The pore space in rocks, sediments, and soils can change significantly as a result of weathering (see Navarre-Sitchler et al. 2015, this volume), diagenetic, metamorphic, tectonic, and even anthropogenic processes. As sediments undergo compaction during burial, grains are rearranged leading to an overall reduction in porosity and pore size (Athy 1930; Hedberg 1936; Neuzil 1994; Dewhurst et al. 1999; Anovitz et al. 2013). In addition, geochemical reactions can induce the precipitation and dissolution of minerals, which can either enhance or reduce pore space (e.g., Navarre-Sitchler et al. 2009; Emmanuel et al. 2010; Stack et al. 2014; Anovitz et al. 2015). During metamorphism too, mineral assemblages can change, altering rock fabrics and porosity (Manning and Bird 1995; Manning and Ingebritsen 1999; Neuhoff et al. 1999; Anovitz et al. 2009; Wang et al. 2013). As the pore space in geological media strongly affects permeability, evolving textures can influence the migration of water, contaminants, gases, and hydrocarbons in the subsurface. Although models—including the Kozeny–Carman equation (Kozeny 1927; Bear 1988)— exist to predict the relationship between porosity and permeability, they are often severely limited, in part because little is known about how pore size, pore geometry, and pore networks evolve in response to chemical and physical processes (Lukasiewicz and Reed 1988; Costa 2006; Xu and Yu 2008). In the case of geochemical reactions, calculating the change in total porosity due to the precipitation of a given mass of mineral is straightforward. However, predicting the way in which the precipitated minerals are distributed throughout the pores remains a non-trivial challenge (Fig. 1; Emmanuel and Ague 2009; Emmanuel et al. 2010, Hedges and Whitlam. 2013; Wang et al. 2013; Stack et al. 2014; Anovitz et …
岩石、沉积物和土壤中的孔隙空间会因风化(见Navarre-Sitchler et al. 2015,本卷)、成岩作用、变质作用、构造作用甚至人为作用而发生显著变化。由于沉积物在埋藏过程中被压实,颗粒被重新排列,导致孔隙度和孔径的整体减小(Athy 1930;Hedberg 1936;Neuzil 1994;Dewhurst et al. 1999;Anovitz et al. 2013)。此外,地球化学反应可以诱导矿物的沉淀和溶解,从而增大或减小孔隙空间(例如,Navarre-Sitchler et al. 2009;Emmanuel et al. 2010;Stack et al. 2014;Anovitz et al. 2015)。在变质作用期间,矿物组合也会发生变化,改变岩石结构和孔隙度(Manning and Bird 1995;Manning and Ingebritsen 1999;Neuhoff et al. 1999;Anovitz et al. 2009;Wang et al. 2013)。由于地质介质中的孔隙空间对渗透率影响很大,因此结构的演变会影响地下水、污染物、气体和碳氢化合物的运移。虽然模型-包括Kozeny - carman方程(Kozeny 1927;Bear 1988) -用于预测孔隙度和渗透率之间的关系,但它们通常受到严重限制,部分原因是人们对孔隙大小、孔隙几何形状和孔隙网络如何响应化学和物理过程而演变知之甚少(Lukasiewicz和Reed 1988;哥2006;Xu and Yu 2008)。在地球化学反应的情况下,计算由给定质量的矿物沉淀引起的总孔隙度的变化是直截了当的。然而,预测沉淀矿物在整个孔隙中的分布方式仍然是一个不小的挑战(图1;Emmanuel和Ague 2009;Emmanuel et al. 2010, Hedges and Whitlam. 2013;Wang et al. 2013;Stack et al. 2014;Anovitz等…
{"title":"Effects of Coupled Chemo-Mechanical Processes on the Evolution of Pore-Size Distributions in Geological Media","authors":"S. Emmanuel, L. Anovitz, R. Day-Stirrat","doi":"10.2138/RMG.2015.03","DOIUrl":"https://doi.org/10.2138/RMG.2015.03","url":null,"abstract":"The pore space in rocks, sediments, and soils can change significantly as a result of weathering (see Navarre-Sitchler et al. 2015, this volume), diagenetic, metamorphic, tectonic, and even anthropogenic processes. As sediments undergo compaction during burial, grains are rearranged leading to an overall reduction in porosity and pore size (Athy 1930; Hedberg 1936; Neuzil 1994; Dewhurst et al. 1999; Anovitz et al. 2013). In addition, geochemical reactions can induce the precipitation and dissolution of minerals, which can either enhance or reduce pore space (e.g., Navarre-Sitchler et al. 2009; Emmanuel et al. 2010; Stack et al. 2014; Anovitz et al. 2015). During metamorphism too, mineral assemblages can change, altering rock fabrics and porosity (Manning and Bird 1995; Manning and Ingebritsen 1999; Neuhoff et al. 1999; Anovitz et al. 2009; Wang et al. 2013). As the pore space in geological media strongly affects permeability, evolving textures can influence the migration of water, contaminants, gases, and hydrocarbons in the subsurface. Although models—including the Kozeny–Carman equation (Kozeny 1927; Bear 1988)— exist to predict the relationship between porosity and permeability, they are often severely limited, in part because little is known about how pore size, pore geometry, and pore networks evolve in response to chemical and physical processes (Lukasiewicz and Reed 1988; Costa 2006; Xu and Yu 2008). In the case of geochemical reactions, calculating the change in total porosity due to the precipitation of a given mass of mineral is straightforward. However, predicting the way in which the precipitated minerals are distributed throughout the pores remains a non-trivial challenge (Fig. 1; Emmanuel and Ague 2009; Emmanuel et al. 2010, Hedges and Whitlam. 