Pub Date : 2024-10-09DOI: 10.1186/s13065-024-01290-4
Moataz Morad, Seraj O. Alzahrani, Albandary Almahri, Ibrahim S. S. Alatawi, Kamelah S. Alrashdi, Kholood M. Alkhamis, Hatun H. Alsharief, Nashwa M. El-Metwaly
Povidone-iodine is identified as one of the widely applicable antiseptic reagents for treatment of skin infection and wound healing. Controllable releasing of povidone-iodine is extensively required for healing of chronic wounds. The release of povidone-iodine was systematically studied from the composites based on carboxymethyl starch (CMS). Currently, different ratios from copper precursor and L-aspartic acid (L-AA) were interacted with CMS to obtain Cu-L-AA@CMS composites. Increment the percentage of L-AA was reflected in clustering of dense masses from the desirable composite with highly crystalline/stable structural network. Regardless to pH conditions, Cu-L-AA(30%)@CMS composite showed the highest efficiency for controllable release of povidone-iodine, whereas, the release percentages were estimated to be 58%, 32% and 18% at pH 5, 7 and 9, respectively. The kinetic results revealed the impossibility of povidone-iodine releasing via diffusion/erosion for further support of the hypothesis of releasing via swelling process. Moreover, the release of povidone-iodine using column technique showed that the lowest release was estimated at using high rate of 6 mL/min. Besides the biocompatibility and biodegradability of the prepared Cu-L-AA@CMS composites, it showed the superiority for controllable release of povidone-iodine antiseptic reagent to regulate its beneficial effect in curing of the skin.
{"title":"Copper-amino acid/Carboxymethyl starch composite for controllable releasing of povidone-iodine","authors":"Moataz Morad, Seraj O. Alzahrani, Albandary Almahri, Ibrahim S. S. Alatawi, Kamelah S. Alrashdi, Kholood M. Alkhamis, Hatun H. Alsharief, Nashwa M. El-Metwaly","doi":"10.1186/s13065-024-01290-4","DOIUrl":"10.1186/s13065-024-01290-4","url":null,"abstract":"<div><p>Povidone-iodine is identified as one of the widely applicable antiseptic reagents for treatment of skin infection and wound healing. Controllable releasing of povidone-iodine is extensively required for healing of chronic wounds. The release of povidone-iodine was systematically studied from the composites based on carboxymethyl starch (CMS). Currently, different ratios from copper precursor and L-aspartic acid (L-AA) were interacted with CMS to obtain Cu-L-AA@CMS composites. Increment the percentage of L-AA was reflected in clustering of dense masses from the desirable composite with highly crystalline/stable structural network. Regardless to pH conditions, Cu-L-AA(30%)@CMS composite showed the highest efficiency for controllable release of povidone-iodine, whereas, the release percentages were estimated to be 58%, 32% and 18% at pH 5, 7 and 9, respectively. The kinetic results revealed the impossibility of povidone-iodine releasing via diffusion/erosion for further support of the hypothesis of releasing via swelling process. Moreover, the release of povidone-iodine using column technique showed that the lowest release was estimated at using high rate of 6 mL/min. Besides the biocompatibility and biodegradability of the prepared Cu-L-AA@CMS composites, it showed the superiority for controllable release of povidone-iodine antiseptic reagent to regulate its beneficial effect in curing of the skin.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01290-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1186/s13065-024-01298-w
Marwa N. El-Nahass, Tarek A. Fayed, Mohammed M. El-Gamil, Abd El-Aziz S. Fouda
The current work looks at the inhibitory effects of a diolefinic dye, namely 1,4-bis((E)-2-(3-methyl-2,3-dihydrobenzo[d]thiazol-2-yl) vinyl) benzene iodide salt, in relation to CS corrosion mitigation in hydrochloric acid (HCl) environment. This study uses a variety of experimental methodologies, including weight loss (WL) analysis, electrochemical tests, and theoretical considerations. The synergistic effect of diolefinic dye and AgNPs on the corrosion inhibition of CS in 1 M HCl was investigated. The inhibition efficiency (IE) displays a notable enhancement as the concentration of the dye is elevated and as the temperature raises the IE increases. The diolefinic dye exhibited % IE of 83% even at low concentration (1 × 10–4 M) whereas 90% in the presence of (2.26 × 10–10) AgNPs. Tafel graphs demonstrate that the dye follows a mixed type inhibitor. The adsorption of the dye on CS surface follows Langmuir model. Moreover, the influence of temperature and the activation parameters disclose that diolefinic dye is chemisorbed on the CS surface. The synergistic coefficient of the diolefinic dye and AgNPs under various concentration conditions was greater than unity. The surface morphology of CS sheets was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Density Functional Theory (DFT) calculations provide theoretical support for the inhibitory effects of the examined dye. Notably, there is a high agreement between the findings of practical studies and theoretical expectations.
