Azadeh Pourmalek, A. Newell, S. Shariatipour, A. Wood
Three different outcrops are selected in this study, each representing a shallow-marine system with varying heterogeneity provided by siliciclastic–carbonate mixing that may form a small or large stratigraphic trap. The impact of these styles of mixed facies on CO2 storage is relatively poorly known. This study demonstrates the significance of these systems for safe CO2 geological storage, as stratigraphic traps are likely to be a significant feature of many future storage sites. The three 3D models are based on: (1) the Grayburg Formation (USA), which displays spatial permeability linked to variations in the mixture of siliciclastic–carbonate sediments; (2) the Lorca Basin outcrop (Spain), which demonstrates the interfingering of clastic and carbonate facies; and (3) the Bridport Sand Formation outcrop (UK), which is an example of a layered reservoir and has thin carbonate-cemented horizons. This study demonstrates that facies interplay and associated sediment heterogeneity have a varying effect on fluid flow, storage capacity and security. In the Grayburg Formation, storage security and capacity are not controlled by heterogeneity alone but are influenced mainly by the permeability of each facies (i.e. permeability contrast), the degree of heterogeneity and the relative permeability characteristic of the system. In the case of the Lorca Basin, heterogeneity through interfingering of the carbonate and clastic facies improved the storage security regardless of their permeability. For the Bridport Sand Formation, the existence of extended sheets of cemented carbonate contributed to storage security but not storage capacity, which depends on the continuity of the sheets. These mixed systems especially minimize the large buoyancy forces that act on the top seal and reduce the reliance of the storage security on the overlying cap rock. They also increase the contact area between the injected CO2 and brine, thereby promoting the CO2 dissolution processes. Overall, reservoir systems with mixed carbonate–siliciclastic facies contribute to improving the safe and effective storage of CO2. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
{"title":"The impact of heterogeneous mixed siliciclastic–carbonate systems on CO2 geological storage","authors":"Azadeh Pourmalek, A. Newell, S. Shariatipour, A. Wood","doi":"10.1144/petgeo2020-086","DOIUrl":"https://doi.org/10.1144/petgeo2020-086","url":null,"abstract":"Three different outcrops are selected in this study, each representing a shallow-marine system with varying heterogeneity provided by siliciclastic–carbonate mixing that may form a small or large stratigraphic trap. The impact of these styles of mixed facies on CO2 storage is relatively poorly known. This study demonstrates the significance of these systems for safe CO2 geological storage, as stratigraphic traps are likely to be a significant feature of many future storage sites. The three 3D models are based on: (1) the Grayburg Formation (USA), which displays spatial permeability linked to variations in the mixture of siliciclastic–carbonate sediments; (2) the Lorca Basin outcrop (Spain), which demonstrates the interfingering of clastic and carbonate facies; and (3) the Bridport Sand Formation outcrop (UK), which is an example of a layered reservoir and has thin carbonate-cemented horizons. This study demonstrates that facies interplay and associated sediment heterogeneity have a varying effect on fluid flow, storage capacity and security. In the Grayburg Formation, storage security and capacity are not controlled by heterogeneity alone but are influenced mainly by the permeability of each facies (i.e. permeability contrast), the degree of heterogeneity and the relative permeability characteristic of the system. In the case of the Lorca Basin, heterogeneity through interfingering of the carbonate and clastic facies improved the storage security regardless of their permeability. For the Bridport Sand Formation, the existence of extended sheets of cemented carbonate contributed to storage security but not storage capacity, which depends on the continuity of the sheets. These mixed systems especially minimize the large buoyancy forces that act on the top seal and reduce the reliance of the storage security on the overlying cap rock. They also increase the contact area between the injected CO2 and brine, thereby promoting the CO2 dissolution processes. Overall, reservoir systems with mixed carbonate–siliciclastic facies contribute to improving the safe and effective storage of CO2. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41678487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Bredesen, M. Lorentzen, L. Nielsen, K. Mosegaard
A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells form the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion, and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveal that the seismic signal is more governed by porosity than water-saturation changes at near-offset (or small angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data have some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.
