Pub Date : 2024-11-10DOI: 10.1016/j.neunet.2024.106892
You Lu , Wenzhuo Song , Chidubem Arachie , Bert Huang
Supervised learning usually requires a large amount of labeled data. However, attaining ground-truth labels is costly for many tasks. Alternatively, weakly supervised methods learn with cheap weak signals that only approximately label some data. Many existing weakly supervised learning methods learn a deterministic function that estimates labels given the input data and weak signals. In this paper, we develop label learning flows (LLF), a general framework for weakly supervised learning problems. Our method is a generative model based on normalizing flows. The main idea of LLF is to optimize the conditional likelihoods of all possible labelings of the data within a constrained space defined by weak signals. We develop a training method for LLF that trains the conditional flow inversely and avoids estimating the labels. Once a model is trained, we can make predictions with a sampling algorithm. We apply LLF to three weakly supervised learning problems. Experiment results show that our method outperforms many baselines we compare against.
{"title":"Weakly supervised label learning flows","authors":"You Lu , Wenzhuo Song , Chidubem Arachie , Bert Huang","doi":"10.1016/j.neunet.2024.106892","DOIUrl":"10.1016/j.neunet.2024.106892","url":null,"abstract":"<div><div>Supervised learning usually requires a large amount of labeled data. However, attaining ground-truth labels is costly for many tasks. Alternatively, weakly supervised methods learn with cheap weak signals that only approximately label some data. Many existing weakly supervised learning methods learn a deterministic function that estimates labels given the input data and weak signals. In this paper, we develop label learning flows (LLF), a general framework for weakly supervised learning problems. Our method is a generative model based on normalizing flows. The main idea of LLF is to optimize the conditional likelihoods of all possible labelings of the data within a constrained space defined by weak signals. We develop a training method for LLF that trains the conditional flow inversely and avoids estimating the labels. Once a model is trained, we can make predictions with a sampling algorithm. We apply LLF to three weakly supervised learning problems. Experiment results show that our method outperforms many baselines we compare against.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"182 ","pages":"Article 106892"},"PeriodicalIF":6.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduces multiple state or spatial-diffusion coupled fractional-order reaction-diffusion neural networks, and discusses the outer synchronization and outer H∞ synchronization problems for these coupled fractional-order reaction-diffusion neural networks (CFRNNs). The Lyapunov functional method, Laplace transform and inequality techniques are utilized to obtain some outer synchronization conditions for CFRNNs. Moreover, some criteria are also provided to make sure the outer H∞ synchronization of CFRNNs. Finally, the derived outer and outer H∞ synchronization conditions are validated on the basis of two numerical examples.
{"title":"Outer synchronization and outer H<sub>∞</sub> synchronization for coupled fractional-order reaction-diffusion neural networks with multiweights.","authors":"Jin-Liang Wang, Si-Yang Wang, Yan-Ran Zhu, Tingwen Huang","doi":"10.1016/j.neunet.2024.106893","DOIUrl":"https://doi.org/10.1016/j.neunet.2024.106893","url":null,"abstract":"<p><p>This paper introduces multiple state or spatial-diffusion coupled fractional-order reaction-diffusion neural networks, and discusses the outer synchronization and outer H<sub>∞</sub> synchronization problems for these coupled fractional-order reaction-diffusion neural networks (CFRNNs). The Lyapunov functional method, Laplace transform and inequality techniques are utilized to obtain some outer synchronization conditions for CFRNNs. Moreover, some criteria are also provided to make sure the outer H<sub>∞</sub> synchronization of CFRNNs. Finally, the derived outer and outer H<sub>∞</sub> synchronization conditions are validated on the basis of two numerical examples.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"106893"},"PeriodicalIF":6.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.neunet.2024.106883
Hiroki Yasumoto, Toshiyuki Tanaka
This paper studies complexity measures of reservoir systems. For this purpose, a more general model that we call a feature-based learning system, which is the composition of a feature map and of a final estimator, is studied. We study complexity measures such as growth function, VC-dimension, pseudo-dimension and Rademacher complexity. On the basis of the results, we discuss how the unadjustability of reservoirs and the linearity of readouts can affect complexity measures of the reservoir systems. Furthermore, some of the results generalize or improve the existing results.