2013; Wang et al. 2013; Stack et al. 2014; Anovitz et …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"123 9-10","pages":"45-60"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2138/RMG.2015.03","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72448944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darcy-scale simulation of geochemical reactive transport has proven to be a useful tool to gain mechanistic understanding of the evolution of the subsurface environment under natural or human-induced conditions. At this scale, however, the porous medium is typically conceptualized as a continuum with bulk parameters that characterize its physical and chemical properties based on the assumption that all phases coexist in each point in space. In contrast, the pore scale can be defined as the largest spatial scale at which it is possible to distinguish the different fluid and solid phases that make up natural subsurface materials. Because the pore scale directly accounts for the pore-space architecture within which mineral reactions, microbial interactions and multi-component transport play out, it can help explain biogeochemical behavior that is not understood or predicted by considering smaller or larger scales (Fig. 1). Specifically, the nonlinear interaction between the coupled physical and geochemical processes may result in emergent behavior, including changes in permeability, diffusivity, and reactivity that is not captured easily by a Darcy-scale continuum description. Reactive processes in porous media such as microbially mediated reduction–oxidation (Fig. 1) or mineral dissolution–precipitation (Fig. 2) take place at interfaces between fluid and solid phases. Because the different phases are distinguishable at the pore scale, experimental and modeling studies need to consider these interfaces so as to accurately determine reaction rates. An interface is the surface between two phases that differ in their physical state or chemical composition. Depending on the scale of observation, the appearance of the interface can vary. Sharp interfaces are those in which the physical and chemical characteristics change abruptly across the interface. Diffuse interfaces are those in which the characteristics change smoothly over a layer of varying thickness. Reactive processes themselves can change the appearance of the interface. For example, mineral heterogeneity can …
{"title":"Reactive Interfaces in Direct Numerical Simulation of Pore-Scale Processes","authors":"S. Molins","doi":"10.2138/RMG.2015.80.14","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.14","url":null,"abstract":"Darcy-scale simulation of geochemical reactive transport has proven to be a useful tool to gain mechanistic understanding of the evolution of the subsurface environment under natural or human-induced conditions. At this scale, however, the porous medium is typically conceptualized as a continuum with bulk parameters that characterize its physical and chemical properties based on the assumption that all phases coexist in each point in space. In contrast, the pore scale can be defined as the largest spatial scale at which it is possible to distinguish the different fluid and solid phases that make up natural subsurface materials. Because the pore scale directly accounts for the pore-space architecture within which mineral reactions, microbial interactions and multi-component transport play out, it can help explain biogeochemical behavior that is not understood or predicted by considering smaller or larger scales (Fig. 1). Specifically, the nonlinear interaction between the coupled physical and geochemical processes may result in emergent behavior, including changes in permeability, diffusivity, and reactivity that is not captured easily by a Darcy-scale continuum description. Reactive processes in porous media such as microbially mediated reduction–oxidation (Fig. 1) or mineral dissolution–precipitation (Fig. 2) take place at interfaces between fluid and solid phases. Because the different phases are distinguishable at the pore scale, experimental and modeling studies need to consider these interfaces so as to accurately determine reaction rates. An interface is the surface between two phases that differ in their physical state or chemical composition. Depending on the scale of observation, the appearance of the interface can vary. Sharp interfaces are those in which the physical and chemical characteristics change abruptly across the interface. Diffuse interfaces are those in which the characteristics change smoothly over a layer of varying thickness. Reactive processes themselves can change the appearance of the interface. For example, mineral heterogeneity can …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"265 