{"title":"Synergistic inhibition effect of diolefinic dye and silver nanoparticles for carbon steel corrosion in hydrochloric acid solution","authors":"Marwa N. El-Nahass, Tarek A. Fayed, Mohammed M. El-Gamil, Abd El-Aziz S. Fouda","doi":"10.1186/s13065-024-01298-w","DOIUrl":"10.1186/s13065-024-01298-w","url":null,"abstract":"<div><p>The current work looks at the inhibitory effects of a diolefinic dye, namely 1,4-bis((E)-2-(3-methyl-2,3-dihydrobenzo[d]thiazol-2-yl) vinyl) benzene iodide salt, in relation to CS corrosion mitigation in hydrochloric acid (HCl) environment. This study uses a variety of experimental methodologies, including weight loss (WL) analysis, electrochemical tests, and theoretical considerations. The synergistic effect of diolefinic dye and AgNPs on the corrosion inhibition of CS in 1 M HCl was investigated. The inhibition efficiency (IE) displays a notable enhancement as the concentration of the dye is elevated and as the temperature raises the IE increases. The diolefinic dye exhibited % IE of 83% even at low concentration (1 × 10<sup>–4</sup> M) whereas 90% in the presence of (2.26 × 10<sup>–10</sup>) AgNPs. Tafel graphs demonstrate that the dye follows a mixed type inhibitor. The adsorption of the dye on CS surface follows Langmuir model. Moreover, the influence of temperature and the activation parameters disclose that diolefinic dye is chemisorbed on the CS surface. The synergistic coefficient of the diolefinic dye and AgNPs under various concentration conditions was greater than unity. The surface morphology of CS sheets was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Density Functional Theory (DFT) calculations provide theoretical support for the inhibitory effects of the examined dye. Notably, there is a high agreement between the findings of practical studies and theoretical expectations.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01298-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1186/s13065-024-01302-3
Faezeh Bazzi-Allahri, Fereshteh Shiri, Shahin Ahmadi, Alla P. Toropova, Andrey A. Toropov
The COVID-19 pandemic has prompted the medical systems of many countries to develop effective treatments to combat the high rate of infection and death caused by the disease. Within the array of proteins found in SARS-CoV-2, the 3 chymotrypsin-like protease (3CLpro) holds significance as it plays a crucial role in cleaving polyprotein peptides into distinct functional nonstructural proteins. Meanwhile, RNA-dependent RNA polymerase (RdRp) takes center stage as the key enzyme tasked with replicating the viral genomic RNA within host cells. These proteins, 3CLpro and RdRp, are deemed optimal subjects for QSAR modeling due to their pivotal functions in the viral lifecycle. In this study, SMILES-based QSAR classification models were developed for a dataset of 2377 compounds that were defined as either active or inactive against 3CLpro and RdRp. Pharmacophore (PH4) and QSAR modeling were used for the virtual screening on 60.2 million compounds including ZINC, ChEMBL, Molport, and MCULE databases to identify new potent inhibitors against 3CLpro and RdRp. Then, a filter was established based on typical molecular characteristics to identify drug-like molecules. The molecular docking was also performed to evaluate the binding affinity of 156 AND 51 potential inhibitors to 3CLpro and RdRp, respectively. Among the 15 hits identified based on molecular docking scores, M3, N2, and N4 were identified as promising inhibitors due to their good synthetic accessibility scores (3.07, 3.11, and 3.29 out of 10 for M3, N2, and N4 respectively). These compounds contain amine functional groups, which are known for their crucial role in the binding interactions between drugs and their targets. Consequently, these hits have been chosen for further biological assay studies to validate their activity. They may represent novel 3CLpro and RdRp inhibitors possessing drug-like properties suitable for COVID-19 therapy.
