In this paper, we propose an approach for the topology design of a single-input, double-output (SIDO) compliant mechanism with collinear inputs and outputs. The topology design of the SIDO mechanism is accomplished by superimposing two single-input, single-output (SISO) sub-mechanisms. A kinetostatic model, based on the beam constraint model (BCM), is developed for the SIDO mechanism. Subsequently, dimensional design is applied to the conceptual configurations of the SIDO mechanism using an optimization method. The BCM becomes more efficient and capable of addressing complex displacement analyses by integrating the virtual slider model. Potential applications of the proposed SIDO compliant mechanism include miniature presses and tensile testing machines. The primary contributions of this work are twofold. First, we introduce a topology design approach based on superimposition to generate feasible configurations of SIDO planar compliant mechanisms with collinear inputs and outputs. Second, we integrate virtual sliders into a BCM model to address the challenge of modelling linkage-type compliant mechanisms with multiple outputs.