首页 > 最新文献

Robotica最新文献

英文 中文
Frequency-dependent control for wind disturbance rejection of a fully actuated UAV 用于全动无人飞行器风扰抑制的频率相关控制
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-04-15 DOI: 10.1017/s0263574724000523
Jérémie X. J. Bannwarth, Shahab Kazemi, Karl Stol
In this paper, an $textrm{H}_{{infty }}$ dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in $textrm{H}_{{infty }}$ control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed $textrm{H}_{{infty }}$ controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The $textrm{H}_{{infty }}$ controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.
本文通过实验实现了一种$textrm{H}_{infty }}$动态输出反馈控制器,用于全动倾斜旋翼八旋翼无人飞行器(UAV)的位置调节,以改善定点保持过程中的风干扰抑制。为了施加横向力,除了标准的倾斜-平移(姿态-推力)运动外,倾转旋翼无人飞行器还能产生矢量(水平)推力。矢量推力具有高带宽,但饱和受限,而姿态推力则能以较低的带宽产生较大的力。本文首次强调了基于完全致动无人机的物理能力(矢量推力和姿态推力),在 $textrm{H}_{{infty }}$ 控制设计中根据频率分配权重矩阵。为设计控制器,提出了倾斜旋翼八旋翼飞行器的动态模型,包括气动效应和旋翼动力学。所提出的 $textrm{H}_{{infty }}$ 控制器通过用加权传递函数增强动态模型来解决频率相关的致动器分配问题。这种新颖的频率相关分配利用姿态-推力来应对低频干扰,利用矢量-推力来应对高频干扰,从而最大限度地挖掘了完全致动无人机的潜力。为了验证模型和风扰动抑制性能,我们进行了多次风洞实验,并将实验结果与倾斜旋翼和平面八旋翼飞行器上的基准 PX4 自动驾驶控制器进行了比较。在自由飞行测试中,$text/textrm{H}_{{infty }}$ 控制器可在致动器使用率高出 25% 的情况下减少高达 50% 的定点误差。
{"title":"Frequency-dependent control for wind disturbance rejection of a fully actuated UAV","authors":"Jérémie X. J. Bannwarth, Shahab Kazemi, Karl Stol","doi":"10.1017/s0263574724000523","DOIUrl":"https://doi.org/10.1017/s0263574724000523","url":null,"abstract":"In this paper, an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline2.png\" /> <jats:tex-math> $textrm{H}_{{infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline3.png\" /> <jats:tex-math> $textrm{H}_{{infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline4.png\" /> <jats:tex-math> $textrm{H}_{{infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline5.png\" /> <jats:tex-math> $textrm{H}_{{infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"43 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140600208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive backstepping controller based on a novel framework for dynamic solution of an ankle rehabilitation spherical parallel robot 基于新框架的自适应反步进控制器,用于踝关节康复球形并联机器人的动态解决方案
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-04-12 DOI: 10.1017/s0263574724000390
Ali Ahmadi N, Ali Kamali Eigoli, Afshin Taghvaeipour
This research offers an adaptive model-based methodology for autonomous control of 3-RRR spherical parallel manipulator (RSPM) based on a novel modeling framework. RSPM is an overconstrained parallel mechanism that has a variety of applications in medical procedures such as ankle rehabilitation because of its precision and accuracy. However, obtaining a complete explicit dynamic model of these mechanisms for tracking purposes has been a problematic challenge due to their inherent singularities, coupling effects of the limbs, and redundant constraints imposed by the intermediate joints. This paper presents a novel algorithm to obtain the analytical kinematic solutions of RSPMs based on the closed-loop vector method, which includes constraint analysis. By incorporating constrained kinematics into the dynamic model, a comprehensive explicit dynamic solution of the non-overconstrained version 3-RCC of RSPM is developed in task space, based on screw theory and the linear homogeneous property of algebraic equations on the manipulator twist. Based on the proposed computational framework, a robust self-tuning backstepping control (STBC) strategy is applied to the robot to overcome the effect of external disturbances and time-varying uncertainties. Furthermore, an observer-based compensation (OBC) method is presented for dealing with the nonlinear hysteresis loops of the ankle during trajectory tracking purposes. The closed-loop stability of the whole system including STBC and OBC is theoretically performed by Lyapunov methods. The proposed methodologies are validated by realistic co-simulations in different scenarios. For instant, in the presence of external disturbances, the maximum tracking error norm of STBC is 37.5% less than the sliding mode approach.
