首页 > 最新文献

Plasmid最新文献

英文 中文
Plasmid localization of sole rrn operon in genomes of Oecophyllibacter saccharovorans (Acetobacteraceae) 糖化葡萄叶杆菌基因组中唯一rrn操纵子的质粒定位
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102559
Kah-Ooi Chua , Wah-Seng See-Too , Hoi-Sen Yong , Sze-Looi Song , Wai-Fong Yin , Kok-Gan Chan

The bacterium Oecophyllibacter saccharovorans of family Acetobacteraceae is a symbiont of weaver ant Oecophylla smaragdina. In our previous study, we published the finding of novel O. saccharovorans strains Ha5T, Ta1 and Jb2 (Chua et al. 2020) but their plasmid sequences have not been reported before. Here, we demonstrate for the first time that the sole rrn operon of their genomes was detected on a 6.6 kb circular replicon. This replicon occurred in high copy number, much smaller size and lower G + C content than the main chromosome. Based on these features, the 6.6 kb circular replicon was regarded as rrn operon-containing plasmid. Further restriction analysis on the plasmids confirmed their circular conformation. A Southern hybridization analysis also corroborated the presence of 16S rRNA gene and thus the rrn operon on a single locus in the genome of the O. saccharovorans strains. However, similar genome architecture was not observed in other closely related bacterial strains. Additional survey also detected no plasmid-borne rrn operon in available genomes of validly described taxa of family Acetobacteraceae. To date, plasmid localization of rrn operon is rarely documented. This study reports the occurrence of rrn operon on the smallest bacterial plasmid in three O. saccharovorans strains and discusses its possible importance in enhancing their competitive fitness as bacterial symbiont of O. smaragdina.

醋酸杆菌科的嗜糖水韭杆菌(oecophylbacterium saccharovorans)是织布蚁(Oecophylla smaragdina)的共生菌。在我们之前的研究中,我们发表了新的O. saccharovorans菌株Ha5T, Ta1和Jb2的发现(Chua et al. 2020),但它们的质粒序列之前没有报道过。在这里,我们首次证明了在6.6 kb的圆形复制子上检测到它们基因组的唯一rrn操纵子。与主染色体相比,该复制子的拷贝数高,大小小,G + C含量低。基于这些特征,6.6 kb的环状复制子被认为是含rrn操纵子的质粒。对质粒的进一步限制性内切分析证实了它们的环状构象。Southern杂交分析也证实了16S rRNA基因和rrn操纵子在O. saccharovorans菌株基因组的单个位点上的存在。然而,在其他密切相关的菌株中没有观察到类似的基因组结构。此外,在有效描述的醋酸杆菌科分类群的可用基因组中也未检测到质粒携带的rrn操纵子。迄今为止,rrn操纵子的质粒定位文献很少。本研究报道了三种O. saccharovorans菌株中最小的细菌质粒上存在rrn操纵子,并讨论了其作为O. smaragdina细菌共生体提高其竞争适应性的可能重要性。
{"title":"Plasmid localization of sole rrn operon in genomes of Oecophyllibacter saccharovorans (Acetobacteraceae)","authors":"Kah-Ooi Chua ,&nbsp;Wah-Seng See-Too ,&nbsp;Hoi-Sen Yong ,&nbsp;Sze-Looi Song ,&nbsp;Wai-Fong Yin ,&nbsp;Kok-Gan Chan","doi":"10.1016/j.plasmid.2021.102559","DOIUrl":"10.1016/j.plasmid.2021.102559","url":null,"abstract":"<div><p>The bacterium <em>Oecophyllibacter saccharovorans</em> of family <span><em>Acetobacteraceae</em></span> is a symbiont of weaver ant <em>Oecophylla smaragdina</em>. In our previous study, we published the finding of novel <em>O. saccharovorans</em> strains Ha5<sup>T</sup>, Ta1 and Jb2 (Chua et al. 2020) but their plasmid sequences have not been reported before. Here, we demonstrate for the first time that the sole <em>rrn</em><span> operon of their genomes was detected on a 6.6 kb circular replicon. This replicon occurred in high copy number, much smaller size and lower G + C content than the main chromosome. Based on these features, the 6.6 kb circular replicon was regarded as </span><em>rrn</em><span> operon-containing plasmid. Further restriction analysis on the plasmids confirmed their circular conformation. A Southern hybridization analysis also corroborated the presence of 16S rRNA gene and thus the </span><em>rrn</em> operon on a single locus in the genome of the <em>O. saccharovorans</em><span> strains. However, similar genome architecture was not observed in other closely related bacterial strains. Additional survey also detected no plasmid-borne </span><em>rrn</em> operon in available genomes of validly described taxa of family <em>Acetobacteraceae</em>. To date, plasmid localization of <em>rrn</em> operon is rarely documented. This study reports the occurrence of <em>rrn</em> operon on the smallest bacterial plasmid in three <em>O. saccharovorans</em> strains and discusses its possible importance in enhancing their competitive fitness as bacterial symbiont of <em>O. smaragdina</em>.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102559","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38778857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enhancement of transgene expression by the β-catenin inhibitor iCRT14 β-连环蛋白抑制剂iCRT14对转基因表达的增强作用
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102556
Kyle Spivack, Christine Muzzelo, Matthew Hall, Eric Warga, Christopher Neely, Holly Slepian, Alyssa Cunningham, Matthew Tucker, Jacob Elmer

