Pub Date : 2020-07-01DOI: 10.31349/revmexfise.17.201
A. González y Hernández, César Mora, Ma del Pilar Segarra AMberú
Los sistemas dinamicos tienen su origen en la Mecanica Clasica. La segunda Ley de Newton representada matematicamente por una ecuacion de movimiento o ecuacion diferencial de segundo orden, modela la evolucion en el tiempo de los sistemas dinamicos de la Mecanica Clasica constituidos por uno o mas cuerpos masivos sujetos a fuerzas externas. El tratamiento de los sistemas dinamicos de la Mecanica Clasica o abreviadamente sistemas mecanicos, mediante la ecuacion de movimiento y su solucion correspondiente, permite establecer el comportamiento dinamico de los sistemas mecanicos en el tiempo. Para obtener la modelacion completa de un sistema mecanico en particular es fundamental obtener la solucion de la ecuacion de movimiento, ya sea por medio de metodos matematicos analiticos o numericos. Sin embargo, los metodos analiticos frecuentemente requieren de una matematica mas compleja que la utilizada en los metodos numericos y que es mas dificil de conocer y aplicar para cualquier sistema dinamico. Por este motivo, aqui le damos preferencia al desarrollo de los metodos numericos de solucion de la ecuacion de movimiento que se adaptan muy adecuadamente al estudio de diferentes sistemas mecanicos modelados en este trabajo y que sufren muy pocas variaciones al aplicarlos de un sistema mecanico a otro.
{"title":"Modelación de sistemas dinámicos de la mecánica clásica","authors":"A. González y Hernández, César Mora, Ma del Pilar Segarra AMberú","doi":"10.31349/revmexfise.17.201","DOIUrl":"https://doi.org/10.31349/revmexfise.17.201","url":null,"abstract":"Los sistemas dinamicos tienen su origen en la Mecanica Clasica. La segunda Ley de Newton representada matematicamente por una ecuacion de movimiento o ecuacion diferencial de segundo orden, modela la evolucion en el tiempo de los sistemas dinamicos de la Mecanica Clasica constituidos por uno o mas cuerpos masivos sujetos a fuerzas externas. El tratamiento de los sistemas dinamicos de la Mecanica Clasica o abreviadamente sistemas mecanicos, mediante la ecuacion de movimiento y su solucion correspondiente, permite establecer el comportamiento dinamico de los sistemas mecanicos en el tiempo. Para obtener la modelacion completa de un sistema mecanico en particular es fundamental obtener la solucion de la ecuacion de movimiento, ya sea por medio de metodos matematicos analiticos o numericos. Sin embargo, los metodos analiticos frecuentemente requieren de una matematica mas compleja que la utilizada en los metodos numericos y que es mas dificil de conocer y aplicar para cualquier sistema dinamico. Por este motivo, aqui le damos preferencia al desarrollo de los metodos numericos de solucion de la ecuacion de movimiento que se adaptan muy adecuadamente al estudio de diferentes sistemas mecanicos modelados en este trabajo y que sufren muy pocas variaciones al aplicarlos de un sistema mecanico a otro.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"14 1","pages":"201-214"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90384243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.31349/revmexfise.17.236
H. Riveros
Este experimento demostro la cuantizacion de la carga y midio la magnitud de la carga del electron. Es un experimento que se repite en laboratorios escolares, causando muchas decepciones; pero es interesante interpretar los datos presentados en su recepcion del premio Nobel y en un articulo en Physical Review. Millikan paso muchos anos perfeccionando el experimento, reduciendo las corrientes de conveccion y el tamano de las gotas de aceite, usado para reducir la evaporacion de la gota. Sus mejores datos corresponden a gotas tan pequenas que tardaban 120 segundos en caer 1.303 cm, las que pueden hacerse subir con 1 a 4 electrones. En laboratorios escolares se obtienen tiempos de 10 a 3 segundos y la carga minima para vencer a la gravedad corresponde a decenas de electrones, lo que requiere mucha precision en la medida de las velocidades. Se requiere un buen aislamiento termico para reducir la conveccion y un atomizador capaz de producir gotas sumamente pequenas.