本研究基于新颖的建模框架,为 3-RRR 球形并联机械手(RSPM)的自主控制提供了一种基于模型的自适应方法。RSPM 是一种超约束并行机械装置,由于其精度和准确性,在踝关节康复等医疗程序中有着广泛的应用。然而,由于其固有的奇异性、肢体的耦合效应以及中间关节施加的冗余约束,为跟踪目的获取这些机构的完整显式动态模型一直是一个难题。本文提出了一种基于闭环矢量法(包括约束分析)的新算法,用于获取 RSPM 的解析运动学解。通过将约束运动学纳入动态模型,基于螺杆理论和机械手扭转代数方程的线性同质特性,在任务空间中建立了 RSPM 的无过约束版本 3-RCC 的综合显式动态解。基于所提出的计算框架,鲁棒自调整反步态控制(STBC)策略被应用于机器人,以克服外部干扰和时变不确定性的影响。此外,还提出了一种基于观测器的补偿(OBC)方法,用于在轨迹跟踪过程中处理踝关节的非线性滞后环。包括 STBC 和 OBC 在内的整个系统的闭环稳定性是通过 Lyapunov 方法从理论上实现的。所提出的方法通过不同场景下的实际协同模拟进行了验证。例如,在有外部干扰的情况下,STBC 的最大跟踪误差规范比滑动模式方法小 37.5%。
{"title":"Adaptive backstepping controller based on a novel framework for dynamic solution of an ankle rehabilitation spherical parallel robot","authors":"Ali Ahmadi N, Ali Kamali Eigoli, Afshin Taghvaeipour","doi":"10.1017/s0263574724000390","DOIUrl":"https://doi.org/10.1017/s0263574724000390","url":null,"abstract":"This research offers an adaptive model-based methodology for autonomous control of 3-RRR spherical parallel manipulator (RSPM) based on a novel modeling framework. RSPM is an overconstrained parallel mechanism that has a variety of applications in medical procedures such as ankle rehabilitation because of its precision and accuracy. However, obtaining a complete explicit dynamic model of these mechanisms for tracking purposes has been a problematic challenge due to their inherent singularities, coupling effects of the limbs, and redundant constraints imposed by the intermediate joints. This paper presents a novel algorithm to obtain the analytical kinematic solutions of RSPMs based on the closed-loop vector method, which includes constraint analysis. By incorporating constrained kinematics into the dynamic model, a comprehensive explicit dynamic solution of the non-overconstrained version 3-RCC of RSPM is developed in task space, based on screw theory and the linear homogeneous property of algebraic equations on the manipulator twist. Based on the proposed computational framework, a robust self-tuning backstepping control (STBC) strategy is applied to the robot to overcome the effect of external disturbances and time-varying uncertainties. Furthermore, an observer-based compensation (OBC) method is presented for dealing with the nonlinear hysteresis loops of the ankle during trajectory tracking purposes. The closed-loop stability of the whole system including STBC and OBC is theoretically performed by Lyapunov methods. The proposed methodologies are validated by realistic co-simulations in different scenarios. For instant, in the presence of external disturbances, the maximum tracking error norm of STBC is 37.5% less than the sliding mode approach.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"2010 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic extrinsic calibration for structured light camera and repetitive LiDARs 结构光照相机和重复激光雷达的自动外部校准
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-04-11 DOI: 10.1017/s0263574724000444
Yangtao Ge, Chen Yao, Zirui Wang, Bangzhen Huang, Haoran Kang, Wentao Zhang, Zhenzhong Jia, Jing Wu
The integration of camera and LiDAR technologies has the potential to significantly enhance construction robots’ perception capabilities by providing complementary construction information. Structured light cameras (SLCs) are a desirable alternative as they provide comprehensive information on construction defects. However, fusing these two types of information depends largely on the sensors’ relative positions, which can only be established through extrinsic calibration. This paper introduces a novel calibration algorithm considering a customized board for SLCs and repetitive LiDARs, which are designed to facilitate the automation of construction robots. The calibration board is equipped with four symmetrically distributed hemispheres, whose centers are obtained by fitting the spheres and adoption with the geometric constraints. Subsequently, the spherical centers serve as reference features to estimate the relationship between the sensors. These distinctive features enable our proposed method to only require one calibration board pose and minimize human intervention. We conducted both simulation and real-world experiments to assess the performance of our algorithm. And the results demonstrate that our method exhibits enhanced accuracy and robustness.