The innate immune response is an essential defense mechanism that allows cells to detect pathogen-associated molecular patterns (PAMPs) like endotoxin or cytosolic DNA and then induce the expression of defensive genes that restrict the replication of viruses and other pathogens. However, the therapeutic DNA used in some gene therapy treatments can also trigger the innate immune response, which activates host cell genes that may inhibit transgene expression. The goal of this study was to enhance transgene expression by inhibiting key components of the innate immune response with small molecule inhibitors (iCRT14, curcumin, Amlexanox, H-151, SC-514, & VX-702). Most of the inhibitors significantly increased transgene (luciferase) expression at least 2-fold, but the β-catenin/TCF4 inhibitor iCRT14 showed the highest enhancement (16 to 35-fold) in multiple cell lines (PC-3, MCF7, & MB49) without significantly decreasing cellular proliferation. Alternatively, cloning a β-catenin/TCF4 binding motif (TCAAAG) into the EF1α promoter also enhanced transgene expression up to 8-fold. To further investigate the role of β-catenin/TCF4 in transgene expression, mRNA-sequencing experiments were conducted to identify host cell genes that were upregulated following transfection with PEI but down-regulated after the addition of iCRT14. As expected, transfection with plasmid DNA activated the innate immune response and upregulated hundreds (687) of defensive genes, but only 7 of those genes were down-regulated in the presence of iCRT14 (e.g., PTGS2 & PLA1A). Altogether, these results show that transgene expression can be enhanced by inhibiting the innate immune response with SMIs like iCRT14, which inhibits β-catenin/TCF4 to prevent the expression of specific host cell genes.

先天免疫反应是一种重要的防御机制,它允许细胞检测病原体相关分子模式(PAMPs),如内毒素或细胞质DNA,然后诱导防御基因的表达,限制病毒和其他病原体的复制。然而,在一些基因治疗中使用的治疗性DNA也可以触发先天免疫反应,从而激活宿主细胞中可能抑制转基因表达的基因。本研究的目的是通过使用小分子抑制剂(iCRT14、姜黄素、Amlexanox、H-151、SC-514等)抑制先天免疫反应的关键成分来增强转基因表达;vx - 702)。大多数抑制剂显著提高转基因(荧光素酶)的表达至少2倍,但β-catenin/TCF4抑制剂iCRT14在多个细胞系(PC-3、MCF7、&MB49),没有显著降低细胞增殖。另外,将β-catenin/TCF4结合基序(TCAAAG)克隆到EF1α启动子中也能将转基因表达提高8倍。为了进一步研究β-catenin/TCF4在转基因表达中的作用,我们进行了mrna测序实验,鉴定了PEI转染后表达上调而加入iCRT14后表达下调的宿主细胞基因。正如预期的那样,转染质粒DNA激活了先天免疫反应,上调了数百(687)个防御基因,但在iCRT14存在时,这些基因中只有7个下调(如PTGS2和amp;PLA1A)。综上所述,这些结果表明,iCRT14等SMIs可通过抑制先天免疫反应来增强转基因表达,iCRT14可抑制β-catenin/TCF4以阻止特异性宿主细胞基因的表达。
{"title":"Enhancement of transgene expression by the β-catenin inhibitor iCRT14","authors":"Kyle Spivack,&nbsp;Christine Muzzelo,&nbsp;Matthew Hall,&nbsp;Eric Warga,&nbsp;Christopher Neely,&nbsp;Holly Slepian,&nbsp;Alyssa Cunningham,&nbsp;Matthew Tucker,&nbsp;Jacob Elmer","doi":"10.1016/j.plasmid.2021.102556","DOIUrl":"10.1016/j.plasmid.2021.102556","url":null,"abstract":"<div><p><span><span>The innate immune response is an essential defense mechanism that allows cells to detect pathogen-associated molecular patterns (PAMPs) like endotoxin or cytosolic DNA and then induce the expression of defensive genes that restrict the replication of viruses and other pathogens. However, the therapeutic DNA used in some gene therapy treatments can also trigger the innate immune response, which activates host cell genes that may inhibit transgene expression. The goal of this study was to enhance transgene expression by inhibiting key components of the innate immune response with </span>small molecule<span> inhibitors (iCRT14, curcumin, Amlexanox, H-151, SC-514, &amp; VX-702). Most of the inhibitors significantly increased transgene (luciferase) expression at least 2-fold, but the β-catenin/TCF4 inhibitor iCRT14 showed the highest enhancement (16 to 35-fold) in multiple cell lines (PC-3, MCF7, &amp; MB49) without significantly decreasing cellular proliferation. Alternatively, cloning a β-catenin/TCF4 binding motif (TCAAAG) into the EF1α promoter also enhanced transgene expression up to 8-fold. To further investigate the role of β-catenin/TCF4 in transgene expression, mRNA-sequencing experiments were conducted to identify host cell genes that were upregulated following transfection with </span></span>PEI<span> but down-regulated after the addition of iCRT14. As expected, transfection with plasmid DNA activated the innate immune response and upregulated hundreds (687) of defensive genes, but only 7 of those genes were down-regulated in the presence of iCRT14 (e.g., PTGS2 &amp; PLA1A). Altogether, these results show that transgene expression can be enhanced by inhibiting the innate immune response with SMIs like iCRT14, which inhibits β-catenin/TCF4 to prevent the expression of specific host cell genes.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38840202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptomic analysis of Entamoeba histolytica reveals domain-specific sense strand expression of LINE-encoded ORFs with massive antisense expression of RT domain 对溶组织内阿米巴的转录组学分析显示,line编码的orf具有区域特异性的义链表达,而RT结构域的大量反义表达
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102560
Devinder Kaur , Mridula Agrahari , Shashi Shekhar Singh , Prabhat Kumar Mandal , Alok Bhattacharya , Sudha Bhattacharya