{"title":"Análisis del Experimento de Millikan","authors":"H. Riveros","doi":"10.31349/revmexfise.17.236","DOIUrl":"https://doi.org/10.31349/revmexfise.17.236","url":null,"abstract":"Este experimento demostro la cuantizacion de la carga y midio la magnitud de la carga del electron. Es un experimento que se repite en laboratorios escolares, causando muchas decepciones; pero es interesante interpretar los datos presentados en su recepcion del premio Nobel y en un articulo en Physical Review. Millikan paso muchos anos perfeccionando el experimento, reduciendo las corrientes de conveccion y el tamano de las gotas de aceite, usado para reducir la evaporacion de la gota. Sus mejores datos corresponden a gotas tan pequenas que tardaban 120 segundos en caer 1.303 cm, las que pueden hacerse subir con 1 a 4 electrones. En laboratorios escolares se obtienen tiempos de 10 a 3 segundos y la carga minima para vencer a la gravedad corresponde a decenas de electrones, lo que requiere mucha precision en la medida de las velocidades. Se requiere un buen aislamiento termico para reducir la conveccion y un atomizador capaz de producir gotas sumamente pequenas.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"15 1","pages":"236-240"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85509343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.31349/revmexfise.17.156
R. Yáñez-Valdez, P. A. Gómez Valdez, F. De Armas Rivero
The motion of a particle that is projected into a resistant medium and subjected to a uniform gravitational field is considered. The drag force that acts upon the particle within the medium is proportional to the particle’s speed, the density of the medium, and the cross-section area of the projectile. We review the problem of a horizontal motion with a drag force that is linear in speed. The problem is formulated in terms of particle speed, mass, height, time, and expelled gas velocity. The equations of motion are solved analytically, and a case study is discussed. As a result, we obtain the deviation of the projectile as a function of time because of the expelled gases with or without drag force.
{"title":"Horizontal projectile motion: comparing free fall and drag resistance","authors":"R. Yáñez-Valdez, P. A. Gómez Valdez, F. De Armas Rivero","doi":"10.31349/revmexfise.17.156","DOIUrl":"https://doi.org/10.31349/revmexfise.17.156","url":null,"abstract":"The motion of a particle that is projected into a resistant medium and subjected to a uniform gravitational field is considered. The drag force that acts upon the particle within the medium is proportional to the particle’s speed, the density of the medium, and the cross-section area of the projectile. We review the problem of a horizontal motion with a drag force that is linear in speed. The problem is formulated in terms of particle speed, mass, height, time, and expelled gas velocity. The equations of motion are solved analytically, and a case study is discussed. As a result, we obtain the deviation of the projectile as a function of time because of the expelled gases with or without drag force.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"10 1","pages":"156-164"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73062270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.31349/revmexfise.17.178
J. A. Arzola Flores, E. García García, J. F. Rojas Rodriguez, R. Murueta Fortiz, G. Corona Morales, A. H. Hernández Santiago, E. Ayala Herrera, E. Vidal Robles
An integrative methodology for teaching science is proposed through the STEM methodology (Science-Technology-EngineeringMathematics).The STEM methodology provides students the opportunity to combine knowledge in an interdisciplinary and collaborative manner, allowing the development of creative and systemic thinking. As a model we propose the experimental reproduction of the Belousov-Zhabotinsky reaction (BZ), which is the standard prototype of non-linear chemistry, in addition we used the Python V2.7 programming software and the Jupyter platform for the computational reproduction of the BZ reaction. The STEM methodology could help the development of new competences for students, that is, it will provide them with tools to solve complex current problems that require of the interdisciplinarity
