In this paper, a method of planning the expanded S-curve trajectory of robotic manipulators is proposed to minimize the execution time as well as to achieve the smoother trajectory generation in the deceleration stage for point-to-point motions. An asymmetric parameter is added to the piecewise sigmoid function for an improved jerk profile. This asymmetric profile is continuous and infinitely differentiable. Based on this profile, two analytical algorithms are presented. One is applied to determine the suitable time intervals of trajectory satisfying the time optimality under the kinematic constraints, and the other is to determine the asymmetric parameter generating the minimum execution time. Also, the calculation procedure for the time-scaled synchronization for all joints is given to decrease unnecessary loads onto the actuators. The velocity, acceleration, jerk and snap (the derivative of jerk) of the joints and the end-effector are equal to zero at two end points of motion. The simulation results through 3 DOF and 6 DOF robotic manipulators show that our approach reduces the jerk and snap of the deceleration stage effectively while decreasing the total execution time. Also, the analysis for a single DOF mass-spring-damper system indicates that the residual vibration could be reduced to 10% more than the benchmark techniques in case velocity, acceleration and jerk are limited to 1.24 m/s, 6 m/s2 and 80 m/s3, respectively and displacement is set to 0.8m. These results manifest that the performance of reducing residual vibrations is good and demonstrate an important characteristic of the proposed profile suitable for point-to-point motion.
The manufacturing of the X-shaped tip of prestressed centrifugal concrete piles is nowadays done half automatically by combining the manual worker and the automatic welding robot. To make this welding process full automatically, the welding seam tracking algorithm is considered. There are many types of sensors that can be used to detect the welding seam such as vision sensor, laser vision sensor, arc sensor, or touch sensor. Each type of sensor has its advantages and disadvantages. In this paper, an algorithm for welding seam tracking using laser distance sensor is proposed. Firstly, the fundamental mathematics theory of the algorithm is presented. Next, the positioning table system supports the procedure is designed and manufactured. The object of this research is the fillet joint because of the characteristics of the X-shaped tip of the concrete piles. This paper proposes a new method to determine the welding trajectory of the tip using laser distance sensor. After that, the experimental results are received to verify the proposed idea. Finally, the improved proposal of the algorithm is considered to increase the accuracy of the suggested algorithm.
Multibody dynamics methodologies have been fundamental tools utilized to model and simulate robotic systems that experience contact conditions with the surrounding environment, such as in the case of feet and ground interactions. In addressing such problems, it is of paramount importance to accurately and efficiently handle the large body displacement associated with locomotion of robots, as well as the dynamic response related to contact-impact events. Thus, a generic computational approach, based on the Newton–Euler formulation, to represent the gross motion of robotic systems, is revisited in this work. The main kinematic and dynamic features, necessary to obtain the equations of motion, are discussed. A numerical procedure suitable to solve the equations of motion is also presented. The problem of modeling contacts in dynamical systems involves two main tasks, namely, the contact detection and the contact resolution, which take into account for the kinematics and dynamics of the contacting bodies, constituting the general framework for the process of modeling and simulating complex contact scenarios. In order to properly model the contact interactions, the contact kinematic properties are established based on the geometry of contacting bodies, which allow to perform the contact detection task. The contact dynamics is represented by continuous contact force models, both in terms of normal and tangential contact directions. Finally, the presented formulations are demonstrated by the application to several robotics systems that involve contact and impact events with surrounding environment. Special emphasis is put on the systems’ dynamic behavior, in terms of performance and stability.