LINEs are retrotransposable elements found in diverse organisms. Their activity is kept in check by several mechanisms, including transcriptional silencing. Here we have analyzed the transcription status of LINE1 copies in the early-branching parasitic protist Entamoeba histolytica. Full-length EhLINE1 encodes ORF1, and ORF2 with reverse transcriptase (RT) and endonuclease (EN) domains. RNA-Seq analysis of EhLINE1 copies (both truncated and full-length) showed unique features. Firstly, although 20/41 transcribed copies were full-length, we failed to detect any full-length transcripts. Rather, sense-strand transcripts mapped to the functional domains- ORF1, RT and EN. Secondly, there was strong antisense transcription specifically from RT domain. No antisense transcripts were seen from ORF1. Antisense RT transcripts did not encode known functional peptides. They could possibly be involved in attenuating translation of RT domain, as we failed to detect ORF2p, whereas ORF1p was detectable. Lack of full-length transcripts and strong antisense RT expression may serve to limit EhLINE1 retrotransposition.

细胞系是在多种生物体中发现的可反转录转座因子。它们的活动受到几种机制的控制,包括转录沉默。本研究分析了早期分支寄生原生生物溶组织内阿米巴(Entamoeba histolytica) LINE1拷贝的转录状态。全长EhLINE1编码ORF1, ORF2具有逆转录酶(RT)和核酸内切酶(EN)结构域。EhLINE1拷贝(截断和全长)的RNA-Seq分析显示出独特的特征。首先,虽然有20/41的转录拷贝是全长的,但我们没有检测到任何全长转录本。相反,意义链转录本映射到功能域- ORF1, RT和EN。其次,有很强的反义转录特异性来自RT结构域。ORF1未见反义转录物。反义RT转录本不编码已知的功能肽。它们可能与RT域的衰减转译有关,因为我们未能检测到ORF2p,而ORF1p是可检测到的。缺乏全长转录本和强烈的反义RT表达可能限制了EhLINE1的反转录转位。
{"title":"Transcriptomic analysis of Entamoeba histolytica reveals domain-specific sense strand expression of LINE-encoded ORFs with massive antisense expression of RT domain","authors":"Devinder Kaur ,&nbsp;Mridula Agrahari ,&nbsp;Shashi Shekhar Singh ,&nbsp;Prabhat Kumar Mandal ,&nbsp;Alok Bhattacharya ,&nbsp;Sudha Bhattacharya","doi":"10.1016/j.plasmid.2021.102560","DOIUrl":"10.1016/j.plasmid.2021.102560","url":null,"abstract":"<div><p><span>LINEs<span> are retrotransposable elements found in diverse organisms. Their activity is kept in check by several mechanisms, including transcriptional silencing. Here we have analyzed the transcription status of LINE1 copies in the early-branching parasitic protist </span></span><span><em>Entamoeba histolytica</em></span><span>. Full-length EhLINE1 encodes ORF1, and ORF2 with reverse transcriptase<span> (RT) and endonuclease (EN) domains. RNA-Seq analysis of EhLINE1 copies (both truncated and full-length) showed unique features. Firstly, although 20/41 transcribed copies were full-length, we failed to detect any full-length transcripts. Rather, sense-strand transcripts mapped to the functional domains- ORF1, RT and EN. Secondly, there was strong antisense transcription specifically from RT domain. No antisense transcripts were seen from ORF1. Antisense RT transcripts did not encode known functional peptides. They could possibly be involved in attenuating translation of RT domain, as we failed to detect ORF2p, whereas ORF1p was detectable. Lack of full-length transcripts and strong antisense RT expression may serve to limit EhLINE1 retrotransposition.</span></span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102560","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38848640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characterization of blaCMY-2-carrying IncC and rmtB-carrying IncI1/ST136 plasmids in an avian Escherichia coli ST224 strain 鸡大肠杆菌ST224菌株中携带IncI1/ST136质粒的blaCMY-2-携带IncC和rmtB的特性
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102555
Dan-Dan He , Meng-Mei Cui , Teng-Li Zhang, Gong-Zheng Hu, Jian-Hua Liu, Yu-Shan Pan