{"title":"SMILES-based QSAR virtual screening to identify potential therapeutics for COVID-19 by targeting 3CLpro and RdRp viral proteins","authors":"Faezeh Bazzi-Allahri, Fereshteh Shiri, Shahin Ahmadi, Alla P. Toropova, Andrey A. Toropov","doi":"10.1186/s13065-024-01302-3","DOIUrl":"10.1186/s13065-024-01302-3","url":null,"abstract":"<div><p>The COVID-19 pandemic has prompted the medical systems of many countries to develop effective treatments to combat the high rate of infection and death caused by the disease. Within the array of proteins found in SARS-CoV-2, the 3 chymotrypsin-like protease (3CL<sup>pro</sup>) holds significance as it plays a crucial role in cleaving polyprotein peptides into distinct functional nonstructural proteins. Meanwhile, RNA-dependent RNA polymerase (RdRp) takes center stage as the key enzyme tasked with replicating the viral genomic RNA within host cells. These proteins, 3CL<sup>pro</sup> and RdRp, are deemed optimal subjects for QSAR modeling due to their pivotal functions in the viral lifecycle. In this study, SMILES-based QSAR classification models were developed for a dataset of 2377 compounds that were defined as either active or inactive against 3CLpro and RdRp. Pharmacophore (PH4) and QSAR modeling were used for the virtual screening on 60.2 million compounds including ZINC, ChEMBL, Molport, and MCULE databases to identify new potent inhibitors against 3CL<sup>pro</sup> and RdRp. Then, a filter was established based on typical molecular characteristics to identify drug-like molecules. The molecular docking was also performed to evaluate the binding affinity of 156 AND 51 potential inhibitors to 3CL<sup>pro</sup> and RdRp, respectively. Among the 15 hits identified based on molecular docking scores, M3, N2, and N4 were identified as promising inhibitors due to their good synthetic accessibility scores (3.07, 3.11, and 3.29 out of 10 for M3, N2, and N4 respectively). These compounds contain amine functional groups, which are known for their crucial role in the binding interactions between drugs and their targets. Consequently, these hits have been chosen for further biological assay studies to validate their activity. They may represent novel 3CL<sup>pro</sup> and RdRp inhibitors possessing drug-like properties suitable for COVID-19 therapy.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01302-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1186/s13065-024-01296-y
Marco M.Z. Sharkawi, Mark T. Safwat, Nada S. Abdelwahab
Tetracyclines family is considered as the first-line antibiotic drugs for food animals. Formulating bromhexine (BR) with oxytetracycline (OTC) improved the antibacterial activity of OTC, besides it is considered as a mucolytic agent. Four precise, rapid, and simple spectrophotometric methods were successfully developed for resolution of the overlapped spectra of OTC and BR in their pure form and in their pharmaceutical formulation. The proposed methods are absorption correction (AC), dual wavelength (DW), induced dual wavelength (IDW), and spectrum subtraction (SS) spectrophotometric methods. The developed methods were used for the determination of OTC and BR in the ranges of 2–50 µg/mL and 1–30 µg/mL, respectively for all methods. For (AC) and (SS) methods, OTC and BR were determined at 380 nm and 245.6 nm, respectively after spectral resolution steps. While for (DW) method, the absorbance difference between λ (271.8 –287.6 nm) and λ (245.6 –283.2 nm) were used for the determination of OTC and BR, in order. For IDW, it depended on using the absorbance difference between 271.8 nm and 245.6 nm as well as the equality factor (F) calculated for each drug at the selected wavelengths. In all methods, HCl was used as a solvent and they are validated according to ICH guidelines. Several green metric tools have been developed to evaluate the greenness of the analytical methods like National Environmental Methods Index (NEMI), Modified NEMI, Analytical Eco-scale, Green Analytical Procedure Index (GAPI) and Analytical GREEnness calculator (AGREE), and all ensured the low impact of the suggested approaches on health and environment. The proposed methods are highly selective, robust and precise. Additionally they are time and money effective and can be used in any analytical laboratory.
