首页 > 最新文献

Microbiology-Sgm最新文献

英文 中文
Genomic characterization of prophage elements in Clostridium clostridioforme: an understudied component of the intestinal microbiome. 梭状芽孢杆菌(Clostridium clostridioforme)中噬菌体元素的基因组特征:肠道微生物组中未被充分研究的组成部分。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-08-01 DOI: 10.1099/mic.0.001486
Suzanne Humphrey, Angeliki Marouli, Katja Thümmler, Margaret Mullin, Leighton Pritchard, Daniel M Wall

Genome sequencing of Clostridium clostridioforme strain LM41 revealed the presence of an atypically high proportion of mobile genetic elements for this species, with a particularly high abundance of prophages. Bioinformatic analysis of prophage sequences sought to characterize these elements and identify prophage-linked genes contributing to enhanced fitness of the host bacteria in the dysbiotic gut. Using PHASTER, PhageScope and manual curation, this work has identified 15 prophages: 4 predicted to be intact, 2 predicted to be defective and 9 which are unclassified. Quantitative PCR (qPCR) analysis revealed spontaneous release of four of the LM41 prophages (φ1, φ2, φ4 and φ10) into the culture supernatant, with virion-like particles visualized using transmission electron microscopy. The majority (12/14) of these particles had morphology akin to podoviruses, which is consistent with morphology predictions for φ1 and φ4. We observed diversity in the lysogeny mechanisms utilized by the prophages, with examples of the classical λ-like CI/Cro system, the ICEBs1 ImmR/ImmA-like system and the Mu-like C/Ner system. Classical morons, such as toxins or immune evasion factors, were not observed. We did, however, identify a variety of genes with roles in mediating restriction modification and genetic diversity, as well as some candidate genes with potential roles in host adaptation. Despite being the most abundant entities in the intestine, there is a dearth of information about phages associated with members of the microbiome. This work begins to shed light on the contribution of these elements to the lifestyle of C. clostridioforme LM41.

梭状芽孢梭菌菌株 LM41 的基因组测序显示,该菌种存在异常高比例的移动遗传因子,其中噬菌体的含量尤其高。对噬菌体序列进行生物信息学分析的目的是确定这些元素的特征,并找出在肠道菌群失调的情况下,噬菌体与宿主细菌的适应性增强有关的基因。这项工作利用 PHASTER、PhageScope 和手工整理,确定了 15 个噬菌体:其中 4 个预测为完整噬菌体,2 个预测为缺陷噬菌体,9 个未分类。定量 PCR(qPCR)分析表明,LM41 的 4 个噬菌体(φ1、φ2、φ4 和 φ10)自发释放到培养上清液中,并通过透射电子显微镜观察到病毒颗粒。这些颗粒中的大多数(12/14)具有类似荚膜病毒的形态,这与φ1和φ4的形态预测一致。我们观察到噬菌体利用的溶菌机制多种多样,例如经典的λ类CI/Cro系统、ICEBs1类ImmR/ImmA系统和Mu类C/Ner系统。我们没有观察到经典的变形体,如毒素或免疫逃避因子。不过,我们确实发现了多种在介导限制性修饰和遗传多样性方面发挥作用的基因,以及一些在宿主适应方面具有潜在作用的候选基因。尽管噬菌体是肠道中最丰富的实体,但与微生物群成员相关的噬菌体信息却十分匮乏。这项研究开始揭示这些元素对梭状芽孢杆菌 LM41 生活方式的贡献。
{"title":"Genomic characterization of prophage elements in <i>Clostridium clostridioforme</i>: an understudied component of the intestinal microbiome.","authors":"Suzanne Humphrey, Angeliki Marouli, Katja Thümmler, Margaret Mullin, Leighton Pritchard, Daniel M Wall","doi":"10.1099/mic.0.001486","DOIUrl":"10.1099/mic.0.001486","url":null,"abstract":"<p><p>Genome sequencing of <i>Clostridium clostridioforme</i> strain LM41 revealed the presence of an atypically high proportion of mobile genetic elements for this species, with a particularly high abundance of prophages. Bioinformatic analysis of prophage sequences sought to characterize these elements and identify prophage-linked genes contributing to enhanced fitness of the host bacteria in the dysbiotic gut. Using PHASTER, PhageScope and manual curation, this work has identified 15 prophages: 4 predicted to be intact, 2 predicted to be defective and 9 which are unclassified. Quantitative PCR (qPCR) analysis revealed spontaneous release of four of the LM41 prophages (φ1, φ2, φ4 and φ10) into the culture supernatant, with virion-like particles visualized using transmission electron microscopy. The majority (12/14) of these particles had morphology akin to podoviruses, which is consistent with morphology predictions for φ1 and φ4. We observed diversity in the lysogeny mechanisms utilized by the prophages, with examples of the classical λ-like CI/Cro system, the ICE<i>Bs</i>1 ImmR/ImmA-like system and the Mu-like C/Ner system. Classical morons, such as toxins or immune evasion factors, were not observed. We did, however, identify a variety of genes with roles in mediating restriction modification and genetic diversity, as well as some candidate genes with potential roles in host adaptation. Despite being the most abundant entities in the intestine, there is a dearth of information about phages associated with members of the microbiome. This work begins to shed light on the contribution of these elements to the lifestyle of <i>C. clostridioforme</i> LM41.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual transcriptional inhibition of glutamate and alanine racemase is synergistic in Mycobacterium tuberculosis. 谷氨酸和丙氨酸消旋酶的双重转录抑制在结核分枝杆菌中具有协同作用。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-08-01 DOI: 10.1099/mic.0.001484
Matthew B McNeil, Gregory M Cook, Kurt L Krause

Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.

化学抑制剂之间的协同作用虽然能提供信息,但却很难解释,因为化学抑制剂往往有多个靶点,其中许多靶点可能是未知的。在这里,我们利用多重转录抑制,验证了在结核分枝杆菌中同时抑制谷氨酸消旋酶和丙氨酸消旋酶具有协同作用。这证实了之前通过化学相互作用研究观察到的结果,并凸显了靶向参与分枝杆菌细胞壁合成的多种酶的潜力。
{"title":"Dual transcriptional inhibition of glutamate and alanine racemase is synergistic in <i>Mycobacterium tuberculosis</i>.","authors":"Matthew B McNeil, Gregory M Cook, Kurt L Krause","doi":"10.1099/mic.0.001484","DOIUrl":"10.1099/mic.0.001484","url":null,"abstract":"<p><p>Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in <i>Mycobacterium tuberculosis</i>. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and structure of the deep-sea sponge microbiome in the equatorial Atlantic Ocean. 赤道大西洋深海海绵微生物群的多样性和结构。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001478
Sam E Williams, Gilda Varliero, Miguel Lurgi, James E M Stach, Paul R Race, Paul Curnow

Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90 % archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99 % of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.

海绵(多孔动物门)蕴藏着特定的微生物群落,它们驱动着宿主的生态和进化。了解这些群落的结构和动态正在成为海洋微生物生态学研究的主要焦点。迄今为止,大部分研究工作都集中在温暖和浅海沿岸水域的海绵上,而对深海海绵的研究仍然较少。在这里,我们对与 23 个深海海绵相关的微生物联合体进行了元分类分析。我们发现在这些群落中,相对于细菌,古细菌的数量较多,某些海绵微生物群落中古细菌的比例超过 90%。具体来说,古细菌科(Nitrosopumilaceae)的数量非常多,占所有古细菌读数的 99% 以上。我们的分析表明,海绵微生物群落反映了宿主海绵的系统发育,表明宿主分类学在确定微生物群落组成方面发挥着关键作用。我们的工作证实了进化和环境过程对深海海绵微生物群落组成的贡献。
{"title":"Diversity and structure of the deep-sea sponge microbiome in the equatorial Atlantic Ocean.","authors":"Sam E Williams, Gilda Varliero, Miguel Lurgi, James E M Stach, Paul R Race, Paul Curnow","doi":"10.1099/mic.0.001478","DOIUrl":"10.1099/mic.0.001478","url":null,"abstract":"<p><p>Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90 % archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99 % of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myo5B plays a significant role in the hyphal growth and virulence of the human pathogenic fungus Mucor lusitanicus. Myo5B 在人类致病真菌 Mucor lusitanicus 的菌丝生长和毒力方面发挥着重要作用。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001482
Trung Anh Trieu, Lam Minh Duong, Phuong Anh Nguyen, Thuoc Van Doan, Hung Phuc Nguyen

Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in Mucor lusitanicus was explored by generating silencing phenotypes and null mutants corresponding to the myo5B gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The myo5BΔ null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. In vivo virulence assays conducted in the Galleria mellonella invertebrate model revealed that the myo5BΔ mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of M. lusitanicus. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.