To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian E. coli strain, antibiotic susceptibility testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including ISEcp1-blaCMY-2-blc-sugE, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 integron with cassette array |aac(6′)-II(aacA7)|qacE∆1|sul1|, IS26-mphR(A)-mrx-mph(A)-IS26, IS26-fosA3-IS26, and mercury resistance cluster merRTPABDE. It is the first report of three different size circular forms derived from IS26-mphR(A)-mrx-mph(A)-IS26-fosA3-IS26 in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn1722 carrying blaTEM-1b, rmtB, aac(3)-IId(aacC2d), and a class 1 integron with cassette array |dfrA12|orfF|aadA2|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.

为了分析耐多药禽大肠杆菌株中IncC和IncI1质粒的特征和潜在进化过程,进行了抗生素敏感性测试、PCR、结合分析和下一代测序。1型IncC质粒pEC009.1含有三个抗微生物耐药性区域,包括ISEcp1-laCMY-2-blc-sugE、ARI-B耐药性岛和ARI-A岛,ARI-A岛是一个镶嵌多药耐药性区域(MRR),由具有盒阵列的1类整合子|aac(6′)-II(aacA7)|qacE∆1|sul1|、IS26-mphR(A)-mrx-mph(A)-IS26、IS26-fosA3-IS26和汞耐药性簇merRTPABDE组成。这是首次报道在1型IncC质粒的ARI-A中衍生自IS26-mphR(A)-mrx-mph(A)-I26-fosA3-IS26的三种不同大小的圆形。在IncI1/ST136 pEC009.2中,携带blaTEM-1b、rmtB、aac(3)-IId(aacC2d。两个流行质粒谱系之间的比较显示,复杂的MRR分别位于1型IncC和IncI1/ST136质粒中的特定位置,具有保守的主链,并且这些MRR是通过涉及移动元件介导的抗性基因和附属基因的丢失和获得的多个事件进化而来的。携带这些质粒的菌株可能是抗生素耐药性基因的宿主,从而导致耐药性基因的快速传播,并对公共健康构成威胁。
{"title":"Characterization of blaCMY-2-carrying IncC and rmtB-carrying IncI1/ST136 plasmids in an avian Escherichia coli ST224 strain","authors":"Dan-Dan He ,&nbsp;Meng-Mei Cui ,&nbsp;Teng-Li Zhang,&nbsp;Gong-Zheng Hu,&nbsp;Jian-Hua Liu,&nbsp;Yu-Shan Pan","doi":"10.1016/j.plasmid.2021.102555","DOIUrl":"https://doi.org/10.1016/j.plasmid.2021.102555","url":null,"abstract":"<div><p>To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian <em>E. coli</em><span> strain, antibiotic susceptibility<span> testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including IS</span></span><em>Ecp1</em>-<em>bla</em><sub>CMY-2</sub>-<em>blc</em>-<em>sugE</em><span><span>, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 </span>integron with cassette array |</span><em>aac</em>(6′)<em>-II</em>(<em>aacA7</em>)|<em>qacE∆1</em>|<em>sul1</em>|, IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>, IS<em>26</em>-<em>fosA3</em>-IS<em>26</em>, and mercury resistance cluster <em>merRTPABDE</em>. It is the first report of three different size circular forms derived from IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>-<em>fosA3</em>-IS<em>26</em><span> in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn</span><em>1722</em> carrying <em>bla</em><sub>TEM-1b</sub>, <em>rmtB</em>, <em>aac(3)-IId</em>(<em>aacC2d</em>), and a class 1 integron with cassette array |<em>dfrA12</em>|orfF|<em>aadA2</em><span>|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102555","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72204814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Functional analysis of the catalytic triad of the hAT-family transposase TcBuster hat家族转座酶TcBuster催化三联体的功能分析
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102554
Lauren E. Woodard , Felisha M. Williams , Isria C. Jarrett , Matthew H. Wilson

