Mara Reis, Sanja Zenker, Prisca Viehöver, Karsten Niehaus, Andrea Bräutigam, Marion Eisenhut
Cellular levels of the essential micronutrient manganese (Mn) need to be carefully balanced within narrow borders. In cyanobacteria, a sufficient Mn supply is critical for ensuring the function of the oxygen-evolving complex as the central part of the photosynthetic machinery. However, Mn accumulation is fatal for the cells. The reason for the observed cytotoxicity is unclear. To understand the causality behind Mn toxicity in cyanobacteria, we investigated the impact of excess Mn on physiology and global gene expression in the model organism Synechocystis sp. PCC 6803. We compared the response of the WT and the knock-out mutant in the Mn exporter (Mnx), ∆mnx, which is disabled in the export of surplus Mn and thus functions as a model for toxic Mn overaccumulation. While growth and pigment accumulation in ∆mnx were severely impaired 24 h after the addition of tenfold Mn, the WT was not affected and thus mounted an adequate transcriptional response. RNA-seq data analysis revealed that the Mn stress transcriptomes partly resembled an iron limitation transcriptome. However, the expression of iron limitation signature genes isiABDC was not affected by the Mn treatment, indicating that Mn excess is not accompanied by iron limitation in Synechocystis. We suggest that the ferric uptake regulator, Fur, gets partially mismetallated under Mn excess conditions and thus interferes with an iron-dependent transcriptional response. To encounter mismetallation and other Mn-dependent problems on a protein level, the cells invest in transcripts of ribosomes, proteases and chaperones. In the case of the ∆mnx mutant, the consequences of the disability to export excess Mn from the cytosol manifest in additionally impaired energy metabolism and oxidative stress transcriptomes with a fatal outcome. This study emphasizes the central importance of Mn homeostasis and the transporter Mnx's role in restoring and holding it.
{"title":"Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803.","authors":"Mara Reis, Sanja Zenker, Prisca Viehöver, Karsten Niehaus, Andrea Bräutigam, Marion Eisenhut","doi":"10.1099/mic.0.001515","DOIUrl":"10.1099/mic.0.001515","url":null,"abstract":"<p><p>Cellular levels of the essential micronutrient manganese (Mn) need to be carefully balanced within narrow borders. In cyanobacteria, a sufficient Mn supply is critical for ensuring the function of the oxygen-evolving complex as the central part of the photosynthetic machinery. However, Mn accumulation is fatal for the cells. The reason for the observed cytotoxicity is unclear. To understand the causality behind Mn toxicity in cyanobacteria, we investigated the impact of excess Mn on physiology and global gene expression in the model organism <i>Synechocystis</i> sp. PCC 6803. We compared the response of the WT and the knock-out mutant in the <i>Mn</i> e<i>x</i>porter (Mnx), ∆<i>mnx</i>, which is disabled in the export of surplus Mn and thus functions as a model for toxic Mn overaccumulation. While growth and pigment accumulation in ∆<i>mnx</i> were severely impaired 24 h after the addition of tenfold Mn, the WT was not affected and thus mounted an adequate transcriptional response. RNA-seq data analysis revealed that the Mn stress transcriptomes partly resembled an iron limitation transcriptome. However, the expression of iron limitation signature genes <i>isiABDC</i> was not affected by the Mn treatment, indicating that Mn excess is not accompanied by iron limitation in <i>Synechocystis</i>. We suggest that the ferric uptake regulator, Fur, gets partially mismetallated under Mn excess conditions and thus interferes with an iron-dependent transcriptional response. To encounter mismetallation and other Mn-dependent problems on a protein level, the cells invest in transcripts of ribosomes, proteases and chaperones. In the case of the ∆<i>mnx</i> mutant, the consequences of the disability to export excess Mn from the cytosol manifest in additionally impaired energy metabolism and oxidative stress transcriptomes with a fatal outcome. This study emphasizes the central importance of Mn homeostasis and the transporter Mnx's role in restoring and holding it.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grasslands are estimated to cover about 40% of the earth's land area and are primarily used for grazing. Despite their importance globally, there is a paucity of information on long-term grazing effects on the soil microbiome. We used a 68-year-old grazing experiment to determine differences in the soil permanganate-oxidizable C (POXC), microbial biomass C (MBC), the soil prokaryotic (bacterial and archaeal) community composition and enzyme activities between no-grazing, light grazing and heavy grazing, i.e. 0, 1.2 and 2.4 animal unit months (AUM) ha-1. The grazing effects were determined in spring and fall grazing. Light grazing had little effect on soil MBC and the composition and diversity of prokaryotic communities in either grazing season, but the effects of heavy grazing depended on the grazing season. In spring, heavy grazing increased the relative abundances of copiotrophic phyla Actinomycetota, Bacillota and Nitrososphaerota, along with soil POXC contents but decreased those of oligotrophic phyla Acidobacteriota, Verrucomicrobiota and Nitrospirota. This difference in responses was not observed in fall, when grazing reduced soil POXC, MBC and the relative abundances of most phyla. The β-diversity analysis showed that the prokaryotic community structure under heavy grazing was different from those in the control and light grazing treatments, and α-diversity indices (except the Shannon index) were highest under heavy grazing in both grazing seasons. The activities of P-mobilizing and S-mobilizing soil enzymes decreased with increasing cattle stocking rate in both seasons, but the activities of the enzymes that mediate C and N cycling decreased only in the fall. The genus RB41 (phylum Acidobacteriota) was one of two core bacterial genera, and its relative abundance was positively correlated with the activity of the S-mobilizing enzyme. Therefore, light grazing is recommended to reduce negative effects on the grassland soil microbiome and its activity, and the grazing season should be considered when evaluating such grazing effects.