{"title":"Complexities of feature-based learning systems, with application to reservoir computing","authors":"Hiroki Yasumoto, Toshiyuki Tanaka","doi":"10.1016/j.neunet.2024.106883","DOIUrl":"10.1016/j.neunet.2024.106883","url":null,"abstract":"<div><div>This paper studies complexity measures of reservoir systems. For this purpose, a more general model that we call a feature-based learning system, which is the composition of a feature map and of a final estimator, is studied. We study complexity measures such as growth function, VC-dimension, pseudo-dimension and Rademacher complexity. On the basis of the results, we discuss how the unadjustability of reservoirs and the linearity of readouts can affect complexity measures of the reservoir systems. Furthermore, some of the results generalize or improve the existing results.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"182 ","pages":"Article 106883"},"PeriodicalIF":6.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.neunet.2024.106881
Pingge Hu , Xiaoteng Zhang , Mengmeng Li , Yingjie Zhu , Li Shi
Detecting small moving objects in complex backgrounds from an overhead perspective is a highly challenging task for machine vision systems. As an inspiration from nature, the avian visual system is capable of processing motion information in various complex aerial scenes, and the Retina-OT-Rt visual circuit of birds is highly sensitive to capturing the motion information of small objects from high altitudes. However, more needs to be done on small object motion detection algorithms based on the avian visual system. In this paper, we conducted mathematical description based on extensive studies of the biological mechanisms of the Retina-OT-Rt visual circuit. Based on this, we proposed a novel tectum small object motion detection neural network (TSOM). The TSOM neural network includes the retina, SGC dendritic, SGC Soma, and Rt layers, each corresponding to neurons in the visual pathway for precise topographic projection, spatial–temporal encoding, motion feature selection, and multi-directional motion integration. Extensive experiments on pigeon neurophysiological experiments and image sequence data showed that the TSOM is biologically interpretable and effective in extracting reliable small object motion features from complex high-altitude backgrounds.
{"title":"TSOM: Small object motion detection neural network inspired by avian visual circuit","authors":"Pingge Hu , Xiaoteng Zhang , Mengmeng Li , Yingjie Zhu , Li Shi","doi":"10.1016/j.neunet.2024.106881","DOIUrl":"10.1016/j.neunet.2024.106881","url":null,"abstract":"<div><div>Detecting small moving objects in complex backgrounds from an overhead perspective is a highly challenging task for machine vision systems. As an inspiration from nature, the avian visual system is capable of processing motion information in various complex aerial scenes, and the Retina-OT-Rt visual circuit of birds is highly sensitive to capturing the motion information of small objects from high altitudes. However, more needs to be done on small object motion detection algorithms based on the avian visual system. In this paper, we conducted mathematical description based on extensive studies of the biological mechanisms of the Retina-OT-Rt visual circuit. Based on this, we proposed a novel tectum small object motion detection neural network (TSOM). The TSOM neural network includes the retina, SGC dendritic, SGC Soma, and Rt layers, each corresponding to neurons in the visual pathway for precise topographic projection, spatial–temporal encoding, motion feature selection, and multi-directional motion integration. Extensive experiments on pigeon neurophysiological experiments and image sequence data showed that the TSOM is biologically interpretable and effective in extracting reliable small object motion features from complex high-altitude backgrounds.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"182 ","pages":"Article 106881"},"PeriodicalIF":6.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.neunet.2024.106877
Wenxing Man, Liming Xu, Chunlin He
Generative Adversarial Networks (GANs) have emerged as a key technology in artificial intelligence, especially in image generation. However, traditionally hand-designed GAN architectures often face significant training stability challenges, which are effectively addressed by our Evolutionary Neural Architecture Search (ENAS) algorithm for GANs, named EAMGAN. This one-shot model automates the design of GAN architectures and employs an Operation Importance Metric (OIM) to enhance training stability. It also incorporates an aging mechanism to optimize the selection process during architecture search. Additionally, the use of a non-dominated sorting algorithm ensures the generation of Pareto-optimal solutions, promoting diversity and preventing premature convergence. We evaluated our method on benchmark datasets, and the results demonstrate that EAMGAN is highly competitive in terms of efficiency and performance. Our method identified an architecture achieving Inception Scores (IS) of 8.83±0.13 and Fréchet Inception Distance (FID) of 9.55 on CIFAR-10 with only 0.66 GPU days. Results on the STL-10, CIFAR-100, and ImageNet32 datasets further demonstrate the robust portability of our architecture.