TcBuster is a hAT-family DNA transposon from the red flour beetle, Tribolium castaneum. The TcBuster transposase is of interest for genome engineering as it is highly active in insect and mammalian cells. To test the predicted catalytic triad of TcBuster, each residue of the catalytic triad of a haemagglutinin-tagged TcBuster transposase was individually mutated to a structurally conserved amino acid. Using a drug-resistant colony assay for transposon integration, we found that the D223N, D289N, and E589Q mutants of TcBuster transposase were inactive in human cells. We used a modified chromatin immunoprecipitation assay to determine that each mutant maintained binding to TcBuster transposon inverted repeat elements. Although the catalytic mutants retained their transposon binding properties, mutants displayed altered expression and localization in human cells. None of the catalytic mutants formed characteristic TcBuster transposase rodlet structures, and the D223N and D289N mutants were not able to be detected by immunofluorescence microscopy. Immunoblot analysis demonstrated that the E589Q mutant is less abundant than wild-type TcBuster transposase. Cells transfected with either TcBuster or TcBuster-E589Q transposase were imaged by structured illumination microscopy to quantify differences in the length of the transposase rodlets. The average length of the TcBuster transposase rodlets (N = 39) was 3.284 μm while the E589Q rodlets (N = 33) averaged 1.157 μm (p < 0.0001; t-test). The catalytic triad mutations decreased overall protein levels and disrupted transposase rodlet formation while nuclear localization and DNA binding to the inverted repeat elements were maintained. Our results may have broader implications for the overproduction inhibition phenomenon observed for DNA transposons.

TcBuster是一种hat家族DNA转座子,来自红粉甲虫Tribolium castaneum。TcBuster转座酶在昆虫和哺乳动物细胞中高度活跃,是基因组工程研究的热点。为了测试预测的TcBuster催化三联体,将血凝素标记的TcBuster转座酶的催化三联体的每个残基单独突变为一个结构保守的氨基酸。通过对转座子整合的耐药集落试验,我们发现TcBuster转座酶的D223N、D289N和E589Q突变体在人细胞中无活性。我们使用改良的染色质免疫沉淀法来确定每个突变体与TcBuster转座子反向重复元件的结合。虽然催化突变体保留了转座子结合特性,但突变体在人类细胞中的表达和定位发生了改变。没有一个催化突变体形成典型的TcBuster转座酶小棒状结构,D223N和D289N突变体无法通过免疫荧光显微镜检测到。免疫印迹分析表明,E589Q突变体的丰度低于野生型TcBuster转座酶。转染TcBuster或TcBuster- e589q转座酶的细胞通过结构照明显微镜成像,以量化转座酶小棒长度的差异。TcBuster转座酶(N = 39)的平均长度为3.284 μm, E589Q转座酶(N = 33)的平均长度为1.157 μm。0.0001;t检验)。催化三联体突变降低了总蛋白质水平,破坏了转座酶小棒的形成,同时维持了核定位和DNA与倒置重复元件的结合。我们的结果可能对观察到的DNA转座子的过度生产抑制现象具有更广泛的意义。
{"title":"Functional analysis of the catalytic triad of the hAT-family transposase TcBuster","authors":"Lauren E. Woodard ,&nbsp;Felisha M. Williams ,&nbsp;Isria C. Jarrett ,&nbsp;Matthew H. Wilson","doi":"10.1016/j.plasmid.2021.102554","DOIUrl":"10.1016/j.plasmid.2021.102554","url":null,"abstract":"<div><p><em>TcBuster</em> is a <em>hAT</em><span>-family DNA transposon<span> from the red flour beetle, </span></span><em>Tribolium castaneum.</em> The <em>TcBuster</em><span><span> transposase is of interest for genome engineering as it is highly active in insect and </span>mammalian cells<span>. To test the predicted catalytic triad of </span></span><em>TcBuster</em>, each residue of the catalytic triad of a haemagglutinin-tagged <em>TcBuster</em><span> transposase was individually mutated to a structurally conserved amino acid. Using a drug-resistant colony assay for transposon integration, we found that the D223N, D289N, and E589Q mutants of </span><em>TcBuster</em> transposase were inactive in human cells. We used a modified chromatin immunoprecipitation assay to determine that each mutant maintained binding to <em>TcBuster</em> transposon inverted repeat elements. Although the catalytic mutants retained their transposon binding properties, mutants displayed altered expression and localization in human cells. None of the catalytic mutants formed characteristic <em>TcBuster</em><span> transposase rodlet structures, and the D223N and D289N mutants were not able to be detected by immunofluorescence microscopy. Immunoblot analysis demonstrated that the E589Q mutant is less abundant than wild-type </span><em>TcBuster</em> transposase. Cells transfected with either <em>TcBuster</em> or <em>TcBuster</em>-E589Q transposase were imaged by structured illumination microscopy to quantify differences in the length of the transposase rodlets. The average length of the <em>TcBuster</em> transposase rodlets (<em>N</em> = 39) was 3.284 μm while the E589Q rodlets (<em>N</em> = 33) averaged 1.157 μm (<em>p</em> &lt; 0.0001; <em>t</em><span>-test). The catalytic triad mutations decreased overall protein levels and disrupted transposase rodlet formation while nuclear localization and DNA binding to the inverted repeat elements were maintained. Our results may have broader implications for the overproduction inhibition phenomenon observed for DNA transposons.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38778858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria 在医院相关肠球菌和其他革兰氏阳性细菌中,vanb耐药传播之外的移动遗传因素
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102558
Ewa Sadowy

An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium.