1","pages":"461-481"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73356610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport, which can strongly influence larger-scale properties such as permeability and dispersion. Therefore, one of the greatest research challenges is to improve our ability to predict these processes across scales (DOE 2007). The development of pore-scale experimental and modeling methods to study reactive processes involving mineral precipitation and dissolution, and biofilm dynamics allows more fundamental investigation of physical behavior so that more accurate and robust upscaled constitutive models can be developed for the continuum scale. A pore-scale model provides fundamental mechanistic explanations of how biogeochemical processes and pore-scale interfacial reactions alter flow paths by pore plugging (and dissolving) under different geochemical compositions and pore configurations. For example, dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in cementation (and/or dissolution) and altering hydrodynamics of reactive flow. This can be observed in a natural analogue where primary porosity in sandstone is cemented by carbonate precipitates, affecting dissolved CO2 flow paths at the Little Garde Wash Fault, Utah (e.g., Fig. 1a–b). Several other examples demonstrating macroscopic characteristics of calcium carbonate (CaCO3) precipitation in Figure 1 include an elongated concretion along the groundwater flow direction, CaCO3 precipitation along the vertical pathway sealed …
{"title":"Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport","authors":"H. Yoon, Q. Kang, A. Valocchi","doi":"10.2138/RMG.2015.80.12","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.12","url":null,"abstract":"Important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport, which can strongly influence larger-scale properties such as permeability and dispersion. Therefore, one of the greatest research challenges is to improve our ability to predict these processes across scales (DOE 2007). The development of pore-scale experimental and modeling methods to study reactive processes involving mineral precipitation and dissolution, and biofilm dynamics allows more fundamental investigation of physical behavior so that more accurate and robust upscaled constitutive models can be developed for the continuum scale. A pore-scale model provides fundamental mechanistic explanations of how biogeochemical processes and pore-scale interfacial reactions alter flow paths by pore plugging (and dissolving) under different geochemical compositions and pore configurations. For example, dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in cementation (and/or dissolution) and altering hydrodynamics of reactive flow. This can be observed in a natural analogue where primary porosity in sandstone is cemented by carbonate precipitates, affecting dissolved CO2 flow paths at the Little Garde Wash Fault, Utah (e.g., Fig. 1a–b). Several other examples demonstrating macroscopic characteristics of calcium carbonate (CaCO3) precipitation in Figure 1 include an elongated concretion along the groundwater flow direction, CaCO3 precipitation along the vertical pathway sealed …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"25 1","pages":"393-431"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86936180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chongxuan Liu, Yuanyuan Liu, S. Kerisit, J. Zachara
Heterogeneity in pore structure and reaction properties including grain size and mineralogy, pore size and connectivity, and sediment surface area and reactivity is a common phenomenon in subsurface materials. Heterogeneity affects transport, mixing, and the interactions of reactants that affect local and overall geochemical and biogeochemical reactions. Effective reaction rates can be orders of magnitude lower in heterogeneous porous media than those observed in well-mixed, homogeneous systems as a result of the pore-scale variability in physical, chemical, and biological properties, and the coupling of pore-scale surface reactions with mass-transport processes in heterogeneous materials. Extensive research has been performed on surface reactions at the pore-scale to provide physicochemical insights on factors that control macroscopic reaction kinetics in porous media. Mineral dissolution and precipitation reactions have been frequently investigated to evaluate how intrinsic reaction rates and mass transfer control macroscopic reaction rates. Examples include the dissolution and/or precipitation of calcite (Bernard 2005; Li et al. 2008; Tartakovsky et al. 2008a; Flukiger and Bernard 2009; Luquot and Gouze 2009; Kang et al. 2010; Zhang et al. 2010a; Molins et al. 2012, 2014; Yoon et al. 2012; Steefel et al. 2013; Luquot et al. 2014), anorthite and kaolinite (Li et al. 2006, 2007), iron oxides (Pallud et al. 2010a,b; Raoof et al. 2013; Zhang et al. 2013a), and uranyl silicate and uraninite (Liu et al. 2006; Pearce et al. 2012). Adsorption and desorption at the pore-scale have been investigated to understand the effect of pore structure heterogeneity on reaction rates and rate scaling from the pore to macroscopic scales (Acharya et al. 2005; Zhang et al. 2008, 2010c, 2013b; Zhang and Lv 2009; Liu et al. 2013a). Microbially mediated reactions have also …
孔隙结构和反应性质(包括粒度和矿物学、孔隙大小和连通性、沉积物表面积和反应性)的非均质性是地下物质的普遍现象。非均质性影响转运、混合和反应物的相互作用,从而影响局部和整体的地球化学和生物地球化学反应。由于物理、化学和生物性质的孔隙尺度可变性,以及非均质材料中孔隙尺度表面反应与质量传递过程的耦合,在非均质多孔介质中观察到的有效反应速率可能比在均匀混合系统中观察到的低几个数量级。在孔隙尺度上对表面反应进行了广泛的研究,以提供控制多孔介质中宏观反应动力学因素的物理化学见解。人们经常研究矿物溶解和沉淀反应,以评估内在反应速率和传质如何控制宏观反应速率。例子包括方解石的溶解和/或沉淀(Bernard 2005;Li et al. 2008;Tartakovsky et al. 2008;Flukiger and Bernard 2009;Luquot & Gouze 2009;Kang et al. 2010;Zhang et al. 2010a;Molins et al. 2012, 2014;Yoon et al. 2012;stefel et al. 2013;Luquot等人,2014),钙长石和高岭石(Li等人,2006年,2007年),氧化铁(Pallud等人,2010年a,b;Raoof et al. 2013;Zhang et al. 2013a),以及硅酸铀酰和铀矿(Liu et al. 2006;Pearce et al. 2012)。研究了孔隙尺度上的吸附和解吸,以了解孔隙结构非均质性对反应速率和从孔隙到宏观尺度的速率缩放的影响(Acharya et al. 2005;张等。2008,2010c, 2013b;张和吕2009;Liu et al. 2013a)。微生物介导的反应也…
{"title":"Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials","authors":"Chongxuan Liu, Yuanyuan Liu, S. Kerisit, J. Zachara","doi":"10.2138/RMG.2015.80.06","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.06","url":null,"abstract":"Heterogeneity in pore structure and reaction properties including grain size and mineralogy, pore size and connectivity, and sediment surface area and reactivity is a common phenomenon in subsurface materials. Heterogeneity affects transport, mixing, and the interactions of reactants that affect local and overall geochemical and biogeochemical reactions. Effective reaction rates can be orders of magnitude lower in heterogeneous porous media than those observed in well-mixed, homogeneous systems as a result of the pore-scale variability in physical, chemical, and biological properties, and the coupling of pore-scale surface reactions with mass-transport processes in heterogeneous materials. Extensive research has been performed on surface reactions at the pore-scale to provide physicochemical insights on factors that control macroscopic reaction kinetics in porous media. Mineral dissolution and precipitation reactions have been frequently investigated to evaluate how intrinsic reaction rates and mass transfer control macroscopic reaction rates. Examples include the dissolution and/or precipitation of calcite (Bernard 2005; Li et al. 2008; Tartakovsky et al. 2008a; Flukiger and Bernard 2009; Luquot and Gouze 2009; Kang et al. 2010; Zhang et al. 2010a; Molins et al. 2012, 2014; Yoon et al. 2012; Steefel et al. 2013; Luquot et al. 2014), anorthite and kaolinite (Li et al. 2006, 2007), iron oxides (Pallud et al. 2010a,b; Raoof et al. 2013; Zhang et al. 2013a), and uranyl silicate and uraninite (Liu et al. 2006; Pearce et al. 2012). Adsorption and desorption at the pore-scale have been investigated to understand the effect of pore structure heterogeneity on reaction rates and rate scaling from the pore to macroscopic scales (Acharya et al. 2005; Zhang et al. 2008, 2010c, 2013b; Zhang and Lv 2009; Liu et al. 2013a). Microbially mediated reactions have also …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"50 1","pages":"191-216"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89075315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The distribution of stable and radiogenic isotopes within and among phases provides a critical means of quantifying the origin, residence and cycling of materials through terrestrial reservoirs (Wahl and Urey 1935; Epstein and Mayeda 1953; Johnson et al. 2004; Eiler 2007; Porcelli and Baskaran 2011; Wiederhold 2015). While isotopic variability is globally observable, the mechanisms that govern both their range and distribution occur largely at atomic (e.g., radioactive decay), molecular (e.g., the influence of mass on the free energy of atomic bonds) and pore (e.g., diffusive transport to reactive surface) scales. In contrast, the vast majority of isotope ratio measurements are based on sample sizes that aggregate multiple pathways, species and compositions. Inferring process from such macro-scale observations therefore requires unraveling the relative contribution of a variety of potential mechanisms. In effect, the use of isotopes as proxies to infer a specific parameter, such as temperature (Urey 1947) or residence time (Kaufman and Libby 1954), carries