{"title":"Divergent responses of the native grassland soil microbiome to heavy grazing between spring and fall.","authors":"Newton Z Lupwayi, Xiying Hao, Monika A Gorzelak","doi":"10.1099/mic.0.001517","DOIUrl":"10.1099/mic.0.001517","url":null,"abstract":"<p><p>Grasslands are estimated to cover about 40% of the earth's land area and are primarily used for grazing. Despite their importance globally, there is a paucity of information on long-term grazing effects on the soil microbiome. We used a 68-year-old grazing experiment to determine differences in the soil permanganate-oxidizable C (POXC), microbial biomass C (MBC), the soil prokaryotic (bacterial and archaeal) community composition and enzyme activities between no-grazing, light grazing and heavy grazing, i.e. 0, 1.2 and 2.4 animal unit months (AUM) ha<sup>-1</sup>. The grazing effects were determined in spring and fall grazing. Light grazing had little effect on soil MBC and the composition and diversity of prokaryotic communities in either grazing season, but the effects of heavy grazing depended on the grazing season. In spring, heavy grazing increased the relative abundances of copiotrophic phyla <i>Actinomycetota, Bacillota</i> and <i>Nitrososphaerota</i>, along with soil POXC contents but decreased those of oligotrophic phyla <i>Acidobacteriota, Verrucomicrobiota</i> and <i>Nitrospirota</i>. This difference in responses was not observed in fall, when grazing reduced soil POXC, MBC and the relative abundances of most phyla. The <i>β</i>-diversity analysis showed that the prokaryotic community structure under heavy grazing was different from those in the control and light grazing treatments, and <i>α</i>-diversity indices (except the Shannon index) were highest under heavy grazing in both grazing seasons. The activities of P-mobilizing and S-mobilizing soil enzymes decreased with increasing cattle stocking rate in both seasons, but the activities of the enzymes that mediate C and N cycling decreased only in the fall. The genus <i>RB41</i> (phylum <i>Acidobacteriota</i>) was one of two core bacterial genera, and its relative abundance was positively correlated with the activity of the S-mobilizing enzyme. Therefore, light grazing is recommended to reduce negative effects on the grassland soil microbiome and its activity, and the grazing season should be considered when evaluating such grazing effects.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beatrice Bottura, Liam Rooney, Morgan Feeney, Paul A Hoskisson, Gail McConnell
Recent mesoscopic characterization of nutrient-transporting channels in Escherichia coli has allowed the identification and measurement of individual channels in whole mature colony biofilms. However, their complexity under different physiological and environmental conditions remains unknown. Analysis of confocal micrographs of colony biofilms formed by cell shape mutants of E. coli shows that channels have high fractal complexity, regardless of cell phenotype or growth medium. In particular, colony biofilms formed by the mutant strain ΔompR, which has a wide-cell phenotype, have a higher fractal dimension when grown on rich medium than when grown on minimal medium, with channel complexity affected by glucose and agar concentrations in the medium. Osmotic stress leads to a dramatic reduction in the ΔompR cell size but has a limited effect on channel morphology. This work shows that fractal image analysis is a powerful tool to quantify the effect of phenotypic mutations and growth environment on the morphological complexity of internal E. coli biofilm structures. If applied to a wider range of mutant strains, this approach could help elucidate the genetic determinants of channel formation in E. coli colony biofilms.