{"title":"Spatial and temporal dynamics of Belousov-Zhabotinsky reaction: A STEM approach","authors":"J. A. Arzola Flores, E. García García, J. F. Rojas Rodriguez, R. Murueta Fortiz, G. Corona Morales, A. H. Hernández Santiago, E. Ayala Herrera, E. Vidal Robles","doi":"10.31349/revmexfise.17.178","DOIUrl":"https://doi.org/10.31349/revmexfise.17.178","url":null,"abstract":"An integrative methodology for teaching science is proposed through the STEM methodology (Science-Technology-EngineeringMathematics).The STEM methodology provides students the opportunity to combine knowledge in an interdisciplinary and collaborative manner, allowing the development of creative and systemic thinking. As a model we propose the experimental reproduction of the Belousov-Zhabotinsky reaction (BZ), which is the standard prototype of non-linear chemistry, in addition we used the Python V2.7 programming software and the Jupyter platform for the computational reproduction of the BZ reaction. The STEM methodology could help the development of new competences for students, that is, it will provide them with tools to solve complex current problems that require of the interdisciplinarity","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"1 1","pages":"178-190"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82312862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.31349/revmexfise.17.215
A. Vidak, V. Dananić, V. Mešić
In this study we investigated whether combining external visualizations with extreme case reasoning may facilitate developing of conceptual understanding about wave optics. For purposes of answering our research question we conducted a pretest-posttest quasi-experiment which included 179 students from a first year introductory physics course at the University of Zagreb, Croatia. Students who were guided through extreme case reasoning in their wave optics seminars significantly outperformed their peers who received conventional teaching treatment. Findings from our study suggest that combining external visualizations with extreme case reasoning facilitates development of visually rich internal representations which are a good basis for performing mental simulations about wave optics phenomena. In addition, it has been also found that many students use the “ closer to the source implicates greater effect ” p-prim when reasoning about certain relationships, such as the relationship between fringes’ dimension and slits-screen separation.
{"title":"Learning about wave optics: the effects of combining external visualizations with extreme case reasoning","authors":"A. Vidak, V. Dananić, V. Mešić","doi":"10.31349/revmexfise.17.215","DOIUrl":"https://doi.org/10.31349/revmexfise.17.215","url":null,"abstract":"In this study we investigated whether combining external visualizations with extreme case reasoning may facilitate developing of conceptual understanding about wave optics. For purposes of answering our research question we conducted a pretest-posttest quasi-experiment which included 179 students from a first year introductory physics course at the University of Zagreb, Croatia. Students who were guided through extreme case reasoning in their wave optics seminars significantly outperformed their peers who received conventional teaching treatment. Findings from our study suggest that combining external visualizations with extreme case reasoning facilitates development of visually rich internal representations which are a good basis for performing mental simulations about wave optics phenomena. In addition, it has been also found that many students use the “ closer to the source implicates greater effect ” p-prim when reasoning about certain relationships, such as the relationship between fringes’ dimension and slits-screen separation.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"12 1","pages":"215-225"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83273427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.31349/revmexfise.17.285
E. Pratidhina, W. S. B. Dwandaru, H. Kuswanto
In this paper, we present an alternative for physics laboratory activity related to Fraunhofer diffraction in distance learning. The activity utilizes a demonstration video from MIT Open CourseWare, Tracker software, and spreadsheet. An online demonstration video is used because it is the most accessible resource during undesirable conditions such as COVID 19 pandemic. In the activity, students can explore diffractions phenomena with multiple slits. The effect of slit spacing and slit numbers to the intensity of light is investigated trough spectral analysis with Tracker. The investigation is followed by a discussion through the mathematical approach and visualization with spreadsheets. It will enrich students with a theoretical explanation of the observation. This distance learning activity allows students to develop their science process skills, mathematical and computational thinking skills, and conceptual understanding of Fraunhofer diffraction.