将照相机和激光雷达技术相结合,可以提供互补的建筑信息,从而大大提高建筑机器人的感知能力。结构光摄像机(SLC)是一种理想的选择,因为它能提供有关建筑缺陷的全面信息。然而,这两种信息的融合在很大程度上取决于传感器的相对位置,而这只能通过外部校准来确定。本文介绍了一种新颖的校准算法,它考虑到了为 SLC 和重复激光雷达定制的校准板,旨在促进建筑机器人的自动化。校准板上装有四个对称分布的半球,其中心是通过拟合球面和采用几何约束条件得到的。随后,球心作为参考特征来估算传感器之间的关系。这些独特的特征使我们提出的方法只需要一个校准板姿势,并最大限度地减少了人为干预。我们进行了模拟和实际实验来评估我们算法的性能。结果表明,我们的方法具有更高的准确性和鲁棒性。
{"title":"Automatic extrinsic calibration for structured light camera and repetitive LiDARs","authors":"Yangtao Ge, Chen Yao, Zirui Wang, Bangzhen Huang, Haoran Kang, Wentao Zhang, Zhenzhong Jia, Jing Wu","doi":"10.1017/s0263574724000444","DOIUrl":"https://doi.org/10.1017/s0263574724000444","url":null,"abstract":"The integration of camera and LiDAR technologies has the potential to significantly enhance construction robots’ perception capabilities by providing complementary construction information. Structured light cameras (SLCs) are a desirable alternative as they provide comprehensive information on construction defects. However, fusing these two types of information depends largely on the sensors’ relative positions, which can only be established through extrinsic calibration. This paper introduces a novel calibration algorithm considering a customized board for SLCs and repetitive LiDARs, which are designed to facilitate the automation of construction robots. The calibration board is equipped with four symmetrically distributed hemispheres, whose centers are obtained by fitting the spheres and adoption with the geometric constraints. Subsequently, the spherical centers serve as reference features to estimate the relationship between the sensors. These distinctive features enable our proposed method to only require one calibration board pose and minimize human intervention. We conducted both simulation and real-world experiments to assess the performance of our algorithm. And the results demonstrate that our method exhibits enhanced accuracy and robustness.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modular computational framework for the dynamic analyses of cable-driven parallel robots with different types of actuation including the effects of inertia, elasticity and damping of cables 模块化计算框架,用于对具有不同驱动类型的缆索驱动并联机器人进行动态分析,包括缆索的惯性、弹性和阻尼效应
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-04-11 DOI: 10.1017/s026357472400047x
Teja Krishna Mamidi, Sandipan Bandyopadhyay
Dynamic simulations of the cable-driven parallel robots (CDPRs) with cable models closer to reality can predict the motions of moving platforms more accurately than those with idealisations. Hence, the present work proposes an efficient and modular computational framework for this purpose. The primary focus is on the developments required in the context of CDPRs actuated by moving the exit points of cables while the lengths are held constant. Subsequently, the framework is extended to those cases where simultaneous changes in the lengths of cables are employed. Also, the effects due to the inertia, stiffness and damping properties of the cables undergoing 3D motions are included in their dynamic models. The efficient recursive forward dynamics algorithms from the prior works are utilised to minimise the computational effort. Finally, the efficacy of the proposed framework and the need for such an inclusive dynamic model are illustrated by applying it to different application scenarios using the spatial $4$ - $4$ CDPR as an example.
对缆索驱动并联机器人(CDPR)进行动态模拟时,采用更贴近现实的缆索模型,能比采用理想模型更准确地预测移动平台的运动。因此,本研究为此提出了一个高效的模块化计算框架。主要重点是在长度保持不变的情况下,通过移动电缆的出口点来驱动 CDPR 时所需的开发。随后,该框架被扩展到采用电缆长度同时变化的情况。此外,在动态模型中还包括了三维运动中电缆的惯性、刚度和阻尼特性所产生的影响。为了最大限度地减少计算量,我们采用了先前研究中的高效递归前向动力学算法。最后,以空间 $4$ - $4$ CDPR 为例,通过将其应用于不同的应用场景,说明了所提框架的功效以及对这种包容性动态模型的需求。
{"title":"A modular computational framework for the dynamic analyses of cable-driven parallel robots with different types of actuation including the effects of inertia, elasticity and damping of cables","authors":"Teja Krishna Mamidi, Sandipan Bandyopadhyay","doi":"10.1017/s026357472400047x","DOIUrl":"https://doi.org/10.1017/s026357472400047x","url":null,"abstract":"Dynamic simulations of the cable-driven parallel robots (CDPRs) with cable models closer to reality can predict the motions of moving platforms more accurately than those with idealisations. Hence, the present work proposes an efficient and modular computational framework for this purpose. The primary focus is on the developments required in the context of CDPRs actuated by moving the exit points of cables while the lengths are held constant. Subsequently, the framework is extended to those cases where simultaneous changes in the lengths of cables are employed. Also, the effects due to the inertia, stiffness and damping properties of the cables undergoing 3D motions are included in their dynamic models. The efficient recursive forward dynamics algorithms from the prior works are utilised to minimise the computational effort. Finally, the efficacy of the proposed framework and the need for such an inclusive dynamic model are illustrated by applying it to different application scenarios using the spatial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S026357472400047X_inline1.png\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S026357472400047X_inline2.png\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> CDPR as an example.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"52 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140600534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-hexapod robot with an origami-like SU-8-coated rigid frame 带有类似折纸的 SU-8 涂层刚性框架的微型六足机器人
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-04-02 DOI: 10.1017/s0263574724000419
Kenjiro Sugimoto, Sumito Nagasawa

In recent years, many microrobots have been developed for search applications using swarms in places where humans cannot enter, such as disaster sites. Hexapod robots are suitable for moving over uneven terrain. In order to use micro-hexapod robots for swarm exploration, it is necessary to reduce the robot’s size while maintaining its rigidity. Herein, we propose a micro-hexapod with an SU-8 rigid frame that can be assembled from a single sheet. By applying the SU-8 coating as a structure to the hexapod and increasing the rigidity, the substrate size can be reduced to within 40 mm × 40 mm and the total length when assembled to approximately 30 mm. This enables the integration of the micro electromechanical systems (MEMS) process into small and inexpensive hexapod robots. In this study, we assembled the hexapod with a rigid frame from a sheet created using the MEMS process and evaluated the leg motion.

近年来,人们开发了许多微型机器人,用于在人类无法进入的地方(如灾难现场)进行成群搜索。六足机器人适合在不平坦的地形上移动。为了将微型六足机器人用于蜂群探索,有必要在保持机器人刚性的同时缩小其体积。在此,我们提出了一种带有 SU-8 刚性框架的微型六足机器人,该框架可由一张薄板组装而成。通过将 SU-8 涂层作为结构应用于六脚架并提高其刚性,可将基板尺寸缩小至 40 mm × 40 mm 以内,组装后的总长度约为 30 mm。这样就能将微型机电系统(MEMS)工艺集成到小型廉价的六足机器人中。在这项研究中,我们用 MEMS 工艺制作的板材组装了带有刚性框架的六足机器人,并对其腿部运动进行了评估。
{"title":"Micro-hexapod robot with an origami-like SU-8-coated rigid frame","authors":"Kenjiro Sugimoto, Sumito Nagasawa","doi":"10.1017/s0263574724000419","DOIUrl":"https://doi.org/10.1017/s0263574724000419","url":null,"abstract":"<p>In recent years, many microrobots have been developed for search applications using swarms in places where humans cannot enter, such as disaster sites. Hexapod robots are suitable for moving over uneven terrain. In order to use micro-hexapod robots for swarm exploration, it is necessary to reduce the robot’s size while maintaining its rigidity. Herein, we propose a micro-hexapod with an SU-8 rigid frame that can be assembled from a single sheet. By applying the SU-8 coating as a structure to the hexapod and increasing the rigidity, the substrate size can be reduced to within 40 mm × 40 mm and the total length when assembled to approximately 30 mm. This enables the integration of the micro electromechanical systems (MEMS) process into small and inexpensive hexapod robots. In this study, we assembled the hexapod with a rigid frame from a sheet created using the MEMS process and evaluated the leg motion.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"8 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbolic position analysis for three 6-DOF parallel mechanisms and new insight 三个 6-DOF 并联机构的符号位置分析和新见解
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-03-27 DOI: 10.1017/s0263574724000432
Zhongqiu Du, Ju Li, Qingmei Meng, Pengda Ye, Huiping Shen
The authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e., branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms is verified through numerical examples. This research brings a new insight into the design and position analysis of 6-DOF PMs, particularly those with SFP and partial MD.
作者之前的研究表明,具有混合支链(即包含平面或空间环路的支链)的并联机构(PM)可以具有符号前向位置(SFP)解和运动解耦合(MD)。为了进一步研究具有 SFP 和 MD 的三链六自由度(DOF)并联机构的条件,本文提出了一个 6-DOF 支链 A 和两个 5-DOF 支链 B 和 C。结果表明,如果移动平台上某点的位置或方位可以通过混合支链的位置确定,则该 PM 将表现出部分 MD 和 SFP。最后,通过数值实例验证了符号化正解和逆解算法的准确性。这项研究为 6-DOF PM(尤其是具有 SFP 和部分 MD 的 PM)的设计和位置分析带来了新的见解。
{"title":"Symbolic position analysis for three 6-DOF parallel mechanisms and new insight","authors":"Zhongqiu Du, Ju Li, Qingmei Meng, Pengda Ye, Huiping Shen","doi":"10.1017/s0263574724000432","DOIUrl":"https://doi.org/10.1017/s0263574724000432","url":null,"abstract":"The authors‘ previous research has demonstrated that parallel mechanisms (PMs) with hybrid branch chains (i.e., branch chains containing planar or spatial loops) can possess symbolic forward position (SFP) solutions and motion decoupling (MD). In order to further study the conditions of a three-chain six degrees of freedom (DOF) parallel mechanism with SFP and MD, this paper proposes one 6-DOF branch chain A and two 5-DOF branch chains B and C. Based on these, a class of four 6-DOF PMs with three branch chains is devised. The symbolic position analysis of three of four such PMs is performed consequently, featuring partial MD and SFPs, which reveals that if the position or orientation of a point on the moving platform can be determined by the position of the hybrid branch chain, the PM exhibits partial MD and SFP. Finally, the accuracy of the symbolized forward and inverse solution algorithms is verified through numerical examples. This research brings a new insight into the design and position analysis of 6-DOF PMs, particularly those with SFP and partial MD.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"65 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A trocar puncture robot for assisting venipuncture blood collection 用于辅助静脉穿刺采血的套管穿刺机器人
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-03-27 DOI: 10.1017/s0263574724000407
Zhikang Yang, Shikun Wen, Qian Qi, Zhuhai Lv, Aihong Ji
The venous blood test is a prevalent auxiliary medical diagnostic method. Venous blood collection equipment can improve blood collection’s success rate and stability, reduce the workload of medical staff, and improve the efficiency of diagnosis and treatment. This study proposed a rigid-flexible composite puncture (RFCP) strategy, based on which a small 7-degree-of-freedom (DOF) auxiliary venipuncture blood collection (VPBC) robot using a trocar needle was designed. The robot consists of a position and orientation adjustment mechanism and a RFCP end-effector, which can perform RFCP to avoid piercing the blood vessel’s lower wall during puncture. The inverse kinematics solution and validation of the robot were analyzed based on the differential evolution algorithm, after which the quintic polynomial interpolation algorithm was applied to achieve the robot trajectory planning control. Finally, the VPBC robot prototype was developed for experiments. The trajectory planning experiment verified the correctness of the inverse kinematics solution and trajectory planning, and the composite puncture blood collection experiment verified the feasibility of the RFCP strategy.
静脉血检测是一种普遍的辅助医疗诊断方法。静脉采血设备可以提高采血成功率和稳定性,减轻医务人员的工作量,提高诊疗效率。本研究提出了一种刚柔复合穿刺(RFCP)策略,并在此基础上设计了一种使用套管针的小型 7 自由度(DOF)辅助静脉穿刺采血(VPBC)机器人。该机器人由位置和方向调整机构以及 RFCP 末端执行器组成,可执行 RFCP 以避免在穿刺过程中刺穿血管下壁。基于微分进化算法分析了机器人的逆运动学求解和验证,然后应用五次多项式插值算法实现了机器人轨迹规划控制。最后,研制出了 VPBC 机器人原型进行实验。轨迹规划实验验证了逆运动学求解和轨迹规划的正确性,复合穿刺采血实验验证了RFCP策略的可行性。
{"title":"A trocar puncture robot for assisting venipuncture blood collection","authors":"Zhikang Yang, Shikun Wen, Qian Qi, Zhuhai Lv, Aihong Ji","doi":"10.1017/s0263574724000407","DOIUrl":"https://doi.org/10.1017/s0263574724000407","url":null,"abstract":"The venous blood test is a prevalent auxiliary medical diagnostic method. Venous blood collection equipment can improve blood collection’s success rate and stability, reduce the workload of medical staff, and improve the efficiency of diagnosis and treatment. This study proposed a rigid-flexible composite puncture (RFCP) strategy, based on which a small 7-degree-of-freedom (DOF) auxiliary venipuncture blood collection (VPBC) robot using a trocar needle was designed. The robot consists of a position and orientation adjustment mechanism and a RFCP end-effector, which can perform RFCP to avoid piercing the blood vessel’s lower wall during puncture. The inverse kinematics solution and validation of the robot were analyzed based on the differential evolution algorithm, after which the quintic polynomial interpolation algorithm was applied to achieve the robot trajectory planning control. Finally, the VPBC robot prototype was developed for experiments. The trajectory planning experiment verified the correctness of the inverse kinematics solution and trajectory planning, and the composite puncture blood collection experiment verified the feasibility of the RFCP strategy.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"80 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation and dimensional optimization design of planar 6R redundant actuation parallel mechanism 平面 6R 冗余致动并联机构的性能评估和尺寸优化设计
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-03-27 DOI: 10.1017/s0263574724000456
Ming Han, Jiajin Che, Jinyue Liu, Dong Yang
Aiming at the problems of small good workspace, many singular configurations, and limited carrying capacity of non-redundant parallel mechanisms, a full-redundant drive parallel mechanism is designed and developed, and its performance evaluation, good workspace identification, and scale optimization design are studied. First, the kinematics analysis of the planar 6R parallel mechanism is completed. Then, the motion/force transmission performance evaluation index of the mechanism is established, and the singularity analysis of the mechanism is completed. Based on this, the fully redundant driving mode of the mechanism is determined, and the good transmission workspace of the mechanism in this mode is identified. Then, the mapping relationship between the performance and scale of the mechanism is established by using the space model theory, and the scale optimization of the mechanism is completed. Finally, the robot prototype is made according to the optimal scale, and the performance verification is carried out based on the research of dynamics and control strategy. The results show that the fully redundant actuation parallel mechanism obtained by design optimization has high precision and large bearing capacity. The position repeatability and position accuracy are 0.053 mm and 0.635 mm, respectively, and the load weight ratio can reach 15.83%. The research results of this paper complement and improve the performance evaluation and scale optimization system of redundantly actuated parallel mechanisms.
针对非冗余并联机构存在的良好工作空间小、奇异构型多、承载能力有限等问题,设计开发了全冗余驱动并联机构,并对其性能评估、良好工作空间识别和尺度优化设计进行了研究。首先,完成了平面 6R 并联机构的运动学分析。然后,建立了机构的运动/力传递性能评价指标,并完成了机构的奇异性分析。在此基础上,确定了机构的全冗余驱动模式,并确定了该模式下机构的良好传动工作空间。然后,利用空间模型理论建立了机构性能与尺度之间的映射关系,并完成了机构的尺度优化。最后,根据最优尺度制作了机器人原型,并在动力学和控制策略研究的基础上进行了性能验证。结果表明,通过优化设计获得的全冗余执行并联机构精度高、承载能力大。位置重复精度和位置精度分别为 0.053 mm 和 0.635 mm,载重比可达 15.83%。本文的研究成果补充和完善了冗余驱动并联机构的性能评估和规模优化体系。
{"title":"Performance evaluation and dimensional optimization design of planar 6R redundant actuation parallel mechanism","authors":"Ming Han, Jiajin Che, Jinyue Liu, Dong Yang","doi":"10.1017/s0263574724000456","DOIUrl":"https://doi.org/10.1017/s0263574724000456","url":null,"abstract":"Aiming at the problems of small good workspace, many singular configurations, and limited carrying capacity of non-redundant parallel mechanisms, a full-redundant drive parallel mechanism is designed and developed, and its performance evaluation, good workspace identification, and scale optimization design are studied. First, the kinematics analysis of the planar 6R parallel mechanism is completed. Then, the motion/force transmission performance evaluation index of the mechanism is established, and the singularity analysis of the mechanism is completed. Based on this, the fully redundant driving mode of the mechanism is determined, and the good transmission workspace of the mechanism in this mode is identified. Then, the mapping relationship between the performance and scale of the mechanism is established by using the space model theory, and the scale optimization of the mechanism is completed. Finally, the robot prototype is made according to the optimal scale, and the performance verification is carried out based on the research of dynamics and control strategy. The results show that the fully redundant actuation parallel mechanism obtained by design optimization has high precision and large bearing capacity. The position repeatability and position accuracy are 0.053 mm and 0.635 mm, respectively, and the load weight ratio can reach 15.83%. The research results of this paper complement and improve the performance evaluation and scale optimization system of redundantly actuated parallel mechanisms.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"9 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse dynamics analysis of a 6-RR-RP-RR parallel manipulator with offset universal joints 带偏移万向节的 6-RR-RP-RR 并联机械手的逆动力学分析
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-03-26 DOI: 10.1017/s0263574724000365
Huze Huang, Hasiaoqier Han, Dawei Li, Zhenbang Xu, Qingwen Wu

This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset universal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint performance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear system of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the joints can be obtained, from which the required actuation force can be derived. This method is validated through numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.

本文介绍了一种通过牛顿-欧拉法求解带有偏置万向关节(RR-关节)的并联机械手(PM)逆动力学的算法。带有 RR 关节的并联机械手增加了关节刚度,扩大了工作空间,但也引入了额外的关节参数和约束扭矩,使动力学变得更加复杂。与强调运动学和关节性能的现有带 RR 关节的 PM 研究不同,本文研究的是动力学模型。首先,通过刚体速度变换建立迭代算法,计算链路速度和加速度的输入参数。然后,通过牛顿-欧拉法为整个 PM 建立矩阵形式的线性方程组。通过使用广义最小残差法(GMRES)求解方程组,可以得到关节上的所有力和扭矩,并由此得出所需的驱动力。通过使用多体系统自动动态分析软件进行数值模拟,对该方法进行了验证。所提出的方法适用于建立具有冗余或混合结构的复杂 PM 的动态模型。
{"title":"Inverse dynamics analysis of a 6-RR-RP-RR parallel manipulator with offset universal joints","authors":"Huze Huang, Hasiaoqier Han, Dawei Li, Zhenbang Xu, Qingwen Wu","doi":"10.1017/s0263574724000365","DOIUrl":"https://doi.org/10.1017/s0263574724000365","url":null,"abstract":"<p>This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset universal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint performance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear system of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the joints can be obtained, from which the required actuation force can be derived. This method is validated through numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"26 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective optimization approach for coverage path planning of mobile robot 移动机器人覆盖路径规划的多目标优化方法