{"title":"Quantifying the fractal complexity of nutrient transport channels in <i>Escherichia coli</i> biofilms under varying cell shape and growth environment.","authors":"Beatrice Bottura, Liam Rooney, Morgan Feeney, Paul A Hoskisson, Gail McConnell","doi":"10.1099/mic.0.001511","DOIUrl":"10.1099/mic.0.001511","url":null,"abstract":"<p><p>Recent mesoscopic characterization of nutrient-transporting channels in <i>Escherichia coli</i> has allowed the identification and measurement of individual channels in whole mature colony biofilms. However, their complexity under different physiological and environmental conditions remains unknown. Analysis of confocal micrographs of colony biofilms formed by cell shape mutants of <i>E. coli</i> shows that channels have high fractal complexity, regardless of cell phenotype or growth medium. In particular, colony biofilms formed by the mutant strain Δ<i>ompR</i>, which has a wide-cell phenotype, have a higher fractal dimension when grown on rich medium than when grown on minimal medium, with channel complexity affected by glucose and agar concentrations in the medium. Osmotic stress leads to a dramatic reduction in the Δ<i>ompR</i> cell size but has a limited effect on channel morphology. This work shows that fractal image analysis is a powerful tool to quantify the effect of phenotypic mutations and growth environment on the morphological complexity of internal <i>E. coli</i> biofilm structures. If applied to a wider range of mutant strains, this approach could help elucidate the genetic determinants of channel formation in <i>E. coli</i> colony biofilms.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts
Listeria monocytogenes is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (Phly, PactA, P/prfA and P/plcA) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the Phly, PactA and P/plcA promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A sigB mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a sigB mutation increased expression from the Phly and PactA promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that L. monocytogenes PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.
{"title":"The PrfA regulon of <i>Listeria monocytogenes</i> is induced by growth in low-oxygen microaerophilic conditions.","authors":"Lamis A Alnakhli, Marie Goldrick, Elizabeth Lord, Ian S Roberts","doi":"10.1099/mic.0.001516","DOIUrl":"10.1099/mic.0.001516","url":null,"abstract":"<p><p><i>Listeria monocytogenes</i> is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (P<i>hly</i>, P<i>actA</i>, P<i>/prfA</i> and P<i>/plcA</i>) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the P<i>hly</i>, P<i>actA</i> and P<i>/plcA</i> promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A <i>sigB</i> mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a <i>sigB</i> mutation increased expression from the P<i>hly</i> and P<i>actA</i> promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that <i>L. monocytogenes</i> PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría
The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.
{"title":"Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica.","authors":"Felipe Vásquez-Castro, Daniela Wicki-Emmenegger, Paola Fuentes-Schweizer, Layla Nassar-Míguez, Diego Rojas-Gätjens, Keilor Rojas-Jimenez, Max Chavarría","doi":"10.1099/mic.0.001513","DOIUrl":"10.1099/mic.0.001513","url":null,"abstract":"<p><p>The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family <i>Pseudomonadaceae</i> being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera <i>Lysobacter</i>, <i>Streptomyces</i>, <i>Pseudomonas</i>, <i>Brevundimonas</i> and <i>Bacillus</i>. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent studies have linked Ruminococcus gnavus to inflammatory bowel disease and Fusobacterium nucleatum to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of R. gnavus and F. nucleatum at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes (fab genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of R. gnavus cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with R. gnavus and Bifidobacterium longum in 0.2% AOS resulted in B. longum dominating the population, constituting over 96% post-incubation. In vivo studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which R. gnavus belongs, following AOS administration. Quantitative PCR also showed lower levels of the nan gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.
