Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102566
Sara Petrin , Massimiliano Orsini , Eleonora Mastrorilli , Alessandra Longo , Debora Cozza , John E. Olsen , Antonia Ricci , Carmen Losasso , Lisa Barco
Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) ranks among the top serovars causing human infections in Italy, although not common in other European countries. Isolates are generally pan-susceptible or resistant to aminoglycosides only, however data on antimicrobial resistance genes in strains of S. Napoli are limited. Recently an isolate encoding resistance to third generation cephalosporins was reported. This study aimed to characterize plasmid-encoded cephalosporin resistance due to the blaCTX-M-15 gene in a human S. Napoli isolate in Italy, and to investigate plasmid stability over time.
S. Napoli 16/174478 was confirmed to be ESBL-producing. The blaCTX-M-15 gene was shown to be located on an IncI1α plasmid of 90,272 bp (50.03 GC%) encoding for 107 coding sequences (CDS). The plasmid was successfully transferred by conjugation to an E. coli 1816 recipient strain (conjugation frequency 3.9 × 10−2 transconjugants per donor). Transconjugants were confirmed to carry the IncI1α plasmid, and to be ESBL-producing strains as well. Moreover, transconjugant colonies maintained the plasmid for up to 10 passages. The identification of S. Napoli isolates able to produce ESBLs is of great concern, as this pathogen is frequently associated with invasive infections and a higher risk of bacteraemia, and its reservoir has not yet been clearly identified.
{"title":"Identification and characterization of a spreadable IncI1 plasmid harbouring a blaCTX-M-15 gene in an Italian human isolate of Salmonella serovar Napoli","authors":"Sara Petrin , Massimiliano Orsini , Eleonora Mastrorilli , Alessandra Longo , Debora Cozza , John E. Olsen , Antonia Ricci , Carmen Losasso , Lisa Barco","doi":"10.1016/j.plasmid.2021.102566","DOIUrl":"10.1016/j.plasmid.2021.102566","url":null,"abstract":"<div><p><span><em>Salmonella enterica</em></span> subsp. <em>enterica</em><span> serovar Napoli (</span><em>S</em><span>. Napoli) ranks among the top serovars<span> causing human infections in Italy, although not common in other European countries. Isolates are generally pan-susceptible or resistant to aminoglycosides<span> only, however data on antimicrobial resistance genes in strains of </span></span></span><em>S.</em><span> Napoli are limited. Recently an isolate encoding resistance to third generation cephalosporins was reported. This study aimed to characterize plasmid-encoded cephalosporin resistance due to the </span><em>bla</em><sub>CTX-M-15</sub> gene in a human <em>S.</em> Napoli isolate in Italy, and to investigate plasmid stability over time.</p><p><em>S.</em> Napoli 16/174478 was confirmed to be ESBL-producing. The <em>bla</em><sub>CTX-M-15</sub> gene was shown to be located on an IncI1α plasmid of 90,272 bp (50.03 GC%) encoding for 107 coding sequences (CDS). The plasmid was successfully transferred by conjugation to an <em>E. coli</em> 1816 recipient strain (conjugation frequency 3.9 × 10<sup>−2</sup> transconjugants per donor). Transconjugants were confirmed to carry the IncI1α plasmid, and to be ESBL-producing strains as well. Moreover, transconjugant colonies maintained the plasmid for up to 10 passages. The identification of <em>S.</em><span> Napoli isolates able to produce ESBLs is of great concern, as this pathogen is frequently associated with invasive infections and a higher risk of bacteraemia, and its reservoir has not yet been clearly identified.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102566"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102566","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25369513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102565
Claire de Curraize , Eliane Siebor , Catherine Neuwirth
Salmonella genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant Salmonella Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in Salmonella enterica and Proteus mirabilis. Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3′-end of the trmE gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, traN, traG, mpsB/mpsA genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.