生成对抗网络(GAN)已成为人工智能领域的一项关键技术,尤其是在图像生成方面。然而,传统手工设计的 GAN 架构往往面临训练稳定性方面的巨大挑战,而我们的 GAN 演化神经架构搜索(ENAS)算法(名为 EAMGAN)则有效地解决了这一问题。这种一次性模型可自动设计 GAN 架构,并采用操作重要性度量(OIM)来提高训练稳定性。它还采用了一种老化机制,以优化架构搜索过程中的选择过程。此外,非主导排序算法的使用确保了帕累托最优解的生成,促进了多样性并防止了过早收敛。我们在基准数据集上对我们的方法进行了评估,结果表明 EAMGAN 在效率和性能方面具有很强的竞争力。我们的方法确定了一种架构,在 CIFAR-10 上实现了 8.83±0.13 的入门分数(IS)和 9.55 的弗雷谢特入门距离(FID),而 GPU 日数仅为 0.66 天。在 STL-10、CIFAR-100 和 ImageNet32 数据集上的结果进一步证明了我们的架构具有强大的可移植性。
{"title":"Evolutionary architecture search for generative adversarial networks using an aging mechanism-based strategy","authors":"Wenxing Man, Liming Xu, Chunlin He","doi":"10.1016/j.neunet.2024.106877","DOIUrl":"10.1016/j.neunet.2024.106877","url":null,"abstract":"<div><div>Generative Adversarial Networks (GANs) have emerged as a key technology in artificial intelligence, especially in image generation. However, traditionally hand-designed GAN architectures often face significant training stability challenges, which are effectively addressed by our Evolutionary Neural Architecture Search (ENAS) algorithm for GANs, named EAMGAN. This one-shot model automates the design of GAN architectures and employs an Operation Importance Metric (OIM) to enhance training stability. It also incorporates an aging mechanism to optimize the selection process during architecture search. Additionally, the use of a non-dominated sorting algorithm ensures the generation of Pareto-optimal solutions, promoting diversity and preventing premature convergence. We evaluated our method on benchmark datasets, and the results demonstrate that EAMGAN is highly competitive in terms of efficiency and performance. Our method identified an architecture achieving Inception Scores (IS) of 8.83±0.13 and Fréchet Inception Distance (FID) of 9.55 on CIFAR-10 with only 0.66 GPU days. Results on the STL-10, CIFAR-100, and ImageNet32 datasets further demonstrate the robust portability of our architecture.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106877"},"PeriodicalIF":6.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.neunet.2024.106882
Zefang Chang , Hao Chen , Mu Hua , Qinbing Fu , Jigen Peng
In pursuing artificial intelligence for efficient collision avoidance in robots, researchers draw inspiration from the locust’s visual looming-sensitive neural circuit to establish an efficient neural network for collision detection. However, existing bio-inspired collision detection neural networks encounter challenges posed by jitter streaming, a phenomenon commonly experienced, for example, when a ground robot moves across uneven terrain. Visual inputs from jitter streaming induce significant fluctuations in grey values, distracting existing bio-inspired networks from extracting visually looming features. To overcome this limitation, we derive inspiration from the potential of feedback loops to enable the brain to generate a coherent visual perception. We introduce a novel dynamic temporal variance feedback loop regulated by scalable functional into the traditional bio-inspired collision detection neural network. This feedback mechanism extracts dynamic temporal variance information from the output of higher-order neurons in the conventional network to assess the fluctuation level of local neural responses and regulate it by a scalable functional to differentiate variance induced by incoherent visual input. Then the regulated signal is reintegrated into the input through negative feedback loop to reduce the incoherence of the signal within the network. Numerical experiments substantiate the effectiveness of the proposed feedback loop in promoting collision detection against jitter streaming. This study extends the capabilities of bio-inspired collision detection neural networks to address jitter streaming challenges, offering a novel insight into the potential of feedback mechanisms in enhancing visual neural abilities.