{"title":"Analysis of binary mixture of oxytetracycline and bromohexine in their combined veterinary formulation by four simple spectrophotometric methods with greenness assessment","authors":"Marco M.Z. Sharkawi, Mark T. Safwat, Nada S. Abdelwahab","doi":"10.1186/s13065-024-01296-y","DOIUrl":"10.1186/s13065-024-01296-y","url":null,"abstract":"<div><p>Tetracyclines family is considered as the first-line antibiotic drugs for food animals. Formulating bromhexine (BR) with oxytetracycline (OTC) improved the antibacterial activity of OTC, besides it is considered as a mucolytic agent. Four precise, rapid, and simple spectrophotometric methods were successfully developed for resolution of the overlapped spectra of OTC and BR in their pure form and in their pharmaceutical formulation. The proposed methods are absorption correction (AC), dual wavelength (DW), induced dual wavelength (IDW), and spectrum subtraction (SS) spectrophotometric methods. The developed methods were used for the determination of OTC and BR in the ranges of 2–50 µg/mL and 1–30 µg/mL, respectively for all methods. For (AC) and (SS) methods, OTC and BR were determined at 380 nm and 245.6 nm, respectively after spectral resolution steps. While for (DW) method, the absorbance difference between λ (271.8 –287.6 nm) and λ (245.6 –283.2 nm) were used for the determination of OTC and BR, in order. For IDW, it depended on using the absorbance difference between 271.8 nm and 245.6 nm as well as the equality factor (F) calculated for each drug at the selected wavelengths. In all methods, HCl was used as a solvent and they are validated according to ICH guidelines. Several green metric tools have been developed to evaluate the greenness of the analytical methods like National Environmental Methods Index (NEMI), Modified NEMI, Analytical Eco-scale, Green Analytical Procedure Index (GAPI) and Analytical GREEnness calculator (AGREE), and all ensured the low impact of the suggested approaches on health and environment. The proposed methods are highly selective, robust and precise. Additionally they are time and money effective and can be used in any analytical laboratory.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01296-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s13065-024-01269-1
Mandana Armin, Abbas Ali Jafari, Beheshteh Arjmandzadeh
Humin-sulfuric acid (Humin-SO3H) as a novel efficient biobased sulfonic acid was easily prepared by adding chlorosulfuric acid (ClSO3H) to Humin and characterized by potentiometric titration and FT-IR spectrum. Humin-SO3H is an eco-friendly, heterogeneous biobased, and efficient catalyst for Paal-Knorr and Clauson-Kaas pyrrole synthesis. The catalyst is easily recovered by simple filtration and has excellent turnover efficiency even after 4 cycles. Besides, due to the clearance of the biocatalyst away from the reaction media, the desired highly pure products can be achieved in high to excellent yields. Due to high water dispersibility, Humin-SO3H can be utilized as a highly efficient green catalyst for pyrrole synthesis.
{"title":"Humin-sulfuric acid as a novel recoverable biocatalyst for pyrrole synthesis in water","authors":"Mandana Armin, Abbas Ali Jafari, Beheshteh Arjmandzadeh","doi":"10.1186/s13065-024-01269-1","DOIUrl":"10.1186/s13065-024-01269-1","url":null,"abstract":"<div><p>Humin-sulfuric acid (Humin-SO<sub>3</sub>H) as a novel efficient biobased sulfonic acid was easily prepared by adding chlorosulfuric acid (ClSO<sub>3</sub>H) to Humin and characterized by potentiometric titration and FT-IR spectrum. Humin-SO<sub>3</sub>H is an eco-friendly, heterogeneous biobased, and efficient catalyst for Paal-Knorr and Clauson-Kaas pyrrole synthesis. The catalyst is easily recovered by simple filtration and has excellent turnover efficiency even after 4 cycles. Besides, due to the clearance of the biocatalyst away from the reaction media, the desired highly pure products can be achieved in high to excellent yields. Due to high water dispersibility, Humin-SO<sub>3</sub>H can be utilized as a highly efficient green catalyst for pyrrole synthesis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01269-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s13065-024-01288-y
Mohamed I. Aly, S. E. Rizk
Solvent extraction of selenium(IV) ions from highly concentrated hydrochloric acid using 0.4 mol/L Aliquat 336 dissolved in kerosene was investigated. As a modifying agent, 1-octanol (10% v/v) was added to the organic phase to avoid the third phase formation. The effect of different parameters affecting the liquid-liquid extraction of selenium(IV) such as the acid concentration, shaking time, metal ion concentration in the aqueous phase, loading capacity, diluents, and temperature, was studied. The results indicate that selenium(IV) is extracted efficiently by 0.4 mol/L Aliquat 336 dissolved in kerosene. It was noticed that the extraction increased with the increase in the acid and Aliquat 336 concentrations, reaching an extraction percentage of about 92% at 8 mol/L HCl and 97.1% at 1 mol/L extractant. The extracted organic species is postulated to be [H2SeO2Cl2.2R4NCl]org by using the slope analysis method, and the value of Kex for selenium(IV) extraction was found to be 26.17 ± 2 M− 2. The structure of the extracted organic species was confirmed by FT-IR. The effect of diluents using various aliphatic and aromatic diluents indicated that kerosene is the most preferred diluent. This is owing to safety ground purpose, economic consideration, the lower cost, availability, and lower toxicity. Thermodynamic parameters indicate the endothermic nature for the solvent extraction of selenium(IV) for the investigated system according to the positive value obtained of the enthalpy change (ΔH). Depending on the obtained results, the method was used to recover selenium(IV) from a simulated solution synthesized in hydrochloric acid medium, which is expected in anode slime leach liquor solution.