{"title":"Quantitative seismic interpretation of the Lower Cretaceous reservoirs in the Valdemar Field, Danish North Sea","authors":"K. Bredesen, M. Lorentzen, L. Nielsen, K. Mosegaard","doi":"10.1144/petgeo2021-016","DOIUrl":"https://doi.org/10.1144/petgeo2021-016","url":null,"abstract":"A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells form the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion, and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveal that the seismic signal is more governed by porosity than water-saturation changes at near-offset (or small angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data have some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42064807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rory Leslie, A. Cavanagh, R. Haszeldine, G. Johnson, S. Gilfillan
Secure retention of CO2 in geological reservoirs is essential for effective storage. Solubility trapping, the dissolution of CO2 into formation water, is a major sink on geological timescales in natural CO2 reservoirs. Observations during CO2 injection, combined with models of CO2 reservoirs, indicate the immediate onset of solubility trapping. There is uncertainty regarding the evolution of dissolution rates between the observable engineered timescale of years and decades, and the >10 kyr state represented by natural CO2 reservoirs. A small number of studies have constrained dissolution rates within natural analogues. The studies show that solubility trapping is the principal storage mechanism after structural trapping, removing 10–50% of CO2 across whole reservoirs. Natural analogues, engineered reservoirs and model studies produce a wide range of estimates on the fraction of CO2 dissolved and the dissolution rate. Analogue and engineered reservoirs do not show the high fractions of dissolved CO2 seen in several models. Evidence from natural analogues supports a model of most dissolution occurring during emplacement and migration, before the establishment of a stable gas–water contact. A rapid decline in CO2 dissolution rate over time suggests that analogue reservoirs are in dissolution equilibrium for most of the CO2 residence time. Supplementary material: Dissolution rate for all plots and exponential function curves for scenarios A and B are available at https://doi.org/10.6084/m9.figshare.c.5476199 Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
{"title":"Quantification of solubility trapping in natural and engineered CO2 reservoirs","authors":"Rory Leslie, A. Cavanagh, R. Haszeldine, G. Johnson, S. Gilfillan","doi":"10.1144/petgeo2020-120","DOIUrl":"https://doi.org/10.1144/petgeo2020-120","url":null,"abstract":"Secure retention of CO2 in geological reservoirs is essential for effective storage. Solubility trapping, the dissolution of CO2 into formation water, is a major sink on geological timescales in natural CO2 reservoirs. Observations during CO2 injection, combined with models of CO2 reservoirs, indicate the immediate onset of solubility trapping. There is uncertainty regarding the evolution of dissolution rates between the observable engineered timescale of years and decades, and the >10 kyr state represented by natural CO2 reservoirs. A small number of studies have constrained dissolution rates within natural analogues. The studies show that solubility trapping is the principal storage mechanism after structural trapping, removing 10–50% of CO2 across whole reservoirs. Natural analogues, engineered reservoirs and model studies produce a wide range of estimates on the fraction of CO2 dissolved and the dissolution rate. Analogue and engineered reservoirs do not show the high fractions of dissolved CO2 seen in several models. Evidence from natural analogues supports a model of most dissolution occurring during emplacement and migration, before the establishment of a stable gas–water contact. A rapid decline in CO2 dissolution rate over time suggests that analogue reservoirs are in dissolution equilibrium for most of the CO2 residence time. Supplementary material: Dissolution rate for all plots and exponential function curves for scenarios A and B are available at https://doi.org/10.6084/m9.figshare.c.5476199 Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45517226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura-Jane C. Fyfe, N. Schofield, S. Holford, A. Hartley, A. Heafford, D. Muirhead, J. Howell
The Sea of Hebrides Basin and Minch Basin are late Paleozoic–Mesozoic rift basins located to the NW of the Scottish mainland. The basins were the target of small-scale petroleum exploration from the late 1960s to the early 1990s, with a total of three wells drilled within the two basins between 1989 and 1991. Although no commercially viable petroleum discoveries were made, numerous petroleum shows were identified within both basins, including a gas show within the Upper Glen 1 well in Lower Jurassic limestones. Organic-rich shales have been identified throughout the Jurassic succession within the Sea of Hebrides Basin, with one Middle Jurassic (Bajocian–Bathonian) shale exhibiting a total organic carbon content of up to 15 wt%. The focus of this study is to review the historical petroleum exploration within these basins, and to evaluate whether the conclusions drawn in the early 1990s of a lack of prospectivity remains the case. This was undertaken by analysis of seismic reflection data, gravity and aeromagnetic data, and sedimentological data from both onshore and offshore wells, boreholes and previously published studies. The key findings from our study suggest that there is a low probability of commercially sized petroleum accumulations within either the Sea of Hebrides Basin or the Minch Basin. Ineffective source rocks, likely to be due to low maturities (due to lack of burial) and the fact that the encountered Jurassic and Permian–Triassic reservoirs are of poor quality (low porosity and permeability), has led to our interpretation of future exploration being high risk, with any potential accumulations being small in size. While petroleum accumulations are unlikely within the basin, applying the knowledge obtained from this study could provide additional datasets and insight into petroleum exploration within other NE Atlantic margin basins, such as the Rockall Trough and the Faroe–Shetland Basin.