{"title":"Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids","authors":"Claire de Curraize , Eliane Siebor , Catherine Neuwirth","doi":"10.1016/j.plasmid.2021.102565","DOIUrl":"10.1016/j.plasmid.2021.102565","url":null,"abstract":"<div><p><em>Salmonella</em> genomic island 1 (SGI1), an integrative mobilisable element (IME), was first reported 20 years ago, in the multidrug resistant <em>Salmonella</em> Typhimurium DT104 clone. Since this first report, many variants and relatives have been found in <em>Salmonella enterica</em> and <em>Proteus mirabilis.</em> Thanks to whole genome sequencing, more and more complete sequences of SGI1-related elements (SGI1-REs) have been reported in these last few years among Gammaproteobacteria. Here, the genetic organisation and main features common to SGI1-REs are summarised to help to classify them. Their integrases belong to the tyrosine-recombinase family and target the 3′-end of the <em>trmE</em> gene. They share the same genetic organisation (integrase and excisionase genes, replicase module, SgaCD-like transcriptional activator genes, <em>traN</em>, <em>traG</em>, <em>mpsB/mpsA</em> genes) and they harbour AcaCD binding sites promoting their excision, replication and mobilisation in presence of A/C plasmid. SGI1-REs are mosaic structures suggesting that recombination events occurred between them. Most of them harbour a multiple antibiotic resistance (MAR) region and the plasticity of their MAR region show that SGI1-REs play a key role in antibiotic resistance and might help multiple antibiotic resistant bacteria to adapt to their environment. This might explain the emergence of clones with SGI1-REs.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102565"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102565","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25369515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102563
Bridget B. McGivern , Rylie K. McDonell , Sydney K. Morris , Timothy M. LaPara , Justin J. Donato
Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments.
{"title":"Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics","authors":"Bridget B. McGivern , Rylie K. McDonell , Sydney K. Morris , Timothy M. LaPara , Justin J. Donato","doi":"10.1016/j.plasmid.2021.102563","DOIUrl":"10.1016/j.plasmid.2021.102563","url":null,"abstract":"<div><p><span>Combatting antibiotic resistance<span> is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic<span> selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into </span></span></span><em>E. coli</em><span><span>, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 </span>integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102563"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102563","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25311989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bacterium Oecophyllibacter saccharovorans of family Acetobacteraceae is a symbiont of weaver ant Oecophylla smaragdina. In our previous study, we published the finding of novel O. saccharovorans strains Ha5T, Ta1 and Jb2 (Chua et al. 2020) but their plasmid sequences have not been reported before. Here, we demonstrate for the first time that the sole rrn operon of their genomes was detected on a 6.6 kb circular replicon. This replicon occurred in high copy number, much smaller size and lower G + C content than the main chromosome. Based on these features, the 6.6 kb circular replicon was regarded as rrn operon-containing plasmid. Further restriction analysis on the plasmids confirmed their circular conformation. A Southern hybridization analysis also corroborated the presence of 16S rRNA gene and thus the rrn operon on a single locus in the genome of the O. saccharovorans strains. However, similar genome architecture was not observed in other closely related bacterial strains. Additional survey also detected no plasmid-borne rrn operon in available genomes of validly described taxa of family Acetobacteraceae. To date, plasmid localization of rrn operon is rarely documented. This study reports the occurrence of rrn operon on the smallest bacterial plasmid in three O. saccharovorans strains and discusses its possible importance in enhancing their competitive fitness as bacterial symbiont of O. smaragdina.