This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes.

临床相关肠球菌(如粪肠球菌和屎肠球菌)对万古霉素的耐药性日益增加,这是一个令人高度关注的问题,因为它严重限制了治疗选择。vanB操纵子是这种耐药性最常见的决定因素之一。构成操纵子的基因位于共轭转座子中,如tn1549型转座子,或更罕见的位于iceefav583型结构中。这些元件在结构和大小上存在差异,并且存在于细菌染色体的不同位置,或者在tn1549型转座子的情况下,偶尔也与不同复制子类型的质粒相关。虽然共轭转座有助于肠球菌从厌氧肠道共生体中获取tn1549型转座子,但染色体重组和质粒的共轭转移似乎是导致vanB决定因子在医院粪肠球菌和粪肠球菌之间水平传播的主要机制。这篇综述的重点是在医院相关的屎肠杆菌和粪肠杆菌菌株中携带vanB决定因子的遗传元件的多样性,以及vanB在这些细菌群体中传播的机制,并概述了vanB- mge在其他肠球菌和革兰氏阳性菌中作为vanB基因的潜在宿主的分布。
{"title":"Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria","authors":"Ewa Sadowy","doi":"10.1016/j.plasmid.2021.102558","DOIUrl":"10.1016/j.plasmid.2021.102558","url":null,"abstract":"<div><p>An increasing resistance to vancomycin among clinically relevant enterococci, such as <em>Enterococcus faecalis</em> and <em>Enterococcus faecium</em> is a cause of a great concern, as it seriously limits treatment options. The <em>vanB</em> operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn<em>1549</em>-type transposons or, more rarely, in ICE<em>Efa</em>V583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn<em>1549</em>-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn<em>1549</em>-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of <em>vanB</em> determinants among hospital <em>E. faecalis</em> and <em>E. faecium</em>.</p><p>This review focuses on diversity of genetic elements harbouring <em>vanB</em> determinants in hospital-associated strains of <em>E. faecium</em> and <em>E. faecalis,</em> the mechanisms beyond <em>vanB</em> spread in populations of these bacteria, and provides an overview of the <em>vanB-</em>MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of <em>vanB</em> genes.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38840204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Insights into the individual evolutionary origins of Yersinia virulence factor effector proteins 耶尔森氏菌毒力因子效应蛋白的个体进化起源
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-03-01 DOI: 10.1016/j.plasmid.2021.102562
Veronica R. Moorman , James I. Cohen

Pathogenic Yersinia bacteria, including Y. pseudotubuclosis Y. enterocolitica, and Y. pestis, contain the mosaic plasmid pYV that encodes for, among other things, a number of proteinaceous virulence factors. While the evolutionary histories of many of the biovars and strains of pathogenic Yersinia species are well documented, the origins of many of the individual virulence factors have not been comprehensively examined. Here, the evolutionary origins of the genes coding for a set of Yersinia outer protein (Yop) virulence factors were investigated through phylogenetic reconstruction and subsequence analysis. It was found that many of these genes had only a few sequenced homologs and none of the resolved phylogenies recovered the same relationships as was resolved from chromosomal analyses. Many of the evolutionary relationships differ greatly among genes on the plasmid, and variation is also found across different domains of the same gene, which provides evidence of the mosaic nature of the plasmid as well as multiple genes on the plasmid. This mosaic aspect also relates to patterns of selection, which vary among the studied domains.

致病性耶尔森氏菌,包括假管耶尔森氏菌、小肠结肠炎耶尔森氏菌和鼠疫耶尔森氏菌,含有编码多种蛋白毒力因子的镶嵌质粒pYV。虽然许多致病性耶尔森菌物种的生物变种和菌株的进化历史已被很好地记录下来,但许多单个毒力因素的起源尚未得到全面检查。本文通过系统发育重建和子序列分析,研究了一组耶尔森菌外蛋白(Yop)毒力因子编码基因的进化起源。结果发现,其中许多基因只有少数同源序列,没有一个已确定的系统发育恢复了从染色体分析中确定的相同关系。许多进化关系在质粒上的基因之间差异很大,并且在同一基因的不同结构域之间也发现了变异,这为质粒以及质粒上的多个基因的马赛克性质提供了证据。这个镶嵌的方面也涉及到选择的模式,在不同的研究领域。
{"title":"Insights into the individual evolutionary origins of Yersinia virulence factor effector proteins","authors":"Veronica R. Moorman ,&nbsp;James I. Cohen","doi":"10.1016/j.plasmid.2021.102562","DOIUrl":"10.1016/j.plasmid.2021.102562","url":null,"abstract":"<div><p>Pathogenic <span><em>Yersinia</em></span> bacteria, including <em>Y. pseudotubuclosis Y. enterocolitica</em>, and <em>Y. pestis</em><span>, contain the mosaic plasmid pYV that encodes for, among other things, a number of proteinaceous virulence factors<span>. While the evolutionary histories of many of the biovars and strains of pathogenic </span></span><em>Yersinia</em> species are well documented, the origins of many of the individual virulence factors have not been comprehensively examined. Here, the evolutionary origins of the genes coding for a set of <em>Yersinia</em><span> outer protein (Yop) virulence factors were investigated through phylogenetic reconstruction and subsequence analysis. It was found that many of these genes had only a few sequenced homologs and none of the resolved phylogenies recovered the same relationships as was resolved from chromosomal analyses. Many of the evolutionary relationships differ greatly among genes on the plasmid, and variation is also found across different domains of the same gene, which provides evidence of the mosaic nature of the plasmid as well as multiple genes on the plasmid. This mosaic aspect also relates to patterns of selection, which vary among the studied domains.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38782452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The ever-expanding tcp conjugation locus of pCW3 from Clostridium perfringens 产气荚膜梭菌pCW3不断扩大的tcp偶联位点
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 DOI: 10.1016/j.plasmid.2020.102516
Sarah A. Revitt-Mills, Thomas D. Watts, Dena Lyras, Vicki Adams, Julian I. Rood