粘孢子菌病是一种新出现的致命侵袭性真菌感染,由粘孢子菌目真菌引起。我们对肌球蛋白超家族进行了研究,该超家族包括具有各种细胞功能的肌动蛋白运动蛋白。具体来说,我们通过产生沉默表型和与 myo5B 基因相对应的无效突变体,探讨了粘孢子菌中肌球蛋白 V 类家族中的 Myo5B(ID 179665)蛋白的作用。与野生型菌株相比,沉默真菌转化株的生长速度明显降低,而且几乎完全没有孢子。myo5BΔ无效突变株表现出非典型特征,包括异常短的隔膜和膨大的菌丝。值得注意的是,在突变株中,大部分是小的酵母样细胞,而不是丝状菌丝。这些酵母样细胞不能正常发芽,导致极性丧失。在Galleria mellonella无脊椎动物模型中进行的体内毒力测定显示,myo5BΔ突变株是无毒的。这些发现揭示了 Myo5B 蛋白对 M. lusitanicus 的二态性和致病性的重要贡献。因此,肌球蛋白V家族是未来治疗粘孢子虫病的潜在靶标。
{"title":"Myo5B plays a significant role in the hyphal growth and virulence of the human pathogenic fungus <i>Mucor lusitanicus</i>.","authors":"Trung Anh Trieu, Lam Minh Duong, Phuong Anh Nguyen, Thuoc Van Doan, Hung Phuc Nguyen","doi":"10.1099/mic.0.001482","DOIUrl":"10.1099/mic.0.001482","url":null,"abstract":"<p><p>Mucormycosis is an emerging and deadly invasive fungal infection caused by fungi belonging to the Mucorales order. We investigated the myosin superfamily, which encompasses diverse actin-based motor proteins with various cellular functions. Specifically, the role of the Myo5B (ID 179665) protein from the myosin class V family in <i>Mucor lusitanicus</i> was explored by generating silencing phenotypes and null mutants corresponding to the <i>myo5B</i> gene. Silencing fungal transformants exhibited a markedly reduced growth rate and a nearly complete absence of sporulation compared to the wild-type strain. The <i>myo5BΔ</i> null mutant strain displayed atypical characteristics, including abnormally short septa and inflated hyphae. Notably, there were a majority of small yeast-like cells instead of filamentous hyphae in the mutant. These yeast-like cells cannot germinate normally, resulting in a loss of polarity. <i>In vivo</i> virulence assays conducted in the <i>Galleria mellonella</i> invertebrate model revealed that the <i>myo5BΔ</i> mutant strain was avirulent. These findings shed light on the crucial contributions of the Myo5B protein to the dimorphism and pathogenicity of <i>M. lusitanicus</i>. Therefore, the myosin V family is a potential target for future therapeutic interventions aimed at treating mucormycosis.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. 从锂离子电池活性正极材料中回收钴的新型闭环生物技术。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001475
Eva Pakostova, John Graves, Egle Latvyte, Giovanni Maddalena, Louise Horsfall