{"title":"Plasmid localization of sole rrn operon in genomes of Oecophyllibacter saccharovorans (Acetobacteraceae)","authors":"Kah-Ooi Chua , Wah-Seng See-Too , Hoi-Sen Yong , Sze-Looi Song , Wai-Fong Yin , Kok-Gan Chan","doi":"10.1016/j.plasmid.2021.102559","DOIUrl":"10.1016/j.plasmid.2021.102559","url":null,"abstract":"<div><p>The bacterium <em>Oecophyllibacter saccharovorans</em> of family <span><em>Acetobacteraceae</em></span> is a symbiont of weaver ant <em>Oecophylla smaragdina</em>. In our previous study, we published the finding of novel <em>O. saccharovorans</em> strains Ha5<sup>T</sup>, Ta1 and Jb2 (Chua et al. 2020) but their plasmid sequences have not been reported before. Here, we demonstrate for the first time that the sole <em>rrn</em><span> operon of their genomes was detected on a 6.6 kb circular replicon. This replicon occurred in high copy number, much smaller size and lower G + C content than the main chromosome. Based on these features, the 6.6 kb circular replicon was regarded as </span><em>rrn</em><span> operon-containing plasmid. Further restriction analysis on the plasmids confirmed their circular conformation. A Southern hybridization analysis also corroborated the presence of 16S rRNA gene and thus the </span><em>rrn</em> operon on a single locus in the genome of the <em>O. saccharovorans</em><span> strains. However, similar genome architecture was not observed in other closely related bacterial strains. Additional survey also detected no plasmid-borne </span><em>rrn</em> operon in available genomes of validly described taxa of family <em>Acetobacteraceae</em>. To date, plasmid localization of <em>rrn</em> operon is rarely documented. This study reports the occurrence of <em>rrn</em> operon on the smallest bacterial plasmid in three <em>O. saccharovorans</em> strains and discusses its possible importance in enhancing their competitive fitness as bacterial symbiont of <em>O. smaragdina</em>.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102559"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102559","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38778857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102556
Kyle Spivack, Christine Muzzelo, Matthew Hall, Eric Warga, Christopher Neely, Holly Slepian, Alyssa Cunningham, Matthew Tucker, Jacob Elmer
The innate immune response is an essential defense mechanism that allows cells to detect pathogen-associated molecular patterns (PAMPs) like endotoxin or cytosolic DNA and then induce the expression of defensive genes that restrict the replication of viruses and other pathogens. However, the therapeutic DNA used in some gene therapy treatments can also trigger the innate immune response, which activates host cell genes that may inhibit transgene expression. The goal of this study was to enhance transgene expression by inhibiting key components of the innate immune response with small molecule inhibitors (iCRT14, curcumin, Amlexanox, H-151, SC-514, & VX-702). Most of the inhibitors significantly increased transgene (luciferase) expression at least 2-fold, but the β-catenin/TCF4 inhibitor iCRT14 showed the highest enhancement (16 to 35-fold) in multiple cell lines (PC-3, MCF7, & MB49) without significantly decreasing cellular proliferation. Alternatively, cloning a β-catenin/TCF4 binding motif (TCAAAG) into the EF1α promoter also enhanced transgene expression up to 8-fold. To further investigate the role of β-catenin/TCF4 in transgene expression, mRNA-sequencing experiments were conducted to identify host cell genes that were upregulated following transfection with PEI but down-regulated after the addition of iCRT14. As expected, transfection with plasmid DNA activated the innate immune response and upregulated hundreds (687) of defensive genes, but only 7 of those genes were down-regulated in the presence of iCRT14 (e.g., PTGS2 & PLA1A). Altogether, these results show that transgene expression can be enhanced by inhibiting the innate immune response with SMIs like iCRT14, which inhibits β-catenin/TCF4 to prevent the expression of specific host cell genes.