{"title":"Liquid-liquid extraction of selenium (IV) ions from hydrochloric acid solution using Aliquat 336 dissolved in kerosene","authors":"Mohamed I. Aly, S. E. Rizk","doi":"10.1186/s13065-024-01288-y","DOIUrl":"10.1186/s13065-024-01288-y","url":null,"abstract":"<div><p>Solvent extraction of selenium(IV) ions from highly concentrated hydrochloric acid using 0.4 mol/L Aliquat 336 dissolved in kerosene was investigated. As a modifying agent, 1-octanol (10% v/v) was added to the organic phase to avoid the third phase formation. The effect of different parameters affecting the liquid-liquid extraction of selenium(IV) such as the acid concentration, shaking time, metal ion concentration in the aqueous phase, loading capacity, diluents, and temperature, was studied. The results indicate that selenium(IV) is extracted efficiently by 0.4 mol/L Aliquat 336 dissolved in kerosene. It was noticed that the extraction increased with the increase in the acid and Aliquat 336 concentrations, reaching an extraction percentage of about 92% at 8 mol/L HCl and 97.1% at 1 mol/L extractant. The extracted organic species is postulated to be [H<sub>2</sub>SeO<sub>2</sub>Cl<sub>2</sub>.2R<sub>4</sub>NCl]<sub>org</sub> by using the slope analysis method, and the value of K<sub>ex</sub> for selenium(IV) extraction was found to be 26.17 ± 2 M<sup>− 2</sup>. The structure of the extracted organic species was confirmed by FT-IR. The effect of diluents using various aliphatic and aromatic diluents indicated that kerosene is the most preferred diluent. This is owing to safety ground purpose, economic consideration, the lower cost, availability, and lower toxicity. Thermodynamic parameters indicate the endothermic nature for the solvent extraction of selenium(IV) for the investigated system according to the positive value obtained of the enthalpy change (ΔH). Depending on the obtained results, the method was used to recover selenium(IV) from a simulated solution synthesized in hydrochloric acid medium, which is expected in anode slime leach liquor solution.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01288-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s13065-024-01305-0
Mohammad Azimi, Zahra Najafi, Asrin Bahmani, Gholamabbas Chehardoli, Aida Iraji
Excessive activity of the tyrosinase enzyme during melanogenesis results in hyperpigmentation in the skin. To address this issue, there is a need to develop effective tyrosinase inhibitors as a treatment for hyperpigmentation. In this study, we synthesized some novel 4H-chromene-3-carbonitrile compounds (6a-o) and assessed their inhibitory activities against tyrosinase, comparing them with kojic acid, which is known as a positive control. Compound 6f emerged as the most effective inhibitor, with an IC50 of 35.38 ± 2.12 µM. Kinetic studies of 6f exhibited competitive inhibition, with Ki = 16.15 µM. Molecular docking studies highlighted the importance of π-π stacking and hydrogen bonding interactions within the binding site. Molecular dynamics simulations showed that the R-enantiomer 6f exhibited superior binding stability compared to the S-enantiomer, with a lower standard deviation of RMSD and more persistent interactions with the key active site residues. These findings underscore the potential of the R-enantiomer of compound 6f as a potent tyrosinase inhibitor and provide insights for developing effective treatments for hyperpigmentation and related skin conditions.