the implicit requirement that one mechanism is the primary influence on the measured isotopic composition of the composite sample. In the present chapter, we consider a wide variety of macro-scale observations of isotope partitioning across fluid–solid phase boundaries. For this purpose we define the continuum scale as a representation in which interfaces are averaged over elementary volumes, as opposed to the pore scale in which these interfaces are explicitly resolved. Throughout this review it will be demonstrated that observations of isotope partitioning across fluid–solid boundaries require some representation of the isotopic composition of the solid surface and surrounding fluid distinct from ‘bulk’ or ‘well mixed’ reservoirs. For example, this distinction is necessary in order to (1) quantify the partitioning of radioactive and radiogenic species, (2) describe transport limitations that may impact the macroscopic partitioning of isotope ratios, (3) explain …
相内和相间稳定同位素和放射性同位素的分布提供了一种量化陆地储层中物质的来源、停留和循环的关键手段(Wahl和Urey 1935;爱泼斯坦和梅耶达1953;Johnson et al. 2004;艾勒2007;Porcelli and Baskaran 2011;2015年互联网)。虽然同位素变异性可以在全球范围内观察到,但控制其范围和分布的机制主要发生在原子尺度(如放射性衰变)、分子尺度(如质量对原子键自由能的影响)和孔尺度(如向反应表面扩散输运)。相比之下,绝大多数同位素比值测量都是基于汇总了多种途径、物种和成分的样本量。因此,从这种宏观尺度的观察推断过程需要揭示各种潜在机制的相对贡献。实际上,使用同位素作为代用物来推断特定参数,如温度(Urey 1947)或停留时间(Kaufman and Libby 1954),隐含地要求有一种机制是复合样品测量的同位素组成的主要影响因素。在本章中,我们考虑了同位素在流固相边界上分配的各种宏观尺度观测。为此,我们将连续尺度定义为界面在基本体积上平均的表示,而不是这些界面被明确分解的孔隙尺度。在这篇综述中,我们将证明,观察流固边界上的同位素分配需要一些固体表面和周围流体的同位素组成的表示,而不是“大块”或“混合良好”的储层。例如,为了(1)量化放射性和放射性成因物种的分配,(2)描述可能影响同位素比率宏观分配的输运限制,(3)解释……
{"title":"Isotopic Gradients Across Fluid–Mineral Boundaries","authors":"J. Druhan, Shaun T. Brown, C. Huber","doi":"10.2138/RMG.2015.80.11","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.11","url":null,"abstract":"The distribution of stable and radiogenic isotopes within and among phases provides a critical means of quantifying the origin, residence and cycling of materials through terrestrial reservoirs (Wahl and Urey 1935; Epstein and Mayeda 1953; Johnson et al. 2004; Eiler 2007; Porcelli and Baskaran 2011; Wiederhold 2015). While isotopic variability is globally observable, the mechanisms that govern both their range and distribution occur largely at atomic (e.g., radioactive decay), molecular (e.g., the influence of mass on the free energy of atomic bonds) and pore (e.g., diffusive transport to reactive surface) scales. In contrast, the vast majority of isotope ratio measurements are based on sample sizes that aggregate multiple pathways, species and compositions. Inferring process from such macro-scale observations therefore requires unraveling the relative contribution of a variety of potential mechanisms. In effect, the use of isotopes as proxies to infer a specific parameter, such as temperature (Urey 1947) or residence time (Kaufman and Libby 1954), carries the implicit requirement that one mechanism is the primary influence on the measured isotopic composition of the composite sample. In the present chapter, we consider a wide variety of macro-scale observations of isotope partitioning across fluid–solid phase boundaries. For this purpose we define the continuum scale as a representation in which interfaces are averaged over elementary volumes, as opposed to the pore scale in which these interfaces are explicitly resolved. Throughout this review it will be demonstrated that observations of isotope partitioning across fluid–solid boundaries require some representation of the isotopic composition of the solid surface and surrounding fluid distinct from ‘bulk’ or ‘well mixed’ reservoirs. For example, this distinction is necessary in order to (1) quantify the partitioning of radioactive and radiogenic species, (2) describe transport limitations that may impact the macroscopic partitioning of isotope ratios, (3) explain …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"126 1","pages":"355-391"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82443667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dissolution and precipitation reactions are the primary mechanisms that occur when a rock (i.e., a mineral assemblage) is in contact with a fluid out of equilibrium. They play a critical role in natural processes (e.g., weathering, compaction, meteoric and marine diagenesis) and anthropogenic processes (e.g., reservoir acidizing, CO2 sequestration, acid mine drainage, contaminant mobility, bioremediation). Such fluid–rock interactions result in complex changes in pore structure and mineral composition, leading in turn to changes in flow, mechanical, and transport properties, such as permeability, dispersivity, strength, and pore accessibility. Consequently, geochemical disequilibrium can lead to complex modifications