Tsuyoshi Miki, Masahiro Ito, Takeshi Haneda, Yun-Gi Kim
Adherent-invasive Escherichia coli (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of Enterobacteriaceae, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the envC gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the envC gene exhibited impaired cell division. Furthermore, envC deletion led to a diminished outer membrane barrier, as seen in our finding that the envC mutant became susceptible to vancomycin. Finally, we found that the envC mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.
{"title":"Outer membrane barrier impairment by <i>envC</i> deletion reduces gut colonization of Crohn's disease pathobiont <i>Escherichia coli</i>.","authors":"Tsuyoshi Miki, Masahiro Ito, Takeshi Haneda, Yun-Gi Kim","doi":"10.1099/mic.0.001509","DOIUrl":"10.1099/mic.0.001509","url":null,"abstract":"<p><p>Adherent-invasive <i>Escherichia coli</i> (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of <i>Enterobacteriaceae</i>, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the <i>envC</i> gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the <i>envC</i> gene exhibited impaired cell division. Furthermore, <i>envC</i> deletion led to a diminished outer membrane barrier, as seen in our finding that the <i>envC</i> mutant became susceptible to vancomycin. Finally, we found that the <i>envC</i> mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adriana Badilla Lobo, Olga Soutourina, Johann Peltier
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
{"title":"The current riboswitch landscape in <i>Clostridioides difficile</i>.","authors":"Adriana Badilla Lobo, Olga Soutourina, Johann Peltier","doi":"10.1099/mic.0.001508","DOIUrl":"10.1099/mic.0.001508","url":null,"abstract":"<p><p>Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. <i>Clostridioides difficile</i>, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating <i>C. difficile</i> infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in <i>C. difficile</i>, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for <i>C. difficile</i> infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study investigates the effect of biotin concentration on the role of anaplerotic reactions catalysed by pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC) in glutamic acid production by Corynebacterium glutamicum. C. glutamicum requires biotin for its growth, and its glutamic acid production can be induced by the addition of Tween 40 or penicillin or by biotin limitation. The biotin enzyme PC and the non-biotin enzyme PEPC catalyse two anaplerotic reactions to supply oxaloacetic acid to the TCA cycle in C. glutamicum. Therefore, they are crucial for glutamic acid production in this bacterium. In this study, we investigated the contribution of each anaplerotic reaction to Tween 40- and penicillin-induced glutamic acid production using disruptants of PEPC and PC. In the presence of 20 µg l-1 biotin, which is sufficient for growth, the PEPC-catalysed anaplerotic reaction mainly contributed to Tween 40- and penicillin-induced glutamic acid production. However, when increasing biotin concentration 10-fold (i.e. 200 µg l-1), both PC- and PEPC-catalysed reactions could function in glutamic acid production. Western blotting revealed that the amount of biotin-bound PC was reduced by the addition of Tween 40 and penicillin in the presence of 20 µg l-1. However, these induction treatments did not change the amount of biotin-bound PC in the presence of 200 µg l-1 biotin. These results indicate that both anaplerotic reactions are functional during glutamic acid production in C. glutamicum and that biotin concentration mainly affects which anaplerotic reactions function during glutamic acid production.
{"title":"Biotin concentration affects anaplerotic reactions functioning in glutamic acid production in <i>Corynebacterium glutamicum</i>.","authors":"Takako Ochiai, Masaaki Wachi, Takashi Hirasawa","doi":"10.1099/mic.0.001507","DOIUrl":"10.1099/mic.0.001507","url":null,"abstract":"<p><p>The study investigates the effect of biotin concentration on the role of anaplerotic reactions catalysed by pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC) in glutamic acid production by <i>Corynebacterium glutamicum. C. glutamicum</i> requires biotin for its growth, and its glutamic acid production can be induced by the addition of Tween 40 or penicillin or by biotin limitation. The biotin enzyme PC and the non-biotin enzyme PEPC catalyse two anaplerotic reactions to supply oxaloacetic acid to the TCA cycle in <i>C. glutamicum</i>. Therefore, they are crucial for glutamic acid production in this bacterium. In this study, we investigated the contribution of each anaplerotic reaction to Tween 40- and penicillin-induced glutamic acid production using disruptants of PEPC and PC. In the presence of 20 µg l<sup>-1</sup> biotin, which is sufficient for growth, the PEPC-catalysed anaplerotic reaction mainly contributed to Tween 40- and penicillin-induced glutamic acid production. However, when increasing biotin concentration 10-fold (i.e. 200 µg l<sup>-1</sup>), both PC- and PEPC-catalysed reactions could function in glutamic acid production. Western blotting revealed that the amount of biotin-bound PC was reduced by the addition of Tween 40 and penicillin in the presence of 20 µg l<sup>-1</sup>. However, these induction treatments did not change the amount of biotin-bound PC in the presence of 200 µg l<sup>-1</sup> biotin. These results indicate that both anaplerotic reactions are functional during glutamic acid production in <i>C. glutamicum</i> and that biotin concentration mainly affects which anaplerotic reactions function during glutamic acid production.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily M Stevenson, Owen Rushby-Jones, Angus Buckling, Matthew Cole, Penelope K Lindeque, Aimee K Murray
The Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic Escherichia coli (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.
塑料球是一种新的生态位,微生物群落附着在塑料碎片(包括微塑料)上。这些群落有别于周围环境中的群落或附着在天然基质上的群落,可能成为致病菌和抗微生物(AMR)细菌的贮藏库。由于以往的研究经常忽略适当的比较粒子(如天然基质),因此缺乏实证证据来证明微塑料在富集和传播 AMR 病原体方面所带来的独特风险。本研究调查了污水群落在环境采样的三种不同聚合物、来源和形态的微塑料上的选择性定殖,以及天然基质(木材)、惰性基质(玻璃)和自由生活/浮游群落对照。培养和分子方法(定量聚合酶链反应 (qPCR))分别用于确定表型和基因型 AMR 流行率,多重菌落 PCR 用于鉴定肠道外致病性大肠杆菌 (ExPEC)。结果发现,聚苯乙烯和木质颗粒能显著富集 AMR 细菌,而污水来源的生物珠则能显著富集 ExPECs。聚苯乙烯和木材是最不光滑的颗粒,因此通过比较原始聚乙烯颗粒和人工风化聚乙烯颗粒的定殖情况,直接研究了颗粒粗糙度对 AMR 流行的重要性。表面风化对已定植颗粒的 AMR 感染率没有明显影响。我们的研究结果表明,AMR 和致病菌在塑料和非塑料微粒上的定植可能会受到基质特异性的影响。
{"title":"Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria.","authors":"Emily M Stevenson, Owen Rushby-Jones, Angus Buckling, Matthew Cole, Penelope K Lindeque, Aimee K Murray","doi":"10.1099/mic.0.001506","DOIUrl":"10.1099/mic.0.001506","url":null,"abstract":"<p><p>The Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic <i>Escherichia coli</i> (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477370/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, Candida auris and Aspergillus fumigatus, examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.
{"title":"Understanding the clinical and environmental drivers of antifungal resistance in the One Health context.","authors":"Catrin C Williams, Jack B Gregory, Jane Usher","doi":"10.1099/mic.0.001512","DOIUrl":"10.1099/mic.0.001512","url":null,"abstract":"<p><p>Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, <i>Candida auris</i> and <i>Aspergillus fumigatus,</i> examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah E Johnston, Sarah M Batt, Alistair K Brown, Christos G Savva, Gurdyal S Besra, Klaus Fütterer
Mycobacteria are known for their complex cell wall, which comprises layers of peptidoglycan, polysaccharides and unusual fatty acids known as mycolic acids that form their unique outer membrane. Polyketide synthase 13 (Pks13) of Mycobacterium tuberculosis, the bacterial organism causing tuberculosis, catalyses the last step of mycolic acid synthesis prior to export to and assembly in the cell wall. Due to its essentiality, Pks13 is a target for several novel anti-tubercular inhibitors, but its 3D structure and catalytic reaction mechanism remain to be fully elucidated. Here, we report the molecular structure of the catalytic core domains of M. tuberculosis Pks13 (Mt-Pks13), determined by transmission cryo-electron microscopy (cryoEM) to a resolution of 3.4 Å. We observed a homodimeric assembly comprising the ketoacyl synthase (KS) domain at the centre, mediating dimerization, and the acyltransferase (AT) domains protruding in opposite directions from the central KS domain dimer. In addition to the KS-AT di-domains, the cryoEM map includes features not covered by the di-domain structural model that we predicted to contain a dimeric domain similar to dehydratases, yet likely lacking catalytic function. Analytical ultracentrifugation data indicate a pH-dependent equilibrium between monomeric and dimeric assembly states, while comparison with the previously determined structures of M. smegmatis Pks13 indicates architectural flexibility. Combining the experimentally determined structure with modelling in AlphaFold2 suggests a structural scaffold with a relatively stable dimeric core, which combines with considerable conformational flexibility to facilitate the successive steps of the Claisen-type condensation reaction catalysed by Pks13.
{"title":"Cryo-electron microscopy structure of the di-domain core of <i>Mycobacterium tuberculosis</i> polyketide synthase 13, essential for mycobacterial mycolic acid synthesis.","authors":"Hannah E Johnston, Sarah M Batt, Alistair K Brown, Christos G Savva, Gurdyal S Besra, Klaus Fütterer","doi":"10.1099/mic.0.001505","DOIUrl":"10.1099/mic.0.001505","url":null,"abstract":"<p><p>Mycobacteria are known for their complex cell wall, which comprises layers of peptidoglycan, polysaccharides and unusual fatty acids known as mycolic acids that form their unique outer membrane. Polyketide synthase 13 (Pks13) of <i>Mycobacterium tuberculosis</i>, the bacterial organism causing tuberculosis, catalyses the last step of mycolic acid synthesis prior to export to and assembly in the cell wall. Due to its essentiality, Pks13 is a target for several novel anti-tubercular inhibitors, but its 3D structure and catalytic reaction mechanism remain to be fully elucidated. Here, we report the molecular structure of the catalytic core domains of <i>M. tuberculosis</i> Pks13 (Mt-Pks13), determined by transmission cryo-electron microscopy (cryoEM) to a resolution of 3.4 Å. We observed a homodimeric assembly comprising the ketoacyl synthase (KS) domain at the centre, mediating dimerization, and the acyltransferase (AT) domains protruding in opposite directions from the central KS domain dimer. In addition to the KS-AT di-domains, the cryoEM map includes features not covered by the di-domain structural model that we predicted to contain a dimeric domain similar to dehydratases, yet likely lacking catalytic function. Analytical ultracentrifugation data indicate a pH-dependent equilibrium between monomeric and dimeric assembly states, while comparison with the previously determined structures of <i>M. smegmatis</i> Pks13 indicates architectural flexibility. Combining the experimentally determined structure with modelling in AlphaFold2 suggests a structural scaffold with a relatively stable dimeric core, which combines with considerable conformational flexibility to facilitate the successive steps of the Claisen-type condensation reaction catalysed by Pks13.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aya S Hassan, Ethan S Heflen, Khoa D Nguyen, Gabriel A Parrett, Douglas D Risser
Many cyanobacteria, both unicellular and filamentous, exhibit surface motility driven by type IV pili (T4P). While the component parts of the T4P machinery described in other prokaryotes are largely conserved in cyanobacteria, there are also several T4P proteins that appear to be unique to this phylum. One recently discovered component is EbsA, which has been characterized in two unicellular cyanobacteria. EbsA was found to form a complex with other T4P proteins and is essential for motility. Additionally, deletion of ebsA in one of these strains promoted the formation of biofilms. To expand the understanding of ebsA in cyanobacteria, its role in motility and biofilm formation were investigated in the model filamentous cyanobacterium Nostoc punctiforme. Expression of ebsA was strictly limited to hormogonia, the motile filaments of N. punctiforme. Deletion of ebsA did not affect hormogonium development but resulted in the loss of motility and the failure to accumulate surface pili or produce hormogonium polysaccharide (HPS), consistent with pervious observations in unicellular cyanobacteria. Protein-protein interaction studies indicated that EbsA directly interacts with PilB, and the localization of EbsA-GFP resembled that previously shown for both PilB and Hfq. Collectively, these results support the hypothesis that EbsA forms a complex along with PilB and Hfq that is essential for T4P extension. In contrast, rather than enhancing biofilm formation, deletion of both ebsA and pilB abolish biofilm formation in N. punctiforme, implying that distinct modalities for the relationship between motility, T4P function and biofilm formation may exist in different cyanobacteria.
{"title":"EbsA is essential for both motility and biofilm formation in the filamentous cyanobacterium <i>Nostoc punctiforme</i>.","authors":"Aya S Hassan, Ethan S Heflen, Khoa D Nguyen, Gabriel A Parrett, Douglas D Risser","doi":"10.1099/mic.0.001498","DOIUrl":"10.1099/mic.0.001498","url":null,"abstract":"<p><p>Many cyanobacteria, both unicellular and filamentous, exhibit surface motility driven by type IV pili (T4P). While the component parts of the T4P machinery described in other prokaryotes are largely conserved in cyanobacteria, there are also several T4P proteins that appear to be unique to this phylum. One recently discovered component is EbsA, which has been characterized in two unicellular cyanobacteria. EbsA was found to form a complex with other T4P proteins and is essential for motility. Additionally, deletion of <i>ebsA</i> in one of these strains promoted the formation of biofilms. To expand the understanding of <i>ebsA</i> in cyanobacteria, its role in motility and biofilm formation were investigated in the model filamentous cyanobacterium <i>Nostoc punctiforme</i>. Expression of <i>ebsA</i> was strictly limited to hormogonia, the motile filaments of <i>N. punctiforme</i>. Deletion of <i>ebsA</i> did not affect hormogonium development but resulted in the loss of motility and the failure to accumulate surface pili or produce hormogonium polysaccharide (HPS), consistent with pervious observations in unicellular cyanobacteria. Protein-protein interaction studies indicated that EbsA directly interacts with PilB, and the localization of EbsA-GFP resembled that previously shown for both PilB and Hfq. Collectively, these results support the hypothesis that EbsA forms a complex along with PilB and Hfq that is essential for T4P extension. In contrast, rather than enhancing biofilm formation, deletion of both <i>ebsA</i> and <i>pilB</i> abolish biofilm formation in <i>N. punctiforme</i>, implying that distinct modalities for the relationship between motility, T4P function and biofilm formation may exist in different cyanobacteria.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 9","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meaghan Castledine, Joseph Pennycook, Arthur Newbury, Luke Lear, Zoltan Erdos, Rai Lewis, Suzanne Kay, Dirk Sanders, David Sünderhauf, Angus Buckling, Elze Hesse, Daniel Padfield
Model microbial communities are regularly used to test ecological and evolutionary theory as they are easy to manipulate and have fast generation times, allowing for large-scale, high-throughput experiments. A key assumption for most model microbial communities is that they stably coexist, but this is rarely tested experimentally. Here we report the (dis)assembly of a five-species microbial community from a metacommunity of soil microbes that can be used for future experiments. Using reciprocal invasion-from-rare experiments we show that all species can coexist and we demonstrate that the community is stable for a long time (~600 generations). Crucially for future work, we show that each species can be identified by their plate morphologies, even after >1 year in co-culture. We characterise pairwise species interactions and produce high-quality reference genomes for each species. This stable five-species community can be used to test key questions in microbial ecology and evolution.
{"title":"Characterizing a stable five-species microbial community for use in experimental evolution and ecology.","authors":"Meaghan Castledine, Joseph Pennycook, Arthur Newbury, Luke Lear, Zoltan Erdos, Rai Lewis, Suzanne Kay, Dirk Sanders, David Sünderhauf, Angus Buckling, Elze Hesse, Daniel Padfield","doi":"10.1099/mic.0.001489","DOIUrl":"10.1099/mic.0.001489","url":null,"abstract":"<p><p>Model microbial communities are regularly used to test ecological and evolutionary theory as they are easy to manipulate and have fast generation times, allowing for large-scale, high-throughput experiments. A key assumption for most model microbial communities is that they stably coexist, but this is rarely tested experimentally. Here we report the (dis)assembly of a five-species microbial community from a metacommunity of soil microbes that can be used for future experiments. Using reciprocal invasion-from-rare experiments we show that all species can coexist and we demonstrate that the community is stable for a long time (~600 generations). Crucially for future work, we show that each species can be identified by their plate morphologies, even after >1 year in co-culture. We characterise pairwise species interactions and produce high-quality reference genomes for each species. This stable five-species community can be used to test key questions in microbial ecology and evolution.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 9","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Chyin Yew, Stacey Adlard, Michael James Dunn, Siti Aisyah Alias, David Anthony Pearce, Azizan Abu Samah, Peter Convey
The gut microbiomes of Antarctic penguins are important for the fitness of the host birds and their chicks. The compositions of microbial communities in Antarctic penguin guts are strongly associated with the birds' diet, physiological adaptation and phylogeny. Whilst seasonal changes in food resources, distribution and population parameters of Antarctic penguins have been well addressed, little research is available on the stability or variability of penguin stomach microbiomes over time. Here, we focused on two Pygoscelis penguin species breeding sympatrically in the maritime Antarctic and analysed their stomach contents to assess whether penguin gut microbiota differed over three austral summer breeding seasons. We used a high-throughput DNA sequencing approach to study bacterial diversity in stomach regurgitates of Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins that have a similar foraging regime on Signy Island (South Orkney Islands). Our data revealed significant differences in bacterial alpha and beta diversity between the study seasons. We also identified bacterial genera that were significantly associated with specific breeding seasons, diet compositions, chick-rearing stages and sampling events. This study provides a baseline for establishing future monitoring of penguin gut microbiomes in a rapidly changing environment.