{"title":"A bio-inspired visual collision detection network integrated with dynamic temporal variance feedback regulated by scalable functional countering jitter streaming","authors":"Zefang Chang , Hao Chen , Mu Hua , Qinbing Fu , Jigen Peng","doi":"10.1016/j.neunet.2024.106882","DOIUrl":"10.1016/j.neunet.2024.106882","url":null,"abstract":"<div><div>In pursuing artificial intelligence for efficient collision avoidance in robots, researchers draw inspiration from the locust’s visual looming-sensitive neural circuit to establish an efficient neural network for collision detection. However, existing bio-inspired collision detection neural networks encounter challenges posed by jitter streaming, a phenomenon commonly experienced, for example, when a ground robot moves across uneven terrain. Visual inputs from jitter streaming induce significant fluctuations in grey values, distracting existing bio-inspired networks from extracting visually looming features. To overcome this limitation, we derive inspiration from the potential of feedback loops to enable the brain to generate a coherent visual perception. We introduce a novel dynamic temporal variance feedback loop regulated by scalable functional into the traditional bio-inspired collision detection neural network. This feedback mechanism extracts dynamic temporal variance information from the output of higher-order neurons in the conventional network to assess the fluctuation level of local neural responses and regulate it by a scalable functional to differentiate variance induced by incoherent visual input. Then the regulated signal is reintegrated into the input through negative feedback loop to reduce the incoherence of the signal within the network. Numerical experiments substantiate the effectiveness of the proposed feedback loop in promoting collision detection against jitter streaming. This study extends the capabilities of bio-inspired collision detection neural networks to address jitter streaming challenges, offering a novel insight into the potential of feedback mechanisms in enhancing visual neural abilities.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"182 ","pages":"Article 106882"},"PeriodicalIF":6.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The intricate interplay of neurotransmitters orchestrates a symphony of neural activity in the hippocampus, with dopamine emerging as a key conductor in this complex ensemble. Despite numerous studies uncovering the cellular mechanisms of dopamine, its influence on hippocampal neural networks remains elusive. Combining in vitro electrophysiological recordings of rat embryonic hippocampal neurons, pharmacological interventions, and computational analyses of spike trains, we found that dopamine induces a relaxation in network synchrony. This relaxation expands the repertoire of burst dynamics within these hippocampal networks, a phenomenon notably absent under the administration of dopamine antagonists. Our study provides a thorough understanding of how dopamine signaling influences the formation of functional networks among hippocampal neurons.
{"title":"Dopamine-induced relaxation of spike synchrony diversifies burst patterns in cultured hippocampal networks","authors":"Huu Hoang , Nobuyoshi Matsumoto , Miyuki Miyano , Yuji Ikegaya , Aurelio Cortese","doi":"10.1016/j.neunet.2024.106888","DOIUrl":"10.1016/j.neunet.2024.106888","url":null,"abstract":"<div><div>The intricate interplay of neurotransmitters orchestrates a symphony of neural activity in the hippocampus, with dopamine emerging as a key conductor in this complex ensemble. Despite numerous studies uncovering the cellular mechanisms of dopamine, its influence on hippocampal neural networks remains elusive. Combining in vitro electrophysiological recordings of rat embryonic hippocampal neurons, pharmacological interventions, and computational analyses of spike trains, we found that dopamine induces a relaxation in network synchrony. This relaxation expands the repertoire of burst dynamics within these hippocampal networks, a phenomenon notably absent under the administration of dopamine antagonists. Our study provides a thorough understanding of how dopamine signaling influences the formation of functional networks among hippocampal neurons.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106888"},"PeriodicalIF":6.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.neunet.2024.106880
Bo Dong, Xinye Zhu, Tianjiao An, Hucheng Jiang, Bing Ma
In this paper, for addressing the safe control problem of modular robot manipulators (MRMs) system with uncertain disturbances, an approximate optimal control scheme of nonzero-sum (NZS) differential games is proposed based on the control barrier function (CBF). The dynamic model of the manipulator system integrates joint subsystems through the utilization of joint torque feedback (JTF) technique, incorporating interconnected dynamic coupling (IDC) effects. By integrating the cost functions relevant to each player with the CBF, the evolution of system states is ensured to remain within the safe region. Subsequently, the optimal tracking control problem for the MRM system is reformulated as an NZS game involving multiple joint subsystems. Based on the adaptive dynamic programming (ADP) algorithm, a cost function approximator for solving Hamilton–Jacobi (HJ) equation using only critic neural networks (NN) is established, which promotes the feasible derivation of the approximate optimal control strategy. The Lyapunov theory is utilized to demonstrate that the tracking error is uniformly ultimately bounded (UUB). Utilizing the CBF’s state constraint mechanism prevents the robot from deviating from the safe region, and the application of the NZS game approach ensures that the subsystems of the MRM reach a Nash equilibrium. The proposed control method effectively addresses the problem of safe and approximate optimal control of MRM system under uncertain disturbances. Finally, the effectiveness and superiority of the proposed method are verified through simulations and experiments.