of hydrodynamic and transport properties in porous and fractured rocks. Porous rocks are often characterized by complex textures and mineral compositions that are derived from their depositional and diagenetic environments. They typically have heterogeneous structures, the macroscopic physical properties of which depend on microscopic characteristics. Permeability, for example, is closely related to the microstructure, in particular the size and the spatial distribution of pore throats, pore roughness, and presence of fine clogging particles. The coupled hydrological, mechanical, and chemical (HMC) processes are highly non-linear and minor changes at the pore scale in one property can result in large modifications of the others properties. Prediction of system response to chemical conditions requires understanding how individual processes that occur at the microscopic scale contribute to the observed large-scale flow and transport distribution patterns. Predictive modeling remains challenging for the time and spatial scales involved in geological processes and because of the lack of information about how the physical properties of the porous medium evolve as a result of chemical reactions. In particular, the role of microstructures and their possible effects on flow and transport have long been neglected. Consequently, upscaling the flow and transport properties remains poorly constrained by pore-scale observations despite a multitude of experiments, …
{"title":"Resolving Time-dependent Evolution of Pore-Scale Structure, Permeability and Reactivity using X-ray Microtomography","authors":"C. Noiriel","doi":"10.2138/RMG.2015.80.08","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.08","url":null,"abstract":"Dissolution and precipitation reactions are the primary mechanisms that occur when a rock (i.e., a mineral assemblage) is in contact with a fluid out of equilibrium. They play a critical role in natural processes (e.g., weathering, compaction, meteoric and marine diagenesis) and anthropogenic processes (e.g., reservoir acidizing, CO2 sequestration, acid mine drainage, contaminant mobility, bioremediation). Such fluid–rock interactions result in complex changes in pore structure and mineral composition, leading in turn to changes in flow, mechanical, and transport properties, such as permeability, dispersivity, strength, and pore accessibility. Consequently, geochemical disequilibrium can lead to complex modifications of hydrodynamic and transport properties in porous and fractured rocks. Porous rocks are often characterized by complex textures and mineral compositions that are derived from their depositional and diagenetic environments. They typically have heterogeneous structures, the macroscopic physical properties of which depend on microscopic characteristics. Permeability, for example, is closely related to the microstructure, in particular the size and the spatial distribution of pore throats, pore roughness, and presence of fine clogging particles. The coupled hydrological, mechanical, and chemical (HMC) processes are highly non-linear and minor changes at the pore scale in one property can result in large modifications of the others properties. Prediction of system response to chemical conditions requires understanding how individual processes that occur at the microscopic scale contribute to the observed large-scale flow and transport distribution patterns. Predictive modeling remains challenging for the time and spatial scales involved in geological processes and because of the lack of information about how the physical properties of the porous medium evolve as a result of chemical reactions. In particular, the role of microstructures and their possible effects on flow and transport have long been neglected. Consequently, upscaling the flow and transport properties remains poorly constrained by pore-scale observations despite a multitude of experiments, …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"34 1","pages":"247-285"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78947880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this article is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell …
{"title":"Precipitation in Pores: A Geochemical Frontier","authors":"A. Stack","doi":"10.2138/RMG.2015.80.05","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.05","url":null,"abstract":"The purpose of this article is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"61 1","pages":"165-190"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72745088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The term porosity is very widely used in geosciences and normally refers to the spaces between the mineral grains or organic material in a rock, measured as a fraction of the total volume. These spaces may be filled with gas or fluids, and so the most common context for a discussion of porosity is in hydrogeology and petroleum geology of sedimentary rocks. While porosity is a measure of the ability of a rock to include a fluid phase, permeability is a measure of the ability for fluids to flow through the rock, and so depends on the extent to which the pore spaces are interconnected, the distribution of pores and pore neck size, as well as on the pressure driving the flow. This chapter will be primarily concerned with how reactive fluids can move through ‘tight rocks’ which have a very low intrinsic permeability and how secondary porosity is generated by fluid–mineral reactions. A few words about the meaning of the title will help to explain the scope of the chapter: 1. “Fluid–mineral interaction”: When a mineral is out of equilibrium with a fluid, it will tend to dissolve until the fluid is saturated with respect to the solid mineral. We will consider fluids to be aqueous solutions, although many of the principles described here also apply to melts. The generation of porosity by simply dissolving some minerals in a rock is one obvious way to enhance fluid flow. Dissolution of carbonates by low pH solutions to produce vugs and even caves would be one example. However, when considering the role of fluid–mineral reaction during metamorphism the fluid provides mechanisms that enable re-equilibration of the rock, i.e., by replacing one assemblage of minerals by a more stable assemblage. This not only involves the dissolution of the parent mineral phases, but the …
{"title":"Transient Porosity Resulting from Fluid–Mineral Interaction and its Consequences","authors":"A. Putnis","doi":"10.2138/RMG.2015.80.01","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.01","url":null,"abstract":"The term porosity is very widely used in geosciences and normally refers to the spaces between the mineral grains or organic material in a rock, measured as a fraction of the total volume. These spaces may be filled with gas or fluids, and so the most common context for a discussion of porosity is in hydrogeology and petroleum geology of sedimentary rocks. While porosity is a measure of the ability of a rock to include a fluid phase, permeability is a measure of the ability for fluids to flow through the rock, and so depends on the extent to which the pore spaces are interconnected, the distribution of pores and pore neck size, as well as on the pressure driving the flow. This chapter will be primarily concerned with how reactive fluids can move through ‘tight rocks’ which have a very low intrinsic permeability and how secondary porosity is generated by fluid–mineral reactions. A few words about the meaning of the title will help to explain the scope of the chapter: 1. “Fluid–mineral interaction”: When a mineral is out of equilibrium with a fluid, it will tend to dissolve until the fluid is saturated with respect to the solid mineral. We will consider fluids to be aqueous solutions, although many of the principles described here also apply to melts. The generation of porosity by simply dissolving some minerals in a rock is one obvious way to enhance fluid flow. Dissolution of carbonates by low pH solutions to produce vugs and even caves would be one example. However, when considering the role of fluid–mineral reaction during metamorphism the fluid provides mechanisms that enable re-equilibration of the rock, i.e., by replacing one assemblage of minerals by a more stable assemblage. This not only involves the dissolution of the parent mineral phases, but the …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"40 1","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82209267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mineralogical and chemical properties of clays have been the subject of longstanding study in the research community—in fact, entire journals are devoted to the topic. In the field of hydrology where transport behavior is more routinely considered, clays and clay-rich rock were largely relegated to a minor role because of their low hydraulic conductivity. However, this very property explains in part the renewed interest in the behavior of clays and clay rocks in several important subsurface energy-related applications, including the long-term disposal of nuclear wastes in geological repositories and the storage of CO2 in subsurface geological formations. In these applications and environments, the low permeability of the clay-rich formations or engineered barriers provides at least part of the safety functions for radionuclide contaminants confinement and subsurface CO2 sequestration. From a geochemical and mineralogical