In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals. However, a bioleaching-based technology has not yet been applied to recover valuable metals from waste LIBs on an industrial scale. A series of experiments was performed to improve metal recovery rates from an active cathode material (LiCoO2; LCO). (i) Direct bioleaching of ≤0.5 % LCO with two prokaryotic acidophilic consortia achieved >80 % Co and 90 % Li extraction. Significantly lower metal recovery rates were obtained at 30 °C than at 45 °C. (ii) In contrast, during direct bioleaching of 3 % LCO with consortia adapted to elevated LCO levels, the 30 °C consortium performed significantly better than the 45 °C consortium, solubilizing 73 and 93 % of the Co and Li, respectively, during one-step bioleaching, and 83 and 99 % of the Co and Li, respectively, during a two-step process. (iii) The adapted 30°C consortium was used for indirect leaching in a low-waste closed-loop system (with 10 % LCO). The process involved generation of sulfuric acid in an acid-generating bioreactor (AGB), 2-3 week leaching of LCO with the biogenic acid (pH 0.9), selective precipitation of Co as hydroxide, and recirculation of the metal-free liquor back into the AGB. In total, 58.2 % Co and 100 % Li were solubilized in seven phases, and >99.9 % of the dissolved Co was recovered after each phase as a high-purity Co hydroxide. Additionally, Co nanoparticles were generated from the obtained Co-rich leachates, using Desulfovibrio alaskensis, and Co electrowinning was optimized as an alternative recovery technique, yielding high recovery rates (91.1 and 73.6% on carbon felt and roughened steel, respectively) from bioleachates that contained significantly lower Co concentrations than industrial hydrometallurgical liquors. The closed-loop system was highly dominated by the mixotrophic archaeon Ferroplasma and sulfur-oxidizing bacteria Acidithiobacillus caldus and Acidithiobacillus thiooxidans. The developed system achieved high metal recovery rates and provided high-purity solid products suitable for a battery supply chain, while minimizing waste production and the inhibitory effects of elevated concentrations of dissolved metals on the leaching prokaryotes. The system is suitable for scale-up applications and has the potential to be adapted to different battery chemistries.

近年来,对锂离子电池(LIB)的需求迅速增长。传统的回收策略(基于火法和湿法冶金)会对环境造成破坏,因此需要开发更具可持续性的方法。生物浸出法是一种很有前景的环保方法,它利用微生物来溶解金属。然而,以生物浸出为基础的技术尚未在工业规模上应用于从废锂电池中回收有价金属。为了提高活性阴极材料(钴酸锂;LCO)的金属回收率,我们进行了一系列实验。(i) 使用两种嗜酸性原核生物联合体对≤0.5%的 LCO 进行直接生物浸出,实现了 >80% 的钴和 90% 的锂提取。30 °C时的金属回收率明显低于 45 °C时。(ii) 相反,在使用适应 LCO 水平升高的复合菌群对 3% LCO 进行直接生物浸出过程中,30 °C复合菌群的表现明显优于 45 °C复合菌群,在一步生物浸出过程中分别溶解了 73% 和 93% 的钴和锂,在两步生物浸出过程中分别溶解了 83% 和 99% 的钴和锂。(iii) 经调整的 30°C 联合体被用于低废物闭环系统中的间接沥滤(含 10% 的 LCO)。该过程包括在制酸生物反应器(AGB)中生成硫酸,用生物酸(pH 0.9)浸出 LCO 2-3 周,选择性地将 Co 沉淀为氢氧化物,并将无金属液循环回 AGB。在七个阶段中,共溶解了 58.2% 的钴和 100% 的锂,在每个阶段后,超过 99.9% 的溶解钴以高纯度氢氧化钴的形式被回收。此外,还利用阿拉斯加脱硫弧菌从获得的富钴浸出液中生成了纳米钴颗粒,并优化了钴电积作为一种替代回收技术,从含钴浓度明显低于工业湿法冶金液的生物浸出液中获得了高回收率(碳毡和粗化钢的回收率分别为 91.1% 和 73.6%)。该闭环系统主要由混养古菌 Ferroplasma 和硫氧化细菌 Acidithiobacillus caldus 和 Acidithiobacillus thiooxidans 控制。所开发的系统实现了较高的金属回收率,并提供了适用于电池供应链的高纯度固体产品,同时最大限度地减少了废物的产生以及高浓度溶解金属对浸出原核生物的抑制作用。该系统适合放大应用,并有可能适用于不同的电池化学成分。
{"title":"A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material.","authors":"Eva Pakostova, John Graves, Egle Latvyte, Giovanni Maddalena, Louise Horsfall","doi":"10.1099/mic.0.001475","DOIUrl":"10.1099/mic.0.001475","url":null,"abstract":"<p><p>In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals. However, a bioleaching-based technology has not yet been applied to recover valuable metals from waste LIBs on an industrial scale. A series of experiments was performed to improve metal recovery rates from an active cathode material (LiCoO<sub>2</sub>; LCO). (i) Direct bioleaching of ≤0.5 % LCO with two prokaryotic acidophilic consortia achieved >80 % Co and 90 % Li extraction. Significantly lower metal recovery rates were obtained at 30 °C than at 45 °C. (ii) In contrast, during direct bioleaching of 3 % LCO with consortia adapted to elevated LCO levels, the 30 °C consortium performed significantly better than the 45 °C consortium, solubilizing 73 and 93 % of the Co and Li, respectively, during one-step bioleaching, and 83 and 99 % of the Co and Li, respectively, during a two-step process. (iii) The adapted 30°C consortium was used for indirect leaching in a low-waste closed-loop system (with 10 % LCO). The process involved generation of sulfuric acid in an acid-generating bioreactor (AGB), 2-3 week leaching of LCO with the biogenic acid (pH 0.9), selective precipitation of Co as hydroxide, and recirculation of the metal-free liquor back into the AGB. In total, 58.2 % Co and 100 % Li were solubilized in seven phases, and >99.9 % of the dissolved Co was recovered after each phase as a high-purity Co hydroxide. Additionally, Co nanoparticles were generated from the obtained Co-rich leachates, using <i>Desulfovibrio alaskensis</i>, and Co electrowinning was optimized as an alternative recovery technique, yielding high recovery rates (91.1 and 73.6% on carbon felt and roughened steel, respectively) from bioleachates that contained significantly lower Co concentrations than industrial hydrometallurgical liquors. The closed-loop system was highly dominated by the mixotrophic archaeon <i>Ferroplasma</i> and sulfur-oxidizing bacteria <i>Acidithiobacillus caldus</i> and <i>Acidithiobacillus thiooxidans</i>. The developed system achieved high metal recovery rates and provided high-purity solid products suitable for a battery supply chain, while minimizing waste production and the inhibitory effects of elevated concentrations of dissolved metals on the leaching prokaryotes. The system is suitable for scale-up applications and has the potential to be adapted to different battery chemistries.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbe Profile: Bacteriophage ϕ6: a model for segmented RNA viruses and the evolutionary consequences of viral 'sex'. 微生物简介:噬菌体ϕ6:分段 RNA 病毒的模型和病毒 "性 "的进化后果。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001467
Paul E Turner, Lin Chao

Bacteriophage ϕ6 is a segmented dsRNA virus with a lipid envelope, which are unusual traits in bacterial viruses but common in eukaryotic viruses. This uniqueness allowed ϕ6 and its Pseudomonad hosts to serve as a molecular model for RNA genetics, mutation, replication, packaging, and reassortment in both bacterial and eukaryotic viruses. However, an additional uniqueness of ϕ6, created by its high mutation rate, was its use as an experimental system to study key questions such as the evolution of sex (segment reassortment), host-pathogen interactions, mutational load, rates of adaptation, genetic and phenotypic complexity, and game theory.

噬菌体ϕ6是一种具有脂质包膜的分段dsRNA病毒,这在细菌病毒中并不常见,但在真核病毒中却很常见。这种独特性使ϕ6 及其假单胞菌宿主成为细菌和真核病毒中 RNA 遗传学、突变、复制、包装和重配的分子模型。然而,ϕ6的另一个独特之处在于它的高突变率,即它可以作为一个实验系统来研究一些关键问题,如性的进化(片段重配)、宿主与病原体的相互作用、突变负荷、适应率、遗传和表型复杂性以及博弈论。
{"title":"Microbe Profile: Bacteriophage ϕ6: a model for segmented RNA viruses and the evolutionary consequences of viral 'sex'.","authors":"Paul E Turner, Lin Chao","doi":"10.1099/mic.0.001467","DOIUrl":"10.1099/mic.0.001467","url":null,"abstract":"<p><p>Bacteriophage ϕ6 is a segmented dsRNA virus with a lipid envelope, which are unusual traits in bacterial viruses but common in eukaryotic viruses. This uniqueness allowed ϕ6 and its <i>Pseudomonad</i> hosts to serve as a molecular model for RNA genetics, mutation, replication, packaging, and reassortment in both bacterial and eukaryotic viruses. However, an additional uniqueness of ϕ6, created by its high mutation rate, was its use as an experimental system to study key questions such as the evolution of sex (segment reassortment), host-pathogen interactions, mutational load, rates of adaptation, genetic and phenotypic complexity, and game theory.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aspartate aminotransferase of Rhizobium leguminosarum has extended substrate specificity and metabolizes aspartate to enable N2 fixation in pea nodules. 豆芽根瘤菌的天门冬氨酸氨基转移酶具有扩展的底物特异性,能代谢天门冬氨酸,使豌豆结核中的氮固定。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001471
Raphael Ledermann, Alexandre Bourdès, Marion Schuller, Beatriz Jorrin, Ivan Ahel, Philip Simon Poole

Rhizobium leguminosarum aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N2 fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in R. leguminosarum, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N2 fixation in legume nodules. Consequently, we show that aspartate degradation is required for N2 fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N2 fixation in pea nodules.