{"title":"Geology and petroleum prospectivity of the Sea of Hebrides Basin and Minch Basin, offshore NW Scotland","authors":"Laura-Jane C. Fyfe, N. Schofield, S. Holford, A. Hartley, A. Heafford, D. Muirhead, J. Howell","doi":"10.1144/petgeo2021-003","DOIUrl":"https://doi.org/10.1144/petgeo2021-003","url":null,"abstract":"The Sea of Hebrides Basin and Minch Basin are late Paleozoic–Mesozoic rift basins located to the NW of the Scottish mainland. The basins were the target of small-scale petroleum exploration from the late 1960s to the early 1990s, with a total of three wells drilled within the two basins between 1989 and 1991. Although no commercially viable petroleum discoveries were made, numerous petroleum shows were identified within both basins, including a gas show within the Upper Glen 1 well in Lower Jurassic limestones. Organic-rich shales have been identified throughout the Jurassic succession within the Sea of Hebrides Basin, with one Middle Jurassic (Bajocian–Bathonian) shale exhibiting a total organic carbon content of up to 15 wt%. The focus of this study is to review the historical petroleum exploration within these basins, and to evaluate whether the conclusions drawn in the early 1990s of a lack of prospectivity remains the case. This was undertaken by analysis of seismic reflection data, gravity and aeromagnetic data, and sedimentological data from both onshore and offshore wells, boreholes and previously published studies. The key findings from our study suggest that there is a low probability of commercially sized petroleum accumulations within either the Sea of Hebrides Basin or the Minch Basin. Ineffective source rocks, likely to be due to low maturities (due to lack of burial) and the fact that the encountered Jurassic and Permian–Triassic reservoirs are of poor quality (low porosity and permeability), has led to our interpretation of future exploration being high risk, with any potential accumulations being small in size. While petroleum accumulations are unlikely within the basin, applying the knowledge obtained from this study could provide additional datasets and insight into petroleum exploration within other NE Atlantic margin basins, such as the Rockall Trough and the Faroe–Shetland Basin.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46655679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Pantopoulos, Gustavo Kenji Lacerda Orita, G. Armelenti, Camila Eliza Althaus, J. Kuchle, C. Scherer, A. G. Rodrigues, L. F. De Ros
Aptian siliciclastic onshore deposits of the Mucuri Member are important reservoirs in the Espírito Santo Basin (eastern Brazil). A detailed quantitative petrographical and textural analysis of well core samples was performed in order to unravel their depositional processes and conditions, in relation to previously proposed depositional models. The results allowed differentiation between two groups of sandstone samples, characterized by different textural characteristics associated to different depositional processes and environments within the Mucuri depositional system. Fluvial sandstones are represented by medium- to coarse-grained, poorly sorted arkoses, rich in plutonic rock fragments and feldspar grains, mainly transported by traction. Coastal-lacustrine sandstones correspond to very fine- to fine-grained, moderately sorted micaceous arkoses, mainly transported in suspension. The application of a discriminant function based on grain-size parameters validated previously proposed depositional settings for the studied sample groups. The combination of grain-size and shape data revealed differences in hydraulic equivalence and shape between grains from different depositional settings. In terms of hydraulic equivalence, micas in the fluvial sediments present lower settling velocity values, in contrast to the relatively large mica grains in the coastal sediments, which are hydraulically equivalent with the associated quartz and feldspar grains. The results of this study provide key information regarding depositional conditions (transportation mechanisms, grain-settling velocity and mineral hydraulic fractionation) at the margins of the Aptian pre-salt system, which can constrain the hydrological conditions and the sediment type available for distal lacustrine areas.