{"title":"Barrier-critic-disturbance approximate optimal control of nonzero-sum differential games for modular robot manipulators","authors":"Bo Dong, Xinye Zhu, Tianjiao An, Hucheng Jiang, Bing Ma","doi":"10.1016/j.neunet.2024.106880","DOIUrl":"10.1016/j.neunet.2024.106880","url":null,"abstract":"<div><div>In this paper, for addressing the safe control problem of modular robot manipulators (MRMs) system with uncertain disturbances, an approximate optimal control scheme of nonzero-sum (NZS) differential games is proposed based on the control barrier function (CBF). The dynamic model of the manipulator system integrates joint subsystems through the utilization of joint torque feedback (JTF) technique, incorporating interconnected dynamic coupling (IDC) effects. By integrating the cost functions relevant to each player with the CBF, the evolution of system states is ensured to remain within the safe region. Subsequently, the optimal tracking control problem for the MRM system is reformulated as an NZS game involving multiple joint subsystems. Based on the adaptive dynamic programming (ADP) algorithm, a cost function approximator for solving Hamilton–Jacobi (HJ) equation using only critic neural networks (NN) is established, which promotes the feasible derivation of the approximate optimal control strategy. The Lyapunov theory is utilized to demonstrate that the tracking error is uniformly ultimately bounded (UUB). Utilizing the CBF’s state constraint mechanism prevents the robot from deviating from the safe region, and the application of the NZS game approach ensures that the subsystems of the MRM reach a Nash equilibrium. The proposed control method effectively addresses the problem of safe and approximate optimal control of MRM system under uncertain disturbances. Finally, the effectiveness and superiority of the proposed method are verified through simulations and experiments.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106880"},"PeriodicalIF":6.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.neunet.2024.106874
Hao Chen , Boquan Fan , Haiyang Li , Jigen Peng
In the pursuit of developing an efficient artificial visual system for visual motion detection, researchers find inspiration from the visual motion-sensitive neural pathways in the insect’s neural system. Although multiple proposed neural computational models exhibit significant performance aligned with those observed from insects, the mathematical basis for how these models characterize the sensitivity of visual neurons to corresponding motion patterns remains to be elucidated. To fill this research gap, this study originally proposed that the rigid propagation of visual motion is an essential mathematical property of the models for the insect’s visual neural system, meaning that the dynamics of the model output remain consistent with the visual motion dynamics reflected in the input. To verify this property, this study uses the small target motion detector (STMD) neural pathway — one of the visual motion-sensitive pathways in the insect’s neural system — as an exemplar, rigorously demonstrating that the dynamics of translational visual motion are rigidly propagated through the encoding of retinal measurements in STMD computational models. Numerical experiment results further substantiate the proposed property of STMD models. This study offers a novel theoretical framework for exploring the nature of the visual motion perception underlying the insect’s visual neural system and brings an innovative perspective to the broader research field of insect visual motion perception and artificial visual systems.