{"title":"Enhancement of transgene expression by the β-catenin inhibitor iCRT14","authors":"Kyle Spivack, Christine Muzzelo, Matthew Hall, Eric Warga, Christopher Neely, Holly Slepian, Alyssa Cunningham, Matthew Tucker, Jacob Elmer","doi":"10.1016/j.plasmid.2021.102556","DOIUrl":"10.1016/j.plasmid.2021.102556","url":null,"abstract":"<div><p><span><span>The innate immune response is an essential defense mechanism that allows cells to detect pathogen-associated molecular patterns (PAMPs) like endotoxin or cytosolic DNA and then induce the expression of defensive genes that restrict the replication of viruses and other pathogens. However, the therapeutic DNA used in some gene therapy treatments can also trigger the innate immune response, which activates host cell genes that may inhibit transgene expression. The goal of this study was to enhance transgene expression by inhibiting key components of the innate immune response with </span>small molecule<span> inhibitors (iCRT14, curcumin, Amlexanox, H-151, SC-514, & VX-702). Most of the inhibitors significantly increased transgene (luciferase) expression at least 2-fold, but the β-catenin/TCF4 inhibitor iCRT14 showed the highest enhancement (16 to 35-fold) in multiple cell lines (PC-3, MCF7, & MB49) without significantly decreasing cellular proliferation. Alternatively, cloning a β-catenin/TCF4 binding motif (TCAAAG) into the EF1α promoter also enhanced transgene expression up to 8-fold. To further investigate the role of β-catenin/TCF4 in transgene expression, mRNA-sequencing experiments were conducted to identify host cell genes that were upregulated following transfection with </span></span>PEI<span> but down-regulated after the addition of iCRT14. As expected, transfection with plasmid DNA activated the innate immune response and upregulated hundreds (687) of defensive genes, but only 7 of those genes were down-regulated in the presence of iCRT14 (e.g., PTGS2 & PLA1A). Altogether, these results show that transgene expression can be enhanced by inhibiting the innate immune response with SMIs like iCRT14, which inhibits β-catenin/TCF4 to prevent the expression of specific host cell genes.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102556"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38840202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LINEs are retrotransposable elements found in diverse organisms. Their activity is kept in check by several mechanisms, including transcriptional silencing. Here we have analyzed the transcription status of LINE1 copies in the early-branching parasitic protist Entamoeba histolytica. Full-length EhLINE1 encodes ORF1, and ORF2 with reverse transcriptase (RT) and endonuclease (EN) domains. RNA-Seq analysis of EhLINE1 copies (both truncated and full-length) showed unique features. Firstly, although 20/41 transcribed copies were full-length, we failed to detect any full-length transcripts. Rather, sense-strand transcripts mapped to the functional domains- ORF1, RT and EN. Secondly, there was strong antisense transcription specifically from RT domain. No antisense transcripts were seen from ORF1. Antisense RT transcripts did not encode known functional peptides. They could possibly be involved in attenuating translation of RT domain, as we failed to detect ORF2p, whereas ORF1p was detectable. Lack of full-length transcripts and strong antisense RT expression may serve to limit EhLINE1 retrotransposition.
{"title":"Transcriptomic analysis of Entamoeba histolytica reveals domain-specific sense strand expression of LINE-encoded ORFs with massive antisense expression of RT domain","authors":"Devinder Kaur , Mridula Agrahari , Shashi Shekhar Singh , Prabhat Kumar Mandal , Alok Bhattacharya , Sudha Bhattacharya","doi":"10.1016/j.plasmid.2021.102560","DOIUrl":"10.1016/j.plasmid.2021.102560","url":null,"abstract":"<div><p><span>LINEs<span> are retrotransposable elements found in diverse organisms. Their activity is kept in check by several mechanisms, including transcriptional silencing. Here we have analyzed the transcription status of LINE1 copies in the early-branching parasitic protist </span></span><span><em>Entamoeba histolytica</em></span><span>. Full-length EhLINE1 encodes ORF1, and ORF2 with reverse transcriptase<span> (RT) and endonuclease (EN) domains. RNA-Seq analysis of EhLINE1 copies (both truncated and full-length) showed unique features. Firstly, although 20/41 transcribed copies were full-length, we failed to detect any full-length transcripts. Rather, sense-strand transcripts mapped to the functional domains- ORF1, RT and EN. Secondly, there was strong antisense transcription specifically from RT domain. No antisense transcripts were seen from ORF1. Antisense RT transcripts did not encode known functional peptides. They could possibly be involved in attenuating translation of RT domain, as we failed to detect ORF2p, whereas ORF1p was detectable. Lack of full-length transcripts and strong antisense RT expression may serve to limit EhLINE1 retrotransposition.