{"title":"Depositional conditions at the Aptian pre-salt margins: evidence from quantitative petrography and textural analysis of the Mucuri Member, Espírito Santo Basin, Brazil","authors":"G. Pantopoulos, Gustavo Kenji Lacerda Orita, G. Armelenti, Camila Eliza Althaus, J. Kuchle, C. Scherer, A. G. Rodrigues, L. F. De Ros","doi":"10.1144/petgeo2020-112","DOIUrl":"https://doi.org/10.1144/petgeo2020-112","url":null,"abstract":"Aptian siliciclastic onshore deposits of the Mucuri Member are important reservoirs in the Espírito Santo Basin (eastern Brazil). A detailed quantitative petrographical and textural analysis of well core samples was performed in order to unravel their depositional processes and conditions, in relation to previously proposed depositional models. The results allowed differentiation between two groups of sandstone samples, characterized by different textural characteristics associated to different depositional processes and environments within the Mucuri depositional system. Fluvial sandstones are represented by medium- to coarse-grained, poorly sorted arkoses, rich in plutonic rock fragments and feldspar grains, mainly transported by traction. Coastal-lacustrine sandstones correspond to very fine- to fine-grained, moderately sorted micaceous arkoses, mainly transported in suspension. The application of a discriminant function based on grain-size parameters validated previously proposed depositional settings for the studied sample groups. The combination of grain-size and shape data revealed differences in hydraulic equivalence and shape between grains from different depositional settings. In terms of hydraulic equivalence, micas in the fluvial sediments present lower settling velocity values, in contrast to the relatively large mica grains in the coastal sediments, which are hydraulically equivalent with the associated quartz and feldspar grains. The results of this study provide key information regarding depositional conditions (transportation mechanisms, grain-settling velocity and mineral hydraulic fractionation) at the margins of the Aptian pre-salt system, which can constrain the hydrological conditions and the sediment type available for distal lacustrine areas.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41390801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-29DOI: 10.21203/rs.3.rs-392045/v1
Yuan-Jian Lin, Jiang-feng Liu, Tao Chen, Shimin Ma, Pei-Lin Wang, H. Bai
In this paper, a THMC multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, the axial stress has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.
{"title":"Gas Permeability Change with Deformation and Cracking of a Sandstone under Triaxial Compression","authors":"Yuan-Jian Lin, Jiang-feng Liu, Tao Chen, Shimin Ma, Pei-Lin Wang, H. Bai","doi":"10.21203/rs.3.rs-392045/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-392045/v1","url":null,"abstract":"\u0000 In this paper, a THMC multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, the axial stress has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46824691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Pearce, A. L. La Croix, F. Brink, P. Hayes, J. Underschultz
Injected CO2 streams may have geochemical reactivity to different rock types in a CO2 storage complex depending on solubility and formation water chemistry. The Precipice Sandstone and Evergreen Formation are a low-salinity reservoir–seal pair in the Surat Basin, Australia, targeted for potential CO2 storage. The kinetic geochemical CO2 reactivity of different rock facies from three regions were predicted over 30 and 1000 year time periods. No material CO2 mineral trapping in the quartz-rich Precipice Sandstone reservoir was predicted, owing to the low rock reactivity. Predicted CO2 mineral trapping in the Evergreen Formation was more variable due to different amounts of more reactive feldspars, clays, calcite and siderite. Predicted mineral trapping as siderite and ankerite was between 0.03 and 8.4 kg m−3 CO2, and mainly depends on chlorite and plagioclase content. Predicted pH was between 5 and 7.5 after 1000 years. Pyrite precipitation was also predicted with SO2 present in the injectate. QEMSCAN and SEM-EDS (scanning electron microscopy and energy-dispersive spectroscopy) spot imaging of samples from the seal containing natural fractures filled by siderite, pyrite, clays, ankerite, calcite, barite and apatite represent a natural analogue for natural mineral trapping. These are in good agreement with our model predictions. This study suggests that, from a geochemical perspective, the Precipice Sandstone is a suitable storage reservoir, whereas mineral trapping would occur in the overlying Evergreen Formation. Supplementary material: Additional model inputs, characterization and model images, and an excel file of QEMSCAN mineral and porosity components, are available at https://doi.org/10.6084/m9.figshare.c.5395393 Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
{"title":"CO2 mineral trapping comparison in different regions: predicted geochemical reactivity of the Precipice Sandstone reservoir and overlying Evergreen Formation","authors":"J. Pearce, A. L. La Croix, F. Brink, P. Hayes, J. Underschultz","doi":"10.1144/petgeo2020-106","DOIUrl":"https://doi.org/10.1144/petgeo2020-106","url":null,"abstract":"Injected CO2 streams may have geochemical reactivity to different rock types in a CO2 storage complex depending on solubility and formation water chemistry. The Precipice Sandstone and Evergreen Formation are a low-salinity reservoir–seal pair in the Surat Basin, Australia, targeted for potential CO2 storage. The kinetic geochemical CO2 reactivity of different rock facies from three regions were predicted over 30 and 1000 year time periods. No material CO2 mineral trapping in the quartz-rich Precipice Sandstone reservoir was predicted, owing to the low rock reactivity. Predicted CO2 mineral trapping in the Evergreen Formation was more variable due to different amounts of more reactive feldspars, clays, calcite and siderite. Predicted mineral trapping as siderite and ankerite was between 0.03 and 8.4 kg m−3 CO2, and mainly depends on chlorite and plagioclase content. Predicted pH was between 5 and 7.5 after 1000 years. Pyrite precipitation was also predicted with SO2 present in the injectate. QEMSCAN and SEM-EDS (scanning electron microscopy and energy-dispersive spectroscopy) spot imaging of samples from the seal containing natural fractures filled by siderite, pyrite, clays, ankerite, calcite, barite and apatite represent a natural analogue for natural mineral trapping. These are in good agreement with our model predictions. This study suggests that, from a geochemical perspective, the Precipice Sandstone is a suitable storage reservoir, whereas mineral trapping would occur in the overlying Evergreen Formation. Supplementary material: Additional model inputs, characterization and model images, and an excel file of QEMSCAN mineral and porosity components, are available at https://doi.org/10.6084/m9.figshare.c.5395393 Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47550843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Qu, P. Frykman, L. Stemmerik, K. Mosegaard, L. Nielsen
Outcrops are valuable for analogous subsurface reservoirs in supplying knowledge of fine-scale spatial heterogeneity pattern and stratification types, which are difficult to obtain from subsurface reservoir cores, well logs or seismic data. For petrophysical properties in a domain where the variations are relatively continuous and not dominated by abrupt contrasts, the spatial heterogeneity pattern can be characterized by a semivariogram model. The outcrop information therefore has the potential to constrain the semivariogram for subsurface reservoir modelling, even though it represents different locations and depths, and the petrophysical properties may differ in magnitude or variance. However, the use of outcrop-derived spatial correlation information for petrophysical property modelling in practice has been challenged by the scale difference between the small support volume of the property measurements from outcrops and the typically much larger grid cells used in reservoir models. With an example of modelling the porosity of an outcrop chalk unit in eastern Denmark, this paper illustrates how the fine-scale spatial correlation information obtained from the sampling of outcrops can be transferred to coarser-scale models of analogue rocks. The workflow can be applied to subsurface reservoirs and ultimately improves the representation of geological patterns in reservoir models.
{"title":"Upscaling of outcrop information for improved reservoir modelling – exemplified by a case study on chalk","authors":"D. Qu, P. Frykman, L. Stemmerik, K. Mosegaard, L. Nielsen","doi":"10.1144/petgeo2020-126","DOIUrl":"https://doi.org/10.1144/petgeo2020-126","url":null,"abstract":"Outcrops are valuable for analogous subsurface reservoirs in supplying knowledge of fine-scale spatial heterogeneity pattern and stratification types, which are difficult to obtain from subsurface reservoir cores, well logs or seismic data. For petrophysical properties in a domain where the variations are relatively continuous and not dominated by abrupt contrasts, the spatial heterogeneity pattern can be characterized by a semivariogram model. The outcrop information therefore has the potential to constrain the semivariogram for subsurface reservoir modelling, even though it represents different locations and depths, and the petrophysical properties may differ in magnitude or variance. However, the use of outcrop-derived spatial correlation information for petrophysical property modelling in practice has been challenged by the scale difference between the small support volume of the property measurements from outcrops and the typically much larger grid cells used in reservoir models. With an example of modelling the porosity of an outcrop chalk unit in eastern Denmark, this paper illustrates how the fine-scale spatial correlation information obtained from the sampling of outcrops can be transferred to coarser-scale models of analogue rocks. The workflow can be applied to subsurface reservoirs and ultimately improves the representation of geological patterns in reservoir models.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44708231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Maul, M. Cetale, C. Guizan, P. Corbett, J. Underhill, L. Teixeira, R. Pontes, María González
The thick and heterogeneous salt section in the Santos Basin, offshore Brazil, imposes great challenges in accessing the pre-salt hydrocarbon reservoirs, especially in relation to seismic imaging, signal quality and depth positioning. Some problems arise from the current velocity models for the salt section, which, for the majority, assume that the salt is a homogeneous halite layer. In the Santos Basin, the commonly assumed salt – halite – only makes up to 80% of the mineral in this section. The inclusion of other salts as stratification in the velocity models, based on seismic attributes, has achieved good results in the last decade, especially for depth resolution. In this work, we analyse the benefits of different velocity models, considering presence/absence of salt stratification and comparing the gross rock volume above the oil–water contact. The results show a significant effect on the depth resolution of the events, as well as on volume estimation, indicating that the greater the reliability captured by the complex velocity models, the greater the confidence in the resulting volumetric information.