The spore-forming, anaerobic Gram positive pathogen Clostridium perfringens encodes many of its disease-causing toxins on closely related conjugative plasmids. Studies of the tetracycline resistance plasmid pCW3 have identified many of the genes involved in conjugative transfer, which are located in the tcp conjugation locus. Upstream of this locus is an uncharacterised region (the cnaC region) that is highly conserved. This study examined the importance in pCW3 conjugation of several highly conserved proteins encoded in the cnaC region. Conjugative mating studies suggested that the SrtD, TcpN and Dam proteins were required for efficient pCW3 transfer between C. perfringens cells from the same strain background. The requirement of these proteins for conjugation was amplified in matings between C. perfringens cells of different strain backgrounds. Additionally, the putative collagen adhesin protein, CnaC, was only required for the optimal transfer of pCW3 between cells of different strain backgrounds. Based on these studies we postulate that CnaC, SrtD, TcpN and Dam are involved in enhancing the transfer frequency of pCW3. These studies have led to a significant expansion of the tcp conjugation locus, which now encompasses a 19 kb region.

产芽孢的厌氧革兰氏阳性病原体产气荚膜梭菌在密切相关的共轭质粒上编码其许多致病毒素。对四环素耐药质粒pCW3的研究已经鉴定出许多参与接合转移的基因,这些基因位于tcp接合位点。该位点的上游是一个高度保守的未表征区域(cnaC区域)。本研究考察了cnaC区域编码的几种高度保守蛋白在pCW3偶联中的重要性。结合研究表明,SrtD、TcpN和Dam蛋白是产气荚膜荚膜菌在相同菌株背景下细胞间高效转移pCW3所需的蛋白。在不同菌株背景的产气荚膜荚膜杆菌细胞间的交配中,这些蛋白的偶联需求被扩增。此外,只有在不同菌株背景的细胞之间,pCW3的最佳转移才需要推定的胶原粘附蛋白CnaC。基于这些研究,我们推测CnaC、SrtD、TcpN和Dam参与了pCW3转移频率的增强。这些研究导致了tcp偶联位点的显著扩展,现在包含了一个19 kb的区域。
{"title":"The ever-expanding tcp conjugation locus of pCW3 from Clostridium perfringens","authors":"Sarah A. Revitt-Mills,&nbsp;Thomas D. Watts,&nbsp;Dena Lyras,&nbsp;Vicki Adams,&nbsp;Julian I. Rood","doi":"10.1016/j.plasmid.2020.102516","DOIUrl":"10.1016/j.plasmid.2020.102516","url":null,"abstract":"<div><p>The spore-forming, anaerobic Gram positive pathogen <span><em>Clostridium perfringens</em></span><span> encodes many of its disease-causing toxins on closely related conjugative plasmids<span>. Studies of the tetracycline resistance plasmid pCW3 have identified many of the genes involved in conjugative transfer, which are located in the </span></span><em>tcp</em> conjugation locus. Upstream of this locus is an uncharacterised region (the <em>cnaC</em> region) that is highly conserved. This study examined the importance in pCW3 conjugation of several highly conserved proteins encoded in the <em>cnaC</em> region. Conjugative mating studies suggested that the SrtD, TcpN and Dam proteins were required for efficient pCW3 transfer between <em>C. perfringens</em> cells from the same strain background. The requirement of these proteins for conjugation was amplified in matings between <em>C. perfringens</em> cells of different strain backgrounds. Additionally, the putative collagen adhesin protein, CnaC, was only required for the optimal transfer of pCW3 between cells of different strain backgrounds. Based on these studies we postulate that CnaC, SrtD, TcpN and Dam are involved in enhancing the transfer frequency of pCW3. These studies have led to a significant expansion of the <em>tcp</em> conjugation locus, which now encompasses a 19 kb region.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38033447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria 不同革兰氏阴性菌中携带抗生素抗性基因的L和M质粒谱系的进化和传播
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 DOI: 10.1016/j.plasmid.2020.102528
Grace A. Blackwell , Emma L. Doughty , Robert A. Moran

Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages.

