Bioluminescence inhibition (BLI) measurements in bioluminescent bacteria (BB) is perceived as a potential qualitative and quantitative indicator of hazardous materials. Acute but minor fluctuations in osmolarity and pH do not affect the living systems significantly. However, significant BLI is observed from marine BB due to acute osmolarity or pH changes that may affect the bioassay sensitivity. Often, real samples have low pH and osmolarity, interfering with the hazard assessment based on the principles of BLI. This anomaly in BLI measurements may lead to false positives. Therefore, modifications in existing analytical methods to overcome such practical constraints are envisaged. In the present research, a marine BB was utilized to study the luminescence reversal effect when exposed to stressful environments such as hypotonic (deionized water), acidic (50 μM to 50 mM HCl), and 0.1-100 ppm of Hg(II) for 0-30 min. Postincubation, the calcium alginate immobilized bioluminescent bacteria (biophotonic beads) were transferred to Boss media to observe any luminescence enhancement. The results showed that osmotic shock and low-strength acidic environments (50 μM to 0.5 mM HCl) at specified incubation times were not detrimental to the biophonic beads regarding luminescence response.
生物发光细菌(BB)的生物发光抑制(BLI)测量被认为是有害物质的潜在定性和定量指标。渗透压和pH值的剧烈但轻微的波动不会显著影响生命系统。然而,由于急性渗透压或pH值变化可能影响生物测定敏感性,从海洋BB中观察到显著的BLI。通常,实际样品的pH值和渗透压较低,干扰了基于BLI原理的危害评估。BLI测量中的这种异常可能导致假阳性。因此,设想对现有的分析方法进行修改,以克服这种实际限制。在本研究中,利用海洋BB研究了暴露于低压(去离子水)、酸性(50 μM至50 mM HCl)和0.1-100 ppm汞(II)等应激环境下0-30分钟的发光逆转效应。孵育后,将海藻酸钙固定化的生物发光细菌(生物光子珠)转移到Boss培养基中观察是否有发光增强。结果表明,渗透冲击和低强度酸性环境(50 μM ~ 0.5 mM HCl)在特定孵育时间下对生物声珠的发光响应没有影响。
{"title":"Acute Osmotic and pH Shock to Bioluminescent Bacteria Is Reversible in Terms of Luminescence Response.","authors":"Rajeev Ranjan, Sakshi Goswami, Navendu Sharma, Lalit Mohan Vashishtha, Meenu Singh, Yeshvandra Verma, Suresh Vir Singh Rana, Valentina Kratasyuk, Satyandra Kumar, Archna Pandey","doi":"10.1002/bio.70082","DOIUrl":"https://doi.org/10.1002/bio.70082","url":null,"abstract":"<p><p>Bioluminescence inhibition (BLI) measurements in bioluminescent bacteria (BB) is perceived as a potential qualitative and quantitative indicator of hazardous materials. Acute but minor fluctuations in osmolarity and pH do not affect the living systems significantly. However, significant BLI is observed from marine BB due to acute osmolarity or pH changes that may affect the bioassay sensitivity. Often, real samples have low pH and osmolarity, interfering with the hazard assessment based on the principles of BLI. This anomaly in BLI measurements may lead to false positives. Therefore, modifications in existing analytical methods to overcome such practical constraints are envisaged. In the present research, a marine BB was utilized to study the luminescence reversal effect when exposed to stressful environments such as hypotonic (deionized water), acidic (50 μM to 50 mM HCl), and 0.1-100 ppm of Hg(II) for 0-30 min. Postincubation, the calcium alginate immobilized bioluminescent bacteria (biophotonic beads) were transferred to Boss media to observe any luminescence enhancement. The results showed that osmotic shock and low-strength acