Force and motion transmission losses can significantly affect the kinematics and performance of wire-actuated robots. In addition to degrading the kinematic model, they can produce hysteresis (dead-zone) effects whereby the motion of the actuators produces no motion of the end effector. This paper presents a modeling framework that can be used at the design stage to evaluate the effects of these transmission losses. Considerations for modeling the dead-zone effects of end-effector motion are used to define a performance measure that quantifies the quality of a given design within a workspace. This design measure should be used in conjunction with the traditional kinematics and statics-based measures to reflect the expected performance of an integrated wire-actuated robot with its actuation lines and actuation unit. To illustrate our approach, we present a model of a wire-actuated snake-like robot with an articulated backbone made up of ball-and-socket joints. The results and methodology reported in this paper can guide the design of wire-actuated robots in selecting wire-parameters and determining their effects on the expected uncertainty, limiting the friction-limited minimal motion resolution of the end effector.