{"title":"Synthesis and biological assessment of novel 4H-chromene-3-carbonitrile derivatives as tyrosinase inhibitors","authors":"Mohammad Azimi, Zahra Najafi, Asrin Bahmani, Gholamabbas Chehardoli, Aida Iraji","doi":"10.1186/s13065-024-01305-0","DOIUrl":"10.1186/s13065-024-01305-0","url":null,"abstract":"<div><p>Excessive activity of the tyrosinase enzyme during melanogenesis results in hyperpigmentation in the skin. To address this issue, there is a need to develop effective tyrosinase inhibitors as a treatment for hyperpigmentation. In this study, we synthesized some novel 4<i>H</i>-chromene-3-carbonitrile compounds (<b>6a-o</b>) and assessed their inhibitory activities against tyrosinase, comparing them with kojic acid, which is known as a positive control. Compound <b>6f</b> emerged as the most effective inhibitor, with an IC<sub>50</sub> of 35.38 ± 2.12 µM. Kinetic studies of <b>6f</b> exhibited competitive inhibition, with <i>K</i><sub><i>i</i></sub> = 16.15 µM. Molecular docking studies highlighted the importance of π-π stacking and hydrogen bonding interactions within the binding site. Molecular dynamics simulations showed that the <i>R</i>-enantiomer <b>6f</b> exhibited superior binding stability compared to the <i>S</i>-enantiomer, with a lower standard deviation of RMSD and more persistent interactions with the key active site residues. These findings underscore the potential of the <i>R</i>-enantiomer of compound <b>6f</b> as a potent tyrosinase inhibitor and provide insights for developing effective treatments for hyperpigmentation and related skin conditions.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01305-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s13065-024-01297-x
Esmaeil Mohammadian, Mina Dashti, Fleming Martinez, Abolghasem Jouyban
Budesonide (BDS) a steroid-based anti-inflammatory drug widely prescribed for various diseases, has a low aqueous solubility. In this study, we investigated cosolvency approach to study the thermodynamic specifications related to the solubility of BDS at the temperature range of 293.2–313.2 K in (1-propanol + water) mixtures applying the shaking flask method. The predictive power of different mathematical models for experimental data in the cosolvency systems was evaluated. For this purpose, the linear and nonlinear mathematical equations such as van’t Hoff model (as a linear model), Buchowski-Ksiazczak equation (as a non-linear), CNIBS/R–K and MRS models (as a linear model for solvent composition at an isothermal condition), modified Wilson model (as a non-linear model for isothermal condition), the Jouyban-Acree model (as a model that considers temperature and solvent composition), and Jouyban-Acree-van’t Hoff model (as a model with no further input data) were studied. Also, the Williams-Amidon excess Gibbs energy model was investigated. In addition, the related apparent thermodynamics of the BDS dissolution process in the desired temperature such as Gibbs free energy, enthalpy, and entropy, were computed by the corresponding equations. Moreover, based on the inverse Kirkwood-Buff integrals, it is demonstrated that BDS is preferentially solvated by water in water-rich mixtures. The accuracy of the fitness was evaluated with mean relative deviations (MRDs%) for back-calculated molar BDS solubility data. The result showed that the maximum solubility of BDS was obtained at 0.7 mass fraction of 1-propanol at all temperatures. Thermodynamic studies demonstrated that BDS dissolution procedures were obtained as endothermic and entropy-driven in almost all cases. The overall MRDs% values for the back-computed BDS solubility in the aqueous mixture of 1-propanol based on van’t Hoff model, Buchowski-Ksiazczak equation, CNIBS/R–K model, modified Wilson model, Jouyban-Acree model, Jouyban-Acree-van’t Hoff model, MRS model, and Williams-Amidon excess Gibbs energy model were found 1.93%, 1.80%, 11.68%, 33.32%, 12.30%, 9.24%, 10.70%, and 6.57%, respectively.
{"title":"Experimental measurement, thermodynamic analysis, and mathematical modeling for budesonide solubility in 1-propanol + water mixtures at T = (293.2 to 313.2) K","authors":"Esmaeil Mohammadian, Mina Dashti, Fleming Martinez, Abolghasem Jouyban","doi":"10.1186/s13065-024-01297-x","DOIUrl":"10.1186/s13065-024-01297-x","url":null,"abstract":"<div><p>Budesonide (BDS) a steroid-based anti-inflammatory drug widely prescribed for various diseases, has a low aqueous solubility. In this study, we investigated cosolvency approach to study the thermodynamic specifications related to the solubility of BDS at the temperature range of 293.2–313.2 K in (1-propanol + water) mixtures applying the shaking flask method. The predictive power of different mathematical models for experimental data in the cosolvency systems was evaluated. For this purpose, the linear and nonlinear mathematical equations such as van’t Hoff model (as a linear model), Buchowski-Ksiazczak equation (as a non-linear), CNIBS/R–K and MRS models (as a linear model for solvent composition at an isothermal condition), modified Wilson model (as a non-linear model for isothermal condition), the Jouyban-Acree model (as a model that considers temperature and solvent composition), and Jouyban-Acree-van’t Hoff model (as a model with no further input data) were studied. Also, the Williams-Amidon excess Gibbs energy model was investigated. In addition, the related apparent thermodynamics of the BDS dissolution process in the desired temperature such as Gibbs free energy, enthalpy, and entropy, were computed by the corresponding equations. Moreover, based on the inverse Kirkwood-Buff integrals, it is demonstrated that BDS is preferentially solvated by water in water-rich mixtures. The accuracy of the fitness was evaluated with mean relative deviations (<i>MRDs%</i>) for back-calculated molar BDS solubility data. The result showed that the maximum solubility of BDS was obtained at 0.7 mass fraction of 1-propanol at all temperatures. Thermodynamic studies demonstrated that BDS dissolution procedures were obtained as endothermic and entropy-driven in almost all cases. The overall <i>MRDs%</i> values for the back-computed BDS solubility in the aqueous mixture of 1-propanol based on van’t Hoff model, Buchowski-Ksiazczak equation, CNIBS/R–K model, modified Wilson model, Jouyban-Acree model, Jouyban-Acree-van’t Hoff model, MRS model, and Williams-Amidon excess Gibbs energy model were found 1.93%, 1.80%, 11.68%, 33.32%, 12.30%, 9.24%, 10.70%, and 6.57%, respectively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01297-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s13065-024-01301-4
Amir Reza Sarikhani, Mehdi Abedi, Samira Sadat Abolmaali, Sedigheh Borandeh, Ali Mohammad Tamaddon
Delivering anticancer drugs to the appropriate site within the body poses a critical challenge in cancer treatment with chemotherapeutic agents like doxorubicin (DOX). Magnetic graphene oxide (GO) nanosheets with generation 1 (G1) amidoamine-dendronized crosslinks were developed by coupling cystamine-functionalized GO nanosheets with Fe3O4 nanoparticles modified with primary amine and methyl acrylate. These magnetic GO nanosheets were loaded with DOX to create a dual pH- and redox-responsive delivery system for cancer chemotherapy. The prepared magnetic nanosheets underwent characterization using FTIR, XRD, DLS, VSM, FE-SEM, and TEM. Physical DOX adsorption was evaluated using various isotherms, including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The in-vitro release profiles of DOX from the magnetic nanosheets were studied under different pH conditions, with and without glutathione (GSH), and the drug release data were fitted with various kinetic models. Additionally, an MTT assay was employed to assess the compatibility and antitumor activity of DOX-loaded magnetic nanosheets in the HepG2 cell line. The results showed that the maximum drug loading was 13.1% (w/w) at a drug/carrier ratio of 1. Without GSH addition, the maximum drug release after 10 days was only 17.9% and 24.1% at pH 7.4 and 5.3, respectively. However, in the presence of GSH, the maximum drug release reached 51.7% and 64.8% at pH 7.4 and 5.3, respectively. Finally, the research findings suggest that the magnetic nanosheets exhibited pH- and redox-stimuli drug release, high biocompatibility, and superior antitumor activity compared to free DOX.
{"title":"Magnetic graphene oxide nanosheets with amidoamine dendronized crosslinks for dual pH and redox-sensitive doxorubicin delivery","authors":"Amir Reza Sarikhani, Mehdi Abedi, Samira Sadat Abolmaali, Sedigheh Borandeh, Ali Mohammad Tamaddon","doi":"10.1186/s13065-024-01301-4","DOIUrl":"10.1186/s13065-024-01301-4","url":null,"abstract":"<div><p>Delivering anticancer drugs to the appropriate site within the body poses a critical challenge in cancer treatment with chemotherapeutic agents like doxorubicin (DOX). Magnetic graphene oxide (GO) nanosheets with generation 1 (G1) amidoamine-dendronized crosslinks were developed by coupling cystamine-functionalized GO nanosheets with Fe3O4 nanoparticles modified with primary amine and methyl acrylate. These magnetic GO nanosheets were loaded with DOX to create a dual pH- and redox-responsive delivery system for cancer chemotherapy. The prepared magnetic nanosheets underwent characterization using FTIR, XRD, DLS, VSM, FE-SEM, and TEM. Physical DOX adsorption was evaluated using various isotherms, including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The in-vitro release profiles of DOX from the magnetic nanosheets were studied under different pH conditions, with and without glutathione (GSH), and the drug release data were fitted with various kinetic models. Additionally, an MTT assay was employed to assess the compatibility and antitumor activity of DOX-loaded magnetic nanosheets in the HepG2 cell line. The results showed that the maximum drug loading was 13.1% (w/w) at a drug/carrier ratio of 1. Without GSH addition, the maximum drug release after 10 days was only 17.9% and 24.1% at pH 7.4 and 5.3, respectively. However, in the presence of GSH, the maximum drug release reached 51.7% and 64.8% at pH 7.4 and 5.3, respectively. Finally, the research findings suggest that the magnetic nanosheets exhibited pH- and redox-stimuli drug release, high biocompatibility, and superior antitumor activity compared to free DOX.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01301-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1186/s13065-024-01285-1