{"title":"Rigid propagation of visual motion in the insect’s neural system","authors":"Hao Chen , Boquan Fan , Haiyang Li , Jigen Peng","doi":"10.1016/j.neunet.2024.106874","DOIUrl":"10.1016/j.neunet.2024.106874","url":null,"abstract":"<div><div>In the pursuit of developing an efficient artificial visual system for visual motion detection, researchers find inspiration from the visual motion-sensitive neural pathways in the insect’s neural system. Although multiple proposed neural computational models exhibit significant performance aligned with those observed from insects, the mathematical basis for how these models characterize the sensitivity of visual neurons to corresponding motion patterns remains to be elucidated. To fill this research gap, this study originally proposed that the rigid propagation of visual motion is an essential mathematical property of the models for the insect’s visual neural system, meaning that the dynamics of the model output remain consistent with the visual motion dynamics reflected in the input. To verify this property, this study uses the small target motion detector (STMD) neural pathway — one of the visual motion-sensitive pathways in the insect’s neural system — as an exemplar, rigorously demonstrating that the dynamics of translational visual motion are rigidly propagated through the encoding of retinal measurements in STMD computational models. Numerical experiment results further substantiate the proposed property of STMD models. This study offers a novel theoretical framework for exploring the nature of the visual motion perception underlying the insect’s visual neural system and brings an innovative perspective to the broader research field of insect visual motion perception and artificial visual systems.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106874"},"PeriodicalIF":6.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.neunet.2024.106857
Suneung Kim, Seong-Whan Lee
The goal of debiasing in classification tasks is to train models to be less sensitive to correlations between a sample’s target attribution and periodically occurring contextual attributes to achieve accurate classification. A prevalent method involves applying re-weighing techniques to lower the weight of bias-aligned samples that contribute to bias, thereby focusing the training on bias-conflicting samples that deviate from the bias patterns. Our empirical analysis indicates that this approach is effective in datasets where bias-conflicting samples constitute a minority compared to bias-aligned samples, yet its effectiveness diminishes in datasets with similar proportions of both. This ineffectiveness in varied dataset compositions suggests that the traditional method cannot be practical in diverse environments as it overlooks the dynamic nature of dataset-induced biases. To address this issue, we introduce a contrastive approach named “AmbiBias Contrast”, which is robust across various dataset compositions. This method accounts for “ambiguity bias”— the variable nature of bias elements across datasets, which cannot be clearly defined. Given the challenge of defining bias due to the fluctuating compositions of datasets, we designed a method of representation learning that accommodates this ambiguity. Our experiments across a range of and dataset configurations verify the robustness of our method, delivering state-of-the-art performance.
{"title":"AmbiBias Contrast: Enhancing debiasing networks via disentangled space from ambiguity-bias clusters","authors":"Suneung Kim, Seong-Whan Lee","doi":"10.1016/j.neunet.2024.106857","DOIUrl":"10.1016/j.neunet.2024.106857","url":null,"abstract":"<div><div>The goal of debiasing in classification tasks is to train models to be less sensitive to correlations between a sample’s target attribution and periodically occurring contextual attributes to achieve accurate classification. A prevalent method involves applying re-weighing techniques to lower the weight of bias-aligned samples that contribute to bias, thereby focusing the training on bias-conflicting samples that deviate from the bias patterns. Our empirical analysis indicates that this approach is effective in datasets where bias-conflicting samples constitute a minority compared to bias-aligned samples, yet its effectiveness diminishes in datasets with similar proportions of both. This ineffectiveness in varied dataset compositions suggests that the traditional method cannot be practical in diverse environments as it overlooks the dynamic nature of dataset-induced biases. To address this issue, we introduce a contrastive approach named “AmbiBias Contrast”, which is robust across various dataset compositions. This method accounts for “ambiguity bias”— the variable nature of bias elements across datasets, which cannot be clearly defined. Given the challenge of defining bias due to the fluctuating compositions of datasets, we designed a method of representation learning that accommodates this ambiguity. Our experiments across a range of and dataset configurations verify the robustness of our method, delivering state-of-the-art performance.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106857"},"PeriodicalIF":6.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}