蒙特卡罗度量张量。该度量张量由对称正半有限对数密度梯度协方差(LGC)矩阵构建而成。LGC 通过测量随机变量和所述变量参数的联合信息含量和依赖结构,对费雪信息矩阵进行了概括。因此,基于正定费雪/LGC 的度量张量不仅可以像目前的做法那样从观测似然构建,还可以从任意复杂的非线性先验/后验变量结构构建,前提是可以为用于构建上述结构的每个条件分布导出 LGC。所提出的方法具有很高的自动性,可以利用与相关模型有关的任何稀疏性。当与最近提出的数值广义随机哈密尔顿蒙特卡罗过程的黎曼流形变体结合使用时,所提出的方法具有很强的竞争力,特别是对于与贝叶斯层次模型相关的更具挑战性的目标分布。
{"title":"Log-density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods†","authors":"Tore Selland Kleppe","doi":"10.1111/sjos.12705","DOIUrl":"https://doi.org/10.1111/sjos.12705","url":null,"abstract":"A metric tensor for Riemann manifold Monte Carlo particularly suited for non-linear Bayesian hierarchical models is proposed. The metric tensor is built from symmetric positive semidefinite log-density gradient covariance (LGC) matrices, which are also proposed and further explored here. The LGCs generalize the Fisher information matrix by measuring the joint information content and dependence structure of both a random variable and the parameters of said variable. Consequently, positive definite Fisher/LGC-based metric tensors may be constructed not only from the observation likelihoods as is current practice, but also from arbitrarily complicated non-linear prior/latent variable structures, provided the LGC may be derived for each conditional distribution used to construct said structures. The proposed methodology is highly automatic and allows for exploitation of any sparsity associated with the model in question. When implemented in conjunction with a Riemann manifold variant of the recently proposed numerical generalized randomized Hamiltonian Monte Carlo processes, the proposed methodology is highly competitive, in particular for the more challenging target distributions associated with Bayesian hierarchical models.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"41 11 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction 极值分布及其最大吸引域表示的有效辅助函数的特征
IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-26 DOI: 10.1111/sjos.12701
Miriam Isabel Seifert
In this paper we study two important representations for extreme value distributions and their max-domains of attraction (MDA), namely von Mises representation (vMR) and variation representation (VR), which are convenient ways to gain limit results. Both VR and vMR are defined via so-called auxiliary functions ψ. Up to now, however, the set of valid auxiliary functions for vMR has neither been characterized completely nor separated from those for VR. We contribute to the current literature by introducing “universal” auxiliary functions which are valid for both VR and vMR representations for the entire MDA distribution families. Then we identify exactly the sets of valid auxiliary functions for both VR and vMR. Moreover, we propose a method for finding appropriate auxiliary functions with analytically simple structure and provide them for several important distributions.
本文研究了极值分布及其最大吸引域(MDA)的两个重要表示,即冯-米塞斯表示(vMR)和变异表示(VR),它们是获得极限结果的便捷方法。VR 和 vMR 都是通过所谓的辅助函数 ψ 来定义的。然而,到目前为止,vMR 的有效辅助函数集既没有被完全描述,也没有与 VR 的有效辅助函数集区分开来。我们通过引入对整个 MDA 分布族的 VR 和 vMR 表示都有效的 "通用 "辅助函数,为现有文献做出了贡献。然后,我们精确地确定了 VR 和 vMR 的有效辅助函数集。此外,我们还提出了一种寻找适当辅助函数的方法,该方法具有简单的分析结构,并提供了几种重要分布的辅助函数。
{"title":"Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction","authors":"Miriam Isabel Seifert","doi":"10.1111/sjos.12701","DOIUrl":"https://doi.org/10.1111/sjos.12701","url":null,"abstract":"In this paper we study two important representations for extreme value distributions and their max-domains of attraction (MDA), namely von Mises representation (vMR) and variation representation (VR), which are convenient ways to gain limit results. Both VR and vMR are defined via so-called auxiliary functions <i>ψ</i>. Up to now, however, the set of valid auxiliary functions for vMR has neither been characterized completely nor separated from those for VR. We contribute to the current literature by introducing “universal” auxiliary functions which are valid for both VR and vMR representations for the entire MDA distribution families. Then we identify exactly the sets of valid auxiliary functions for both VR and vMR. Moreover, we propose a method for finding appropriate auxiliary functions with analytically simple structure and provide them for several important distributions.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"11 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Scandinavian Journal of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1