{"title":"Exploring Fraunhofer diffraction through Tracker and spreadsheet: An alternative lab activity for distance learning","authors":"E. Pratidhina, W. S. B. Dwandaru, H. Kuswanto","doi":"10.31349/revmexfise.17.285","DOIUrl":"https://doi.org/10.31349/revmexfise.17.285","url":null,"abstract":"In this paper, we present an alternative for physics laboratory activity related to Fraunhofer diffraction in distance learning. The activity utilizes a demonstration video from MIT Open CourseWare, Tracker software, and spreadsheet. An online demonstration video is used because it is the most accessible resource during undesirable conditions such as COVID 19 pandemic. In the activity, students can explore diffractions phenomena with multiple slits. The effect of slit spacing and slit numbers to the intensity of light is investigated trough spectral analysis with Tracker. The investigation is followed by a discussion through the mathematical approach and visualization with spreadsheets. It will enrich students with a theoretical explanation of the observation. This distance learning activity allows students to develop their science process skills, mathematical and computational thinking skills, and conceptual understanding of Fraunhofer diffraction.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"11 1","pages":"285-290"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89924892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-17DOI: 10.31349/revmexfise.17.241
J. Chacon, J. Vázquez, R. Gabbasov
The development of numerical N-body simulations have allowed studying the formation process and evolution of galaxies at different scales. This paper presents the fundamental concepts of N-body systems applied to the cosmological evolution of the ¤-Cold Dark Matter (¤CDM) model. To perform structure formation in the Universe, we provide an introduction to the basic equations and their implementation on the GADGET-2 software. We also present a simple guide to modifying this code. First, we briefly describe the dark matter in the Universe as well as the theoretical and experimental basis of the ¤CDM model. Then, we focus on the simulation codes and provide the equations that govern most of the N-body simulations to model the dark matter. We describe the Smoothed Particle Hydrodynamics method used for simulating the gas, star dynamics, and structure formation in these simulations. Then, cautiously, we guide the reader to the installation of GADGET-2 on a Linux-based computer, as well as to carry out a couple of examples to operate the code. Finally, by using a computational cluster, we show several results of a large structure simulation, analyze the outputs to display the matter power spectrum, and compare the outcome with theoretical predictions.
{"title":"Dark matter with n-body numerical simulations","authors":"J. Chacon, J. Vázquez, R. Gabbasov","doi":"10.31349/revmexfise.17.241","DOIUrl":"https://doi.org/10.31349/revmexfise.17.241","url":null,"abstract":"The development of numerical N-body simulations have allowed studying the formation process and evolution of galaxies at different scales. This paper presents the fundamental concepts of N-body systems applied to the cosmological evolution of the ¤-Cold Dark Matter (¤CDM) model. To perform structure formation in the Universe, we provide an introduction to the basic equations and their implementation on the GADGET-2 software. We also present a simple guide to modifying this code. First, we briefly describe the dark matter in the Universe as well as the theoretical and experimental basis of the ¤CDM model. Then, we focus on the simulation codes and provide the equations that govern most of the N-body simulations to model the dark matter. We describe the Smoothed Particle Hydrodynamics method used for simulating the gas, star dynamics, and structure formation in these simulations. Then, cautiously, we guide the reader to the installation of GADGET-2 on a Linux-based computer, as well as to carry out a couple of examples to operate the code. Finally, by using a computational cluster, we show several results of a large structure simulation, analyze the outputs to display the matter power spectrum, and compare the outcome with theoretical predictions.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"1 1","pages":"241-254"},"PeriodicalIF":0.0,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83082662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-28DOI: 10.31349/revmexfise.17.6
R. Sánchez-Martinez, A. L. Salas-Brito, H. N. Núñez-Yépez
The harmonic oscillator (HO) is present in all contemporary physics, from elementary classical mechanics to quantum field theory. It is useful in general to exemplify techniques in theoretical physics. In this work, we use a method for solving classical mechanic problems by first transforming them to a free particle form and using the new canonical coordinates to reparametrize its phase space. This technique has been used to solve the one-dimensional hydrogen atom and also to solve for the motion of a particle in a dipolar potential. Using canonical transformations we convert the HO Hamiltonian to a free particle form which becomes trivial to solve. Our approach may be helpful to exemplify how canonical transformations may be used in mechanics. Besides, we expect it will help students to grasp what they mean when it is said that a problem has been transformed into another completely different one. As, for example, when the Kepler problem is transformed into free (geodesic) motion on a spherical surface.