{"title":"Seasonal variation in the stomach microbiota of two sympatrically breeding <i>Pygoscelis</i> penguin species at Signy Island, South Orkney Islands.","authors":"Wen Chyin Yew, Stacey Adlard, Michael James Dunn, Siti Aisyah Alias, David Anthony Pearce, Azizan Abu Samah, Peter Convey","doi":"10.1099/mic.0.001503","DOIUrl":"10.1099/mic.0.001503","url":null,"abstract":"<p><p>The gut microbiomes of Antarctic penguins are important for the fitness of the host birds and their chicks. The compositions of microbial communities in Antarctic penguin guts are strongly associated with the birds' diet, physiological adaptation and phylogeny. Whilst seasonal changes in food resources, distribution and population parameters of Antarctic penguins have been well addressed, little research is available on the stability or variability of penguin stomach microbiomes over time. Here, we focused on two <i>Pygoscelis</i> penguin species breeding sympatrically in the maritime Antarctic and analysed their stomach contents to assess whether penguin gut microbiota differed over three austral summer breeding seasons. We used a high-throughput DNA sequencing approach to study bacterial diversity in stomach regurgitates of Adélie (<i>Pygoscelis adeliae</i>) and chinstrap (<i>Pygoscelis antarctica</i>) penguins that have a similar foraging regime on Signy Island (South Orkney Islands). Our data revealed significant differences in bacterial alpha and beta diversity between the study seasons. We also identified bacterial genera that were significantly associated with specific breeding seasons, diet compositions, chick-rearing stages and sampling events. This study provides a baseline for establishing future monitoring of penguin gut microbiomes in a rapidly changing environment.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 9","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phase variation is defined as the rapid and reversible switching of gene expression, and typically occurs in genes encoding surface features in small genome bacterial pathogens. Phase variation has evolved to provide an extra survival mechanism in bacteria that lack multiple 'sense-and-respond' gene regulation systems. Many bacterial pathogens also encode DNA methyltransferases that are phase-variable, controlling systems called 'phasevarions' (phase-variable regulons). This primer will summarize the current understanding of phase variation, describing the role of major phase-variable factors, and phasevarions, in bacterial pathobiology.
相位变异是指基因表达的快速可逆转换,通常发生在小基因组细菌病原体的表面特征编码基因中。在缺乏多种 "感知-反应 "基因调控系统的细菌中,相位变异为它们提供了一种额外的生存机制。许多细菌病原体也编码具有相位变异的 DNA 甲基转移酶,其控制系统被称为 "相位变异调控子"(phasevarions)。这篇入门文章将总结目前对相位变异的理解,描述主要相位变异因子和相位变异子在细菌病理生物学中的作用。
{"title":"Microbial Primer: Phase variation - survival and adaptability by generation of a diverse population.","authors":"Ashley J Fraser, Finn E McMahon, John M Atack","doi":"10.1099/mic.0.001492","DOIUrl":"10.1099/mic.0.001492","url":null,"abstract":"<p><p>Phase variation is defined as the rapid and reversible switching of gene expression, and typically occurs in genes encoding surface features in small genome bacterial pathogens. Phase variation has evolved to provide an extra survival mechanism in bacteria that lack multiple 'sense-and-respond' gene regulation systems. Many bacterial pathogens also encode DNA methyltransferases that are phase-variable, controlling systems called 'phasevarions' (phase-variable regulons). This primer will summarize the current understanding of phase variation, describing the role of major phase-variable factors, and phasevarions, in bacterial pathobiology.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 9","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}