IF 2.7 4区 计算机科学 Q3 ROBOTICS Pub Date : 2024-03-25 DOI: 10.1017/s0263574724000377
Monex Sharma, Hari Kumar Voruganti
Coverage path planning (CPP) is a subfield of path planning problems in which free areas of a given domain must be visited by a robot at least once while avoiding obstacles. In some situations, the path may be optimized for one or more criteria such as total distance traveled, number of turns, and total area covered by the robot. Accordingly, the CPP problem has been formulated as a multi-objective optimization (MOO) problem, which turns out to be a challenging discrete optimization problem, hence conventional MOO algorithms like Non-dominated Sorting Genetic Algorithm-2 (NSGA-II) do not work as it is. This study implements a modified NSGA-II to solve the MOO problem of CPP for a mobile robot. In this paper, the proposed method adopted two objective functions: (1) the total distance traveled by the robot and (2) the number of turns taken by the robot. The two objective functions are used to calculate energy consumption. The proposed method is compared to the hybrid genetic algorithm (HGA) and the traditional genetic algorithm (TGA) in a rectilinear environment containing obstacles of various complex shapes. In addition, the results of the proposed algorithm are compared to those generated by HGA, TGA, oriented rectilinear decomposition, and spatial cell diffusion and family of spanning tree coverage in existing research papers. The results of all comparisons indicate that the proposed algorithm outperformed the existing algorithms by reducing energy consumption by 5 to 60%. This paper provides the facility to operate the robot in different modes.
覆盖路径规划(CPP)是路径规划问题的一个子领域,在该问题中,机器人必须在避开障碍物的同时至少访问一次给定区域内的空闲区域。在某些情况下,可以根据一个或多个标准对路径进行优化,如总行程、转弯次数和机器人覆盖的总面积。因此,CPP 问题被表述为一个多目标优化(MOO)问题,它是一个具有挑战性的离散优化问题,因此传统的 MOO 算法,如非支配排序遗传算法-2(NSGA-II),并不适用。本研究采用改进的 NSGA-II 来解决移动机器人 CPP 的 MOO 问题。本文提出的方法采用了两个目标函数:(1) 机器人行进的总距离和 (2) 机器人转弯的次数。这两个目标函数用于计算能耗。在包含各种复杂形状障碍物的直线环境中,将所提出的方法与混合遗传算法(HGA)和传统遗传算法(TGA)进行了比较。此外,还将所提算法的结果与现有研究论文中的 HGA、TGA、定向直线分解以及空间单元扩散和生成树覆盖族生成的结果进行了比较。所有比较结果表明,拟议算法的性能优于现有算法,能耗降低了 5% 至 60%。本文提供了在不同模式下操作机器人的设施。
{"title":"Multi-objective optimization approach for coverage path planning of mobile robot","authors":"Monex Sharma, Hari Kumar Voruganti","doi":"10.1017/s0263574724000377","DOIUrl":"https://doi.org/10.1017/s0263574724000377","url":null,"abstract":"Coverage path planning (CPP) is a subfield of path planning problems in which free areas of a given domain must be visited by a robot at least once while avoiding obstacles. In some situations, the path may be optimized for one or more criteria such as total distance traveled, number of turns, and total area covered by the robot. Accordingly, the CPP problem has been formulated as a multi-objective optimization (MOO) problem, which turns out to be a challenging discrete optimization problem, hence conventional MOO algorithms like Non-dominated Sorting Genetic Algorithm-2 (NSGA-II) do not work as it is. This study implements a modified NSGA-II to solve the MOO problem of CPP for a mobile robot. In this paper, the proposed method adopted two objective functions: (1) the total distance traveled by the robot and (2) the number of turns taken by the robot. The two objective functions are used to calculate energy consumption. The proposed method is compared to the hybrid genetic algorithm (HGA) and the traditional genetic algorithm (TGA) in a rectilinear environment containing obstacles of various complex shapes. In addition, the results of the proposed algorithm are compared to those generated by HGA, TGA, oriented rectilinear decomposition, and spatial cell diffusion and family of spanning tree coverage in existing research papers. The results of all comparisons indicate that the proposed algorithm outperformed the existing algorithms by reducing energy consumption by 5 to 60%. This paper provides the facility to operate the robot in different modes.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"22 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Robotica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1