Eman M. Moaaz, Ezzat M. Abdel-Moety, Mamdouh R. Rezk, Ahmed S. Fayed
The rapid uprising technologies of smartphone applications and software introduced a new era for analytical detection techniques. It has transformed bench-top laboratory methods into simpler ones depending on cost-effective, portable, and widely accessible devices. In this work, two high performance thin layer chromatographic (HPTLC) methods were developed based on smartphone’s camera detection and either ImageJ desktop software or Color-Picker smartphone’s application as alternative techniques to conventional densitometric detection. A mixture of Naltrexone hydrochloride (NAL) and Bupropion hydrochloride (BUP) was chromatographed on HPTLC- plates using ethyl acetate, methanol, acetone, and glacial acetic acid (3:6:1:0.5, by volume) as a developing system. The developed plates were scanned at 203 nm for the densitometric analysis, then visualized by modified Dragendorff’s reagent and shot by a smartphone’s camera. The captured images were uploaded to either ImageJ software or Color-Picker application to detect the separated spots. The results derived from the three detection methods were compared over the concentration range of 0.4–24 & 0.6–18 µg/band for the densitometric method, 0.4–24 & 2–24 µg/band for ImageJ built method and 0.8–20 & 5–20 µg/band for Color Picker built method for NAL and BUP, respectively. The methods were found to be appropriate for assaying both active drug substances in pure forms and combined in marketed pharmaceutical formulations. The excellent sustainability of densitometric and ImageJ-based methods enabled also the assessment of their dosage form content uniformity. The greenness and sustainability of the methods were assessed by three metric tools, namely Green Analytical Procedure Index (GAPI), Analytical GREEnness Metric Approach (AGREE), and White Analytical Chemistry (WAC). The assessments results confirmed the sustainability and superiority of the proposed methods in terms of sample treatment, waste mount, energy consumption, cost, and number of analyzed samples per an hour.
{"title":"An eco-friendly smartphone based HPTLC method versus conventional densitometric one for determination of Naltrexone and Bupropion","authors":"Eman M. Moaaz, Ezzat M. Abdel-Moety, Mamdouh R. Rezk, Ahmed S. Fayed","doi":"10.1186/s13065-024-01285-1","DOIUrl":"10.1186/s13065-024-01285-1","url":null,"abstract":"<div><p>The rapid uprising technologies of smartphone applications and software introduced a new era for analytical detection techniques. It has transformed bench-top laboratory methods into simpler ones depending on cost-effective, portable, and widely accessible devices. In this work, two high performance thin layer chromatographic (HPTLC) methods were developed based on smartphone’s camera detection and either ImageJ desktop software or Color-Picker smartphone’s application as alternative techniques to conventional densitometric detection. A mixture of Naltrexone hydrochloride (NAL) and Bupropion hydrochloride (BUP) was chromatographed on HPTLC- plates using ethyl acetate, methanol, acetone, and glacial acetic acid (3:6:1:0.5, by volume) as a developing system. The developed plates were scanned at 203 nm for the densitometric analysis, then visualized by modified Dragendorff’s reagent and shot by a smartphone’s camera. The captured images were uploaded to either ImageJ software or Color-Picker application to detect the separated spots. The results derived from the three detection methods were compared over the concentration range of 0.4–24 & 0.6–18 µg/band for the densitometric method, 0.4–24 & 2–24 µg/band for ImageJ built method and 0.8–20 & 5–20 µg/band for Color Picker built method for NAL and BUP, respectively. The methods were found to be appropriate for assaying both active drug substances in pure forms and combined in marketed pharmaceutical formulations. The excellent sustainability of densitometric and ImageJ-based methods enabled also the assessment of their dosage form content uniformity. The greenness and sustainability of the methods were assessed by three metric tools, namely Green Analytical Procedure Index (GAPI), Analytical GREEnness Metric Approach (AGREE), and White Analytical Chemistry (WAC). The assessments results confirmed the sustainability and superiority of the proposed methods in terms of sample treatment, waste mount, energy consumption, cost, and number of analyzed samples per an hour.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01285-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}