豆角根瘤菌天冬氨酸氨基转移酶(AatA)突变体在豆科植物结节中的共生固氮作用急剧下降。虽然 AatA 可逆地转氨酶天冬氨酸和谷氨酸这两种主要的氨基供体化合物,但突变体缺乏 N2 固定的原因仍不清楚。在研究 AatA 作用的过程中,我们发现它还能催化天冬氨酸和丙酮酸之间的转氨基反应,形成丙氨酸。这种次级反应的速率约为典型天冬氨酸转氨酶反应速率的 60%,并通过天冬氨酸将丙氨酸的生物合成与谷氨酸连接起来。这或许可以解释为什么豆角菌缺乏谷氨酸-丙酮酸转氨酶活性,而这在真核生物和许多原核生物基因组中都很常见。然而,豆科植物结核中的 N2 固定并不需要天门冬氨酸-丙酮酸转氨酶反应。因此,我们证明,N2 固定需要天冬氨酸降解,而不是生物合成转氨基反应形成氨基酸。因此,催化天冬氨酸分解为富马酸和氨的天冬氨酸酶抑制了 AatA 突变体,恢复了豌豆结节的 N2 固定。
{"title":"Aspartate aminotransferase of <i>Rhizobium leguminosarum</i> has extended substrate specificity and metabolizes aspartate to enable N<sub>2</sub> fixation in pea nodules.","authors":"Raphael Ledermann, Alexandre Bourdès, Marion Schuller, Beatriz Jorrin, Ivan Ahel, Philip Simon Poole","doi":"10.1099/mic.0.001471","DOIUrl":"10.1099/mic.0.001471","url":null,"abstract":"<p><p><i>Rhizobium leguminosarum</i> aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N<sub>2</sub> fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in <i>R. leguminosarum</i>, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N<sub>2</sub> fixation in legume nodules. Consequently, we show that aspartate degradation is required for N<sub>2</sub> fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N<sub>2</sub> fixation in pea nodules.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Primer: what is the stringent response and how does it allow bacteria to survive stress? 微生物初级读本:什么是严格反应,它如何让细菌在压力下生存?
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001483
Lucy Urwin, Orestis Savva, Rebecca M Corrigan

The stringent response is a conserved bacterial stress response that allows bacteria to alter their activity and survive under nutrient-limiting conditions. Activation of the stringent response is characterized by the production of intracellular signalling molecules, collectively termed (p)ppGpp, which interact with multiple targets inside bacterial cells. Together, these interactions induce a slow growth phenotype to aid bacterial survival by altering the transcriptomic profile of the cell, inhibiting ribosome biosynthesis and targeting enzymes involved in other key metabolic processes.

严格反应是一种保守的细菌应激反应,可使细菌改变其活性并在营养限制条件下存活。启动严格反应的特征是产生统称为 (p)ppGpp 的细胞内信号分子,这些分子与细菌细胞内的多个目标相互作用。这些相互作用通过改变细胞的转录组概况、抑制核糖体生物合成和靶向参与其他关键代谢过程的酶,共同诱导缓慢生长表型,帮助细菌存活。
{"title":"Microbial Primer: what is the stringent response and how does it allow bacteria to survive stress?","authors":"Lucy Urwin, Orestis Savva, Rebecca M Corrigan","doi":"10.1099/mic.0.001483","DOIUrl":"10.1099/mic.0.001483","url":null,"abstract":"<p><p>The stringent response is a conserved bacterial stress response that allows bacteria to alter their activity and survive under nutrient-limiting conditions. Activation of the stringent response is characterized by the production of intracellular signalling molecules, collectively termed (p)ppGpp, which interact with multiple targets inside bacterial cells. Together, these interactions induce a slow growth phenotype to aid bacterial survival by altering the transcriptomic profile of the cell, inhibiting ribosome biosynthesis and targeting enzymes involved in other key metabolic processes.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288640/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LazyAF, a pipeline for accessible medium-scale in silico prediction of protein-protein interactions. LazyAF,一个可用于蛋白质-蛋白质相互作用中型硅学预测的管道。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001473
Thomas C McLean

Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.