自20世纪70年代以来,L/M复合体的共轭广泛宿主质粒与抗生素耐药性有关。它们存在于引起人类感染并在医院环境中持续存在的革兰氏阴性细菌属中。至关重要的是,这些质粒必须准确分型,以便在流行病学研究中追踪它们的临床和全球传播。L/M复合体以前被分为L、M1和M2亚型。然而,这些类型并不能涵盖群体中所有的多样性。在这里,我们检查了148个完整的L/M质粒序列,以了解该复合体的多样性并追踪不同谱系的进化。每个质粒的主干序列是通过去除可易位的遗传元件并在硅中逆转它们的作用来确定的。然后考虑复制区域和完整主干的序列身份进行分型。这支持了L和M质粒的区分,并揭示了有5个L型和8个M型,其中每个型都由进一步的子谱系组成,这些子谱系通过其主干和可易位元素含量的变化来区分。L和M亚系中含有抗生素耐药基因的区域通常是由最初罕见的插入事件形成的,随后在初始元件中插入其他可易位元件。因此,岛屿在原地进化,包含对多种抗生素具有抗性的基因。在某些情况下,不同的质粒亚系独立获得相同或相关的抗性基因。这突出了这些质粒作为新出现的抗性基因传播载体的重要性。这里提供了从完整序列或草图基因组中分型L/M复合物质粒的材料。这将使新的类型的快速识别和促进跟踪现有谱系的演变成为可能。
{"title":"Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria","authors":"Grace A. Blackwell ,&nbsp;Emma L. Doughty ,&nbsp;Robert A. Moran","doi":"10.1016/j.plasmid.2020.102528","DOIUrl":"10.1016/j.plasmid.2020.102528","url":null,"abstract":"<div><p><span>Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance<span> since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects </span></span><em>in silico</em><span>. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve </span><em>in situ</em> to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38261071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Bacteriophages as sources of small non-coding RNA molecules 噬菌体是小的非编码RNA分子的来源
IF 2.6 4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-01-01 DOI: 10.1016/j.plasmid.2020.102527
Sylwia Bloch , Natalia Lewandowska , Grzegorz Węgrzyn , Bożena Nejman-Faleńczyk

Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.

噬菌体在促进细菌毒力的基因转移中起着重要作用,其产物对人体健康有害。有趣的是,携带毒力基因的噬菌体大多是温和的,与裂解噬菌体相反,它们经历溶原和裂解周期。重要的是,大多数噬菌体基因的表达和随后的噬菌体编码蛋白的产生在溶原过程中受到抑制。大多数噬菌体基因的表达与裂解发育密切相关。其中,噬菌体来源的小非编码rna (sRNAs)参与噬菌体基因表达的调控,因此在噬菌体和宿主发育中都起着重要作用。就细菌而言,sRNAs影响诸如毒力、定植能力、运动性和细胞生长或死亡等过程。反过来,就噬菌体而言,它们在感染的早期阶段发挥着至关重要的作用,维持溶原状态,沉默晚期结构基因的表达,从而调节噬菌体生命周期之间的过渡。有趣的是,在裂解性和温带噬菌体中都发现了sRNAs,并根据这种分类进行了讨论。特别关注的是类似真核microrna的病毒sRNAs。
{"title":"Bacteriophages as sources of small non-coding RNA molecules","authors":"Sylwia Bloch ,&nbsp;Natalia Lewandowska ,&nbsp;Grzegorz Węgrzyn ,&nbsp;Bożena Nejman-Faleńczyk","doi":"10.1016/j.plasmid.2020.102527","DOIUrl":"10.1016/j.plasmid.2020.102527","url":null,"abstract":"<div><p>Bacteriophages play an essential role in the transferring of genes that contribute to the bacterial virulence and whose products are dangerous to human health. Interestingly, phages carrying virulence genes are mostly temperate and in contrast to lytic phages undergo both lysogenic and lytic cycles. Importantly, expression of the majority of phage genes and subsequent production of phage encoded proteins is suppressed during lysogeny. The expression of the majority of phage genes is tightly linked to lytic development. Among others, small non-coding RNAs (sRNAs) of phage origin are involved in the regulation of phage gene expression and thus play an important role in both phage and host development. In the case of bacteria, sRNAs affect processes such as virulence, colonization ability, motility and cell growth or death. In turn, in the case of phages, they play essential roles during the early stage of infection, maintaining the state of lysogeny and silencing the expression of late structural genes, thereby regulating the transition between phage life cycles. Interestingly, sRNAs have been identified in both lytic and temperate phages and they have been discussed in this work according to this classification. Particular attention was paid to viral sRNAs resembling eukaryotic microRNAs.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2020.102527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38250707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
Plasmid
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1