point of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic conductivities by greatly increasing the retardation of radionuclides and other contaminants, making clays ideal where isolation from the biosphere is desired. The low permeability of clay-rich shales also explains why hydrocarbon resources are not easily exploited from these formations, thus requiring in many cases special procedures like hydraulic fracturing in order to extract them. Clay properties remain also topic of intensive research in the oilfield industry in connection with their swelling behavior, which has an adverse impact on drilling operations (Anderson et al. 2010; Wilson and Wilson 2014; De Carvalho Balaban et al. 2015). While the low permeability and high adsorption capacity of clay minerals are widely acknowledged, it is clear nonetheless that there is a need for an improved understanding of how the chemical and mineralogical properties of clay rocks impacts transport through them. It is at the pore-scale that the chemical properties …
粘土的矿物学和化学性质一直是研究界长期研究的主题——事实上,整个期刊都致力于这个主题。在水文学领域,运移行为通常被考虑,粘土和富含粘土的岩石在很大程度上被降级为次要的角色,因为它们的低水力导电性。然而,正是这种特性在一定程度上解释了粘土和粘土岩石在几个重要的地下能源相关应用中的行为重新引起的兴趣,包括在地质储存库中长期处理核废料和在地下地质构造中储存二氧化碳。在这些应用和环境中,富粘土地层或工程屏障的低渗透性至少为放射性核素污染物的限制和地下二氧化碳的封存提供了部分安全功能。从地球化学和矿物学的角度来看,粘土矿物的高吸附能力大大增加了低水力导电性的影响,大大增加了对放射性核素和其他污染物的阻滞作用,使粘土成为希望与生物圈隔离的理想选择。富粘土页岩的低渗透率也解释了为什么这些地层的碳氢化合物资源不易开采,因此在许多情况下需要采用水力压裂等特殊程序来提取它们。在油田工业中,粘土的性质也是一个深入研究的主题,因为它们的膨胀行为对钻井作业有不利影响(Anderson et al. 2010;Wilson and Wilson 2014;De Carvalho Balaban et al. 2015)。虽然粘土矿物的低渗透性和高吸附能力得到了广泛的承认,但很明显,仍然需要更好地了解粘土岩的化学和矿物学性质如何影响通过它们的运输。正是在孔隙尺度上,化学性质……
{"title":"Ionic Transport in Nano-Porous Clays with Consideration of Electrostatic Effects","authors":"C. Tournassat, C. Steefel","doi":"10.2138/RMG.2015.80.09","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.09","url":null,"abstract":"The mineralogical and chemical properties of clays have been the subject of longstanding study in the research community—in fact, entire journals are devoted to the topic. In the field of hydrology where transport behavior is more routinely considered, clays and clay-rich rock were largely relegated to a minor role because of their low hydraulic conductivity. However, this very property explains in part the renewed interest in the behavior of clays and clay rocks in several important subsurface energy-related applications, including the long-term disposal of nuclear wastes in geological repositories and the storage of CO2 in subsurface geological formations. In these applications and environments, the low permeability of the clay-rich formations or engineered barriers provides at least part of the safety functions for radionuclide contaminants confinement and subsurface CO2 sequestration. From a geochemical and mineralogical point of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic conductivities by greatly increasing the retardation of radionuclides and other contaminants, making clays ideal where isolation from the biosphere is desired. The low permeability of clay-rich shales also explains why hydrocarbon resources are not easily exploited from these formations, thus requiring in many cases special procedures like hydraulic fracturing in order to extract them. Clay properties remain also topic of intensive research in the oilfield industry in connection with their swelling behavior, which has an adverse impact on drilling operations (Anderson et al. 2010; Wilson and Wilson 2014; De Carvalho Balaban et al. 2015). While the low permeability and high adsorption capacity of clay minerals are widely acknowledged, it is clear nonetheless that there is a need for an improved understanding of how the chemical and mineralogical properties of clay rocks impacts transport through them. It is at the pore-scale that the chemical properties …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"67 12","pages":"287-329"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2138/RMG.2015.80.09","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72445419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the 80th volume of Reviews in Mineralogy and Geochemistry , this edition marks some historical changes in faces. It is the first volume since Jodi Rosso became the Executive Editor of Elements …
{"title":"FROM THE SERIES EDITOR","authors":"Ian P. Swainson","doi":"10.2138/RMG.2015.80.00","DOIUrl":"https://doi.org/10.2138/RMG.2015.80.00","url":null,"abstract":"As the 80th volume of Reviews in Mineralogy and Geochemistry , this edition marks some historical changes in faces. It is the first volume since Jodi Rosso became the Executive Editor of Elements …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84243522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}