{"title":"A geodesical approach for the harmonic oscillator","authors":"R. Sánchez-Martinez, A. L. Salas-Brito, H. N. Núñez-Yépez","doi":"10.31349/revmexfise.17.6","DOIUrl":"https://doi.org/10.31349/revmexfise.17.6","url":null,"abstract":"The harmonic oscillator (HO) is present in all contemporary physics, from elementary classical mechanics to quantum field theory. It is useful in general to exemplify techniques in theoretical physics. In this work, we use a method for solving classical mechanic problems by first transforming them to a free particle form and using the new canonical coordinates to reparametrize its phase space. This technique has been used to solve the one-dimensional hydrogen atom and also to solve for the motion of a particle in a dipolar potential. Using canonical transformations we convert the HO Hamiltonian to a free particle form which becomes trivial to solve. Our approach may be helpful to exemplify how canonical transformations may be used in mechanics. Besides, we expect it will help students to grasp what they mean when it is said that a problem has been transformed into another completely different one. As, for example, when the Kepler problem is transformed into free (geodesic) motion on a spherical surface.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"84 1","pages":"6-10"},"PeriodicalIF":0.0,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74931651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-28DOI: 10.31349/revmexfise.17.27
G. F. Torres del Castillo
We give an elementary introduction to the Kaluza-Klein formulation, in which the gravitational and the electromagnetic fields are represented in the geometry of a five-dimensional space. We show that, in the framework of general relativity, the interaction of a point particle, or of a charged spin-zero field, with a gravitational and an electromagnetic field can be obtained through the metric of a five-dimensional space. We also show that the symmetries of the metric of this five-dimensional space lead to constants of motion for the point particles, or to operators that commute with the Klein--Gordon operator. A common misunderstanding related to the unification of gravitation and electromagnetism given by the Kaluza--Klein formulation is discussed.
{"title":"An introduction to the Kaluza-Klein formulation","authors":"G. F. Torres del Castillo","doi":"10.31349/revmexfise.17.27","DOIUrl":"https://doi.org/10.31349/revmexfise.17.27","url":null,"abstract":"We give an elementary introduction to the Kaluza-Klein formulation, in which the gravitational and the electromagnetic fields are represented in the geometry of a five-dimensional space. We show that, in the framework of general relativity, the interaction of a point particle, or of a charged spin-zero field, with a gravitational and an electromagnetic field can be obtained through the metric of a five-dimensional space. We also show that the symmetries of the metric of this five-dimensional space lead to constants of motion for the point particles, or to operators that commute with the Klein--Gordon operator. A common misunderstanding related to the unification of gravitation and electromagnetism given by the Kaluza--Klein formulation is discussed.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"33 1","pages":"27-32"},"PeriodicalIF":0.0,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82570936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-28DOI: 10.31349/revmexfise.17.62
D. A. Bravo, C. Rengifo
En este trabajo se realiza un estudio de modelo cinematico y dinamico de una bicicleta robotica ( Arduino Engineering Kit ) con el proposito de desarrollar algoritmos de control para la estabilizacion automatica de la bicicleta. Se muestra el modelo matematico de la bicicleta mediante la formulacion Euler - Lagrange . Este modelo permite el diseno y la implementacion de dos estrategias de control para garantizar el equilibrio automatico. El estudio de este sistema dinamico se presenta como una excelente oportunidad para integrar las destrezas adquiridas por los estudiantes en materias como fisica, programacion y matematicas con el proposito de disenar, modelar y controlar sistemas dinamicos.
{"title":"Estudio de la Dinámica y Control de una Bicicleta Robótica","authors":"D. A. Bravo, C. Rengifo","doi":"10.31349/revmexfise.17.62","DOIUrl":"https://doi.org/10.31349/revmexfise.17.62","url":null,"abstract":"En este trabajo se realiza un estudio de modelo cinematico y dinamico de una bicicleta robotica ( Arduino Engineering Kit ) con el proposito de desarrollar algoritmos de control para la estabilizacion automatica de la bicicleta. Se muestra el modelo matematico de la bicicleta mediante la formulacion Euler - Lagrange . Este modelo permite el diseno y la implementacion de dos estrategias de control para garantizar el equilibrio automatico. El estudio de este sistema dinamico se presenta como una excelente oportunidad para integrar las destrezas adquiridas por los estudiantes en materias como fisica, programacion y matematicas con el proposito de disenar, modelar y controlar sistemas dinamicos.","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":"51 1","pages":"62-68"},"PeriodicalIF":0.0,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78307439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}