{"title":"The impact of heterogeneous salt velocity models on the gross rock volume estimation: an example from the Santos Basin pre-salt, Brazil","authors":"A. Maul, M. Cetale, C. Guizan, P. Corbett, J. Underhill, L. Teixeira, R. Pontes, María González","doi":"10.1144/petgeo2020-105","DOIUrl":"https://doi.org/10.1144/petgeo2020-105","url":null,"abstract":"The thick and heterogeneous salt section in the Santos Basin, offshore Brazil, imposes great challenges in accessing the pre-salt hydrocarbon reservoirs, especially in relation to seismic imaging, signal quality and depth positioning. Some problems arise from the current velocity models for the salt section, which, for the majority, assume that the salt is a homogeneous halite layer. In the Santos Basin, the commonly assumed salt – halite – only makes up to 80% of the mineral in this section. The inclusion of other salts as stratification in the velocity models, based on seismic attributes, has achieved good results in the last decade, especially for depth resolution. In this work, we analyse the benefits of different velocity models, considering presence/absence of salt stratification and comparing the gross rock volume above the oil–water contact. The results show a significant effect on the depth resolution of the events, as well as on volume estimation, indicating that the greater the reliability captured by the complex velocity models, the greater the confidence in the resulting volumetric information.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42315932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We use 3D seismic reflection data from the Levant margin, offshore Lebanon to investigate the structural evolution of the Messinian evaporite sequence, and how intra-salt structure and strain varies within a thick salt sheet during early-stage salt tectonics. Intra-Messinian reflectivity reveals lithological heterogeneity within the otherwise halite-dominated sequence. This leads to rheological heterogeneity, with the different mechanical properties of the various units controlling strain accommodation within the deforming salt sheet. We assess the distribution and orientation of structures, and show how intra-salt strain varies both laterally and vertically along the margin. We argue that units appearing weakly strained in seismic data may in fact accommodate considerable subseismic or cryptic strain. We also discuss how the intra-salt stress state varies through time and space in response to the gravitational forces driving deformation. We conclude that efficient drilling through thick, heterogeneous salt requires a holistic understanding of the mechanical and kinematic development of the salt and its overburden. This will also enable us to build better velocity models that account for intra-salt lithological and structural complexity in order to accurately image sub-salt geological structures.
{"title":"Intra-salt structure and strain partitioning in layered evaporites: implications for drilling through Messinian salt in the eastern Mediterranean","authors":"S. Evans, C. Jackson","doi":"10.1144/petgeo2020-072","DOIUrl":"https://doi.org/10.1144/petgeo2020-072","url":null,"abstract":"We use 3D seismic reflection data from the Levant margin, offshore Lebanon to investigate the structural evolution of the Messinian evaporite sequence, and how intra-salt structure and strain varies within a thick salt sheet during early-stage salt tectonics. Intra-Messinian reflectivity reveals lithological heterogeneity within the otherwise halite-dominated sequence. This leads to rheological heterogeneity, with the different mechanical properties of the various units controlling strain accommodation within the deforming salt sheet. We assess the distribution and orientation of structures, and show how intra-salt strain varies both laterally and vertically along the margin. We argue that units appearing weakly strained in seismic data may in fact accommodate considerable subseismic or cryptic strain. We also discuss how the intra-salt stress state varies through time and space in response to the gravitational forces driving deformation. We conclude that efficient drilling through thick, heterogeneous salt requires a holistic understanding of the mechanical and kinematic development of the salt and its overburden. This will also enable us to build better velocity models that account for intra-salt lithological and structural complexity in order to accurately image sub-salt geological structures.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43678930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}