</span></span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102560"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102560","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38848640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102555
Dan-Dan He , Meng-Mei Cui , Teng-Li Zhang, Gong-Zheng Hu, Jian-Hua Liu, Yu-Shan Pan
To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian E. coli strain, antibiotic susceptibility testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including ISEcp1-blaCMY-2-blc-sugE, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 integron with cassette array |aac(6′)-II(aacA7)|qacE∆1|sul1|, IS26-mphR(A)-mrx-mph(A)-IS26, IS26-fosA3-IS26, and mercury resistance cluster merRTPABDE. It is the first report of three different size circular forms derived from IS26-mphR(A)-mrx-mph(A)-IS26-fosA3-IS26 in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn1722 carrying blaTEM-1b, rmtB, aac(3)-IId(aacC2d), and a class 1 integron with cassette array |dfrA12|orfF|aadA2|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.
{"title":"Characterization of blaCMY-2-carrying IncC and rmtB-carrying IncI1/ST136 plasmids in an avian Escherichia coli ST224 strain","authors":"Dan-Dan He , Meng-Mei Cui , Teng-Li Zhang, Gong-Zheng Hu, Jian-Hua Liu, Yu-Shan Pan","doi":"10.1016/j.plasmid.2021.102555","DOIUrl":"https://doi.org/10.1016/j.plasmid.2021.102555","url":null,"abstract":"<div><p>To analyze characteristics and underlying evolutionary processes of IncC and IncI1 plasmids in a multidrug-resistant avian <em>E. coli</em><span> strain, antibiotic susceptibility<span> testing, PCR, conjugation assays, and next-generation sequencing were performed. The type 1 IncC plasmid pEC009.1 harbored three antimicrobial resistance regions including IS</span></span><em>Ecp1</em>-<em>bla</em><sub>CMY-2</sub>-<em>blc</em>-<em>sugE</em><span><span>, ARI-B resistance island, and ARI-A island that was a mosaic multidrug resistance region (MRR) comprised of a class 1 </span>integron with cassette array |</span><em>aac</em>(6′)<em>-II</em>(<em>aacA7</em>)|<em>qacE∆1</em>|<em>sul1</em>|, IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>, IS<em>26</em>-<em>fosA3</em>-IS<em>26</em>, and mercury resistance cluster <em>merRTPABDE</em>. It is the first report of three different size circular forms derived from IS<em>26</em>-<em>mphR</em>(A)-<em>mrx</em>-<em>mph</em>(A)-IS<em>26</em>-<em>fosA3</em>-IS<em>26</em><span> in ARI-A of type 1 IncC plasmid. In IncI1/ST136 pEC009.2, the truncated transposon Tn</span><em>1722</em> carrying <em>bla</em><sub>TEM-1b</sub>, <em>rmtB</em>, <em>aac(3)-IId</em>(<em>aacC2d</em>), and a class 1 integron with cassette array |<em>dfrA12</em>|orfF|<em>aadA2</em><span>|, inserted into the plasmid backbone generating 5-bp direct repeats (DRs, TATAA) at the boundaries of the region, which was highly similar to that of other IncI1 plasmids, and differed by the arrangements of resistance determinants. Comparison among two epidemic plasmid lineages showed complex MRRs respectively located in the specific position in type 1 IncC and IncI1/ST136 plasmids with conserved backbones, and these have evolved via multiple events involved in mobile elements-mediated loss and gain of resistance genes and accessory genes. Strains harboring these plasmids may serve as a reservoir for antibiotic resistance genes, thereby contributing to the rapid spread of resistance genes and posing a public health threat.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102555"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102555","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72204814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102558
Ewa Sadowy
An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium.