人工智能已经彻底改变了蛋白质结构预测领域。然而,随着功能更强大、更复杂的软件不断被开发出来,对终端用户来说,限制因素很快就变成了软件的可及性和易用性,而不是软件的功能。LazyAF是一个基于谷歌实验室的管道,它整合了现有的ColabFold BATCH软件,简化了中等规模的蛋白质-蛋白质相互作用预测过程。我们用 LazyAF 预测了广泛宿主多药抗性质粒 RK2 上编码的 76 种蛋白质的相互作用组,证明了该管道所提供的简易性和可访问性。
{"title":"LazyAF, a pipeline for accessible medium-scale <i>in silico</i> prediction of protein-protein interactions.","authors":"Thomas C McLean","doi":"10.1099/mic.0.001473","DOIUrl":"10.1099/mic.0.001473","url":null,"abstract":"<p><p>Artificial intelligence has revolutionized the field of protein structure prediction. However, with more powerful and complex software being developed, it is accessibility and ease of use rather than capability that is quickly becoming a limiting factor to end users. LazyAF is a Google Colaboratory-based pipeline which integrates the existing ColabFold BATCH software to streamline the process of medium-scale protein-protein interaction prediction. LazyAF was used to predict the interactome of the 76 proteins encoded on the broad-host-range multi-drug resistance plasmid RK2, demonstrating the ease and accessibility the pipeline provides.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RelQ-mediated alarmone signalling regulates growth, stress-induced biofilm formation and spore accumulation in Clostridioides difficile. RelQ 介导的报警酮信号调节艰难梭菌的生长、压力诱导的生物膜形成和孢子积累。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-07-01 DOI: 10.1099/mic.0.001479
Areej Malik, Adenrele Oludiran, Asia Poudel, Orlando Berumen Alvarez, Charles Woodward, Erin B Purcell

The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sublethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.

细菌严格反应(SR)是一种保守的转录重编程途径,由核苷酸信号警报素(pp)ppGpp 介导。难辨梭状芽孢杆菌是一种形成生物膜和孢子的病原体,会导致难辨梭状芽孢杆菌感染的顽固性和高度复发性。SR在其他过程中的作用及其调节艰难梭菌生理机能的效应器尚不清楚。艰难梭菌 RelQ 是一种梭菌报警酮合成酶。缺失 relQ 会使艰难梭菌在非应激条件下生长失调,影响对抗生素和氧化应激源的敏感性,并大大减少生物膜的形成。野生型艰难梭菌在亚致死压力下会增加生物膜的形成,而ΔrelQ菌株则不能上调生物膜的生成以应对压力。删除 relQ 会减缓浮游培养物中孢子的积累,但会加速生物膜中孢子的积累。这项工作确定了艰难梭菌的生物膜形成和孢子积累是由警报素介导的过程,并揭示了 RelQ 在应激诱导的生物膜调节中的重要性。
{"title":"RelQ-mediated alarmone signalling regulates growth, stress-induced biofilm formation and spore accumulation in <i>Clostridioides difficile</i>.","authors":"Areej Malik, Adenrele Oludiran, Asia Poudel, Orlando Berumen Alvarez, Charles Woodward, Erin B Purcell","doi":"10.1099/mic.0.001479","DOIUrl":"10.1099/mic.0.001479","url":null,"abstract":"<p><p>The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in <i>Clostridioides difficile</i>, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent <i>C. difficile</i> infections. The role of the SR in other processes and the effectors by which it regulates <i>C. difficile</i> physiology are unknown. <i>C. difficile</i> RelQ is a clostridial alarmone synthetase. Deletion of <i>relQ</i> dysregulates <i>C. difficile</i> growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type <i>C. difficile</i> displays increased biofilm formation in the presence of sublethal stress, the Δ<i>relQ</i> strain cannot upregulate biofilm production in response to stress. Deletion of <i>relQ</i> slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in <i>C. difficile</i> and reveals the importance of RelQ in stress-induced biofilm regulation.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiology-Sgm
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1