最近的研究表明,小反刍球菌(Ruminococcus gnavus)与炎症性肠病有关,而核分枝杆菌(Fusobacterium nucleatum)与各种癌症有关。从琼脂的酸水解中提取的琼脂寡糖(AOS),在浓度分别为 0.1% 和 0.2% 时,对反刍球菌和核酸酵母菌的生长有显著的抑制作用。RNA 测序和定量反转录 PCR 分析表明,当暴露于 0.1% 的 AOS 时,这些细菌的脂肪酸生物合成基因(fab 基因)下调。此外,AOS 处理改变了 R. gnavus 细胞膜的脂肪酸组成,增加了中链饱和脂肪酸(C8、C10)和 C18 脂肪酸,同时减少了长链脂肪酸(C14、C16)。相比之下,在 AOS 浓度分别为 0.2% 和 2% 的情况下,双歧杆菌和乳杆菌的几种菌株的生长未受到明显抑制。在 0.2% 的氧化亚氮浓度下进行的麹菌和长双歧杆菌的共培养实验表明,长双歧杆菌在菌群中占主导地位,培养后占 96% 以上。利用小鼠进行的体内研究表明,在服用 AOS 后,R. gnavus 所属的 Lachnospiraceae 家族的数量显著减少。定量 PCR 还显示,AOS 组中可能与免疫紊乱有关的 nan 基因水平较低。这些研究结果表明,AOS 可以选择性地抑制潜在的致病菌,同时保留双歧杆菌和乳酸杆菌等有益菌,从而为益生元带来了新的概念。
{"title":"Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of <i>Ruminococcus gnavus</i> and <i>Fusobacterium nucleatum</i> while preserving Bifidobacteria, Lactobacillales <i>in vitro</i>, and inhibiting Lachnospiraceae <i>in vivo</i>.","authors":"Tadashi Fujii, Koji Karasawa, Hideaki Takahashi, Ikuya Shirai, Kohei Funasaka, Eizaburo Ohno, Yoshiki Hirooka, Takumi Tochio","doi":"10.1099/mic.0.001510","DOIUrl":"10.1099/mic.0.001510","url":null,"abstract":"<p><p>Recent studies have linked <i>Ruminococcus gnavus</i> to inflammatory bowel disease and <i>Fusobacterium nucleatum</i> to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of <i>R. gnavus</i> and <i>F. nucleatum</i> at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes (<i>fab</i> genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of <i>R. gnavus</i> cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with <i>R. gnavus</i> and <i>Bifidobacterium longum</i> in 0.2% AOS resulted in <i>B. longum</i> dominating the population, constituting over 96% post-incubation. <i>In vivo</i> studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which <i>R. gnavus</i> belongs, following AOS administration. Quantitative PCR also showed lower levels of the <i>nan</i> gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauren Adams, Xiang Li, Richard Burchmore, Richard J A Goodwin, Daniel M Wall
The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using in vitro models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen Escherichia coli, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of E. coli and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.
{"title":"Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection.","authors":"Lauren Adams, Xiang Li, Richard Burchmore, Richard J A Goodwin, Daniel M Wall","doi":"10.1099/mic.0.001504","DOIUrl":"10.1099/mic.0.001504","url":null,"abstract":"<p><p>The gut microbiota exerts a significant influence on human health and disease. While compositional changes in the gut microbiota in specific diseases can easily be determined, we lack a detailed mechanistic understanding of how these changes exert effects at the cellular level. However, the putative local and systemic effects on human physiology that are attributed to the gut microbiota are clearly being mediated through molecular communication. Here, we determined the effects of gut microbiome-derived metabolites l-tryptophan, butyrate, trimethylamine (TMA), 3-methyl-4-(trimethylammonio)butanoate (3,4-TMAB), 4-(trimethylammonio)pentanoate (4-TMAP), ursodeoxycholic acid (UDCA), glycocholic acid (GCA) and benzoate on the first line of defence in the gut. Using <i>in vitro</i> models of intestinal barrier integrity and studying the interaction of macrophages with pathogenic and non-pathogenic bacteria, we could ascertain the influence of these metabolites at the cellular level at physiologically relevant concentrations. Nearly all metabolites exerted positive effects on barrier function, but butyrate prevented a reduction in transepithelial resistance in the presence of the pathogen <i>Escherichia coli</i>, despite inducing increased apoptosis and exerting increased cytotoxicity. Induction of IL-8 was unaffected by all metabolites, but GCA stimulated increased intra-macrophage growth of <i>E. coli</i> and tumour necrosis-alpha (TNF-α) release. Butyrate, 3,4-TMAB and benzoate all increased TNF-α release independent of bacterial replication. These findings reiterate the complexity of understanding microbiome effects on host physiology and underline that microbiome metabolites are crucial mediators of barrier function and the innate response to infection. Understanding these metabolites at the cellular level will allow us to move towards a better mechanistic understanding of microbiome influence over host physiology, a crucial step in advancing microbiome research.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urinary tract infections (UTIs) are extremely common, affecting people of all ages and health statuses. Although UTIs do not usually cause severe illness, in some cases they can lead to more serious complications, especially if their initial treatment is ineffective due to antimicrobial resistance (AMR). AMR is an increasing issue, exacerbated by misdiagnosis and inappropriate prescribing of antibiotics, thus facilitating further resistance. The aim of this study was to investigate the rates of AMR in Escherichia coli isolated from clinical urine specimens tested at the Balfour Hospital, Orkney, and determine trends related to patient risk factors. Antibiotic susceptibilities were tested for 100 isolates of uropathogenic E. coli using the VITEK 2 Compact (bioMérieux), and data were analysed using percentage resistance rates. Resistance rates were compared by patient sex, age and source (hospital versus community). The findings showed higher AMR in males compared with females, particularly for trimethoprim (TMP), with 52% in males and only 12% in females. AMR tended to be higher in E. coli isolated from hospital inpatients than from community specimens, except for amoxicillin (AMX) and co-amoxiclav. Finally, the study found that AMR of E. coli isolates was greater in patients aged over 50 than 18-50 years old, particularly for AMX and TMP. The highest resistance rates across all patient demographics were for AMX, implying that the use of this antibiotic for the treatment of E. coli UTIs is not appropriate.