This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes.
{"title":"Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria","authors":"Ewa Sadowy","doi":"10.1016/j.plasmid.2021.102558","DOIUrl":"10.1016/j.plasmid.2021.102558","url":null,"abstract":"<div><p>An increasing resistance to vancomycin among clinically relevant enterococci, such as <em>Enterococcus faecalis</em> and <em>Enterococcus faecium</em> is a cause of a great concern, as it seriously limits treatment options. The <em>vanB</em> operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn<em>1549</em>-type transposons or, more rarely, in ICE<em>Efa</em>V583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn<em>1549</em>-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn<em>1549</em>-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of <em>vanB</em> determinants among hospital <em>E. faecalis</em> and <em>E. faecium</em>.</p><p>This review focuses on diversity of genetic elements harbouring <em>vanB</em> determinants in hospital-associated strains of <em>E. faecium</em> and <em>E. faecalis,</em> the mechanisms beyond <em>vanB</em> spread in populations of these bacteria, and provides an overview of the <em>vanB-</em>MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of <em>vanB</em> genes.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102558"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38840204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102554
Lauren E. Woodard , Felisha M. Williams , Isria C. Jarrett , Matthew H. Wilson
TcBuster is a hAT-family DNA transposon from the red flour beetle, Tribolium castaneum. The TcBuster transposase is of interest for genome engineering as it is highly active in insect and mammalian cells. To test the predicted catalytic triad of TcBuster, each residue of the catalytic triad of a haemagglutinin-tagged TcBuster transposase was individually mutated to a structurally conserved amino acid. Using a drug-resistant colony assay for transposon integration, we found that the D223N, D289N, and E589Q mutants of TcBuster transposase were inactive in human cells. We used a modified chromatin immunoprecipitation assay to determine that each mutant maintained binding to TcBuster transposon inverted repeat elements. Although the catalytic mutants retained their transposon binding properties, mutants displayed altered expression and localization in human cells. None of the catalytic mutants formed characteristic TcBuster transposase rodlet structures, and the D223N and D289N mutants were not able to be detected by immunofluorescence microscopy. Immunoblot analysis demonstrated that the E589Q mutant is less abundant than wild-type TcBuster transposase. Cells transfected with either TcBuster or TcBuster-E589Q transposase were imaged by structured illumination microscopy to quantify differences in the length of the transposase rodlets. The average length of the TcBuster transposase rodlets (N = 39) was 3.284 μm while the E589Q rodlets (N = 33) averaged 1.157 μm (p < 0.0001; t-test). The catalytic triad mutations decreased overall protein levels and disrupted transposase rodlet formation while nuclear localization and DNA binding to the inverted repeat elements were maintained. Our results may have broader implications for the overproduction inhibition phenomenon observed for DNA transposons.