{"title":"Investigating trends in antibiotic resistance of <i>Escherichia coli</i> isolated from clinical urine specimens in the Orkney Islands.","authors":"Lily Corse, Allison Cartwright","doi":"10.1099/mic.0.001514","DOIUrl":"10.1099/mic.0.001514","url":null,"abstract":"<p><p>Urinary tract infections (UTIs) are extremely common, affecting people of all ages and health statuses. Although UTIs do not usually cause severe illness, in some cases they can lead to more serious complications, especially if their initial treatment is ineffective due to antimicrobial resistance (AMR). AMR is an increasing issue, exacerbated by misdiagnosis and inappropriate prescribing of antibiotics, thus facilitating further resistance. The aim of this study was to investigate the rates of AMR in <i>Escherichia coli</i> isolated from clinical urine specimens tested at the Balfour Hospital, Orkney, and determine trends related to patient risk factors. Antibiotic susceptibilities were tested for 100 isolates of uropathogenic <i>E. coli</i> using the VITEK 2 Compact (bioMérieux), and data were analysed using percentage resistance rates. Resistance rates were compared by patient sex, age and source (hospital versus community). The findings showed higher AMR in males compared with females, particularly for trimethoprim (TMP), with 52% in males and only 12% in females. AMR tended to be higher in <i>E. coli</i> isolated from hospital inpatients than from community specimens, except for amoxicillin (AMX) and co-amoxiclav. Finally, the study found that AMR of <i>E. coli</i> isolates was greater in patients aged over 50 than 18-50 years old, particularly for AMX and TMP. The highest resistance rates across all patient demographics were for AMX, implying that the use of this antibiotic for the treatment of <i>E. coli</i> UTIs is not appropriate.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsuyoshi Miki, Masahiro Ito, Takeshi Haneda, Yun-Gi Kim
Adherent-invasive Escherichia coli (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of Enterobacteriaceae, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the envC gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the envC gene exhibited impaired cell division. Furthermore, envC deletion led to a diminished outer membrane barrier, as seen in our finding that the envC mutant became susceptible to vancomycin. Finally, we found that the envC mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.
{"title":"Outer membrane barrier impairment by <i>envC</i> deletion reduces gut colonization of Crohn's disease pathobiont <i>Escherichia coli</i>.","authors":"Tsuyoshi Miki, Masahiro Ito, Takeshi Haneda, Yun-Gi Kim","doi":"10.1099/mic.0.001509","DOIUrl":"10.1099/mic.0.001509","url":null,"abstract":"<p><p>Adherent-invasive <i>Escherichia coli</i> (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of <i>Enterobacteriaceae</i>, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the <i>envC</i> gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the <i>envC</i> gene exhibited impaired cell division. Furthermore, <i>envC</i> deletion led to a diminished outer membrane barrier, as seen in our finding that the <i>envC</i> mutant became susceptible to vancomycin. Finally, we found that the <i>envC</i> mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adriana Badilla Lobo, Olga Soutourina, Johann Peltier
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
{"title":"The current riboswitch landscape in <i>Clostridioides difficile</i>.","authors":"Adriana Badilla Lobo, Olga Soutourina, Johann Peltier","doi":"10.1099/mic.0.001508","DOIUrl":"10.1099/mic.0.001508","url":null,"abstract":"<p><p>Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. <i>Clostridioides difficile</i>, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating <i>C. difficile</i> infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in <i>C. difficile</i>, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for <i>C. difficile</i> infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}