{"title":"Functional analysis of the catalytic triad of the hAT-family transposase TcBuster","authors":"Lauren E. Woodard , Felisha M. Williams , Isria C. Jarrett , Matthew H. Wilson","doi":"10.1016/j.plasmid.2021.102554","DOIUrl":"10.1016/j.plasmid.2021.102554","url":null,"abstract":"<div><p><em>TcBuster</em> is a <em>hAT</em><span>-family DNA transposon<span> from the red flour beetle, </span></span><em>Tribolium castaneum.</em> The <em>TcBuster</em><span><span> transposase is of interest for genome engineering as it is highly active in insect and </span>mammalian cells<span>. To test the predicted catalytic triad of </span></span><em>TcBuster</em>, each residue of the catalytic triad of a haemagglutinin-tagged <em>TcBuster</em><span> transposase was individually mutated to a structurally conserved amino acid. Using a drug-resistant colony assay for transposon integration, we found that the D223N, D289N, and E589Q mutants of </span><em>TcBuster</em> transposase were inactive in human cells. We used a modified chromatin immunoprecipitation assay to determine that each mutant maintained binding to <em>TcBuster</em> transposon inverted repeat elements. Although the catalytic mutants retained their transposon binding properties, mutants displayed altered expression and localization in human cells. None of the catalytic mutants formed characteristic <em>TcBuster</em><span> transposase rodlet structures, and the D223N and D289N mutants were not able to be detected by immunofluorescence microscopy. Immunoblot analysis demonstrated that the E589Q mutant is less abundant than wild-type </span><em>TcBuster</em> transposase. Cells transfected with either <em>TcBuster</em> or <em>TcBuster</em>-E589Q transposase were imaged by structured illumination microscopy to quantify differences in the length of the transposase rodlets. The average length of the <em>TcBuster</em> transposase rodlets (<em>N</em> = 39) was 3.284 μm while the E589Q rodlets (<em>N</em> = 33) averaged 1.157 μm (<em>p</em> < 0.0001; <em>t</em><span>-test). The catalytic triad mutations decreased overall protein levels and disrupted transposase rodlet formation while nuclear localization and DNA binding to the inverted repeat elements were maintained. Our results may have broader implications for the overproduction inhibition phenomenon observed for DNA transposons.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102554"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38778858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1016/j.plasmid.2021.102562
Veronica R. Moorman , James I. Cohen
Pathogenic Yersinia bacteria, including Y. pseudotubuclosis Y. enterocolitica, and Y. pestis, contain the mosaic plasmid pYV that encodes for, among other things, a number of proteinaceous virulence factors. While the evolutionary histories of many of the biovars and strains of pathogenic Yersinia species are well documented, the origins of many of the individual virulence factors have not been comprehensively examined. Here, the evolutionary origins of the genes coding for a set of Yersinia outer protein (Yop) virulence factors were investigated through phylogenetic reconstruction and subsequence analysis. It was found that many of these genes had only a few sequenced homologs and none of the resolved phylogenies recovered the same relationships as was resolved from chromosomal analyses. Many of the evolutionary relationships differ greatly among genes on the plasmid, and variation is also found across different domains of the same gene, which provides evidence of the mosaic nature of the plasmid as well as multiple genes on the plasmid. This mosaic aspect also relates to patterns of selection, which vary among the studied domains.
{"title":"Insights into the individual evolutionary origins of Yersinia virulence factor effector proteins","authors":"Veronica R. Moorman , James I. Cohen","doi":"10.1016/j.plasmid.2021.102562","DOIUrl":"10.1016/j.plasmid.2021.102562","url":null,"abstract":"<div><p>Pathogenic <span><em>Yersinia</em></span> bacteria, including <em>Y. pseudotubuclosis Y. enterocolitica</em>, and <em>Y. pestis</em><span>, contain the mosaic plasmid pYV that encodes for, among other things, a number of proteinaceous virulence factors<span>. While the evolutionary histories of many of the biovars and strains of pathogenic </span></span><em>Yersinia</em> species are well documented, the origins of many of the individual virulence factors have not been comprehensively examined. Here, the evolutionary origins of the genes coding for a set of <em>Yersinia</em><span> outer protein (Yop) virulence factors were investigated through phylogenetic reconstruction and subsequence analysis. It was found that many of these genes had only a few sequenced homologs and none of the resolved phylogenies recovered the same relationships as was resolved from chromosomal analyses. Many of the evolutionary relationships differ greatly among genes on the plasmid, and variation is also found across different domains of the same gene, which provides evidence of the mosaic nature of the plasmid as well as multiple genes on the plasmid. This mosaic aspect also relates to patterns of selection, which vary among the studied domains.</span></p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"114 ","pages":"Article 102562"},"PeriodicalIF":2.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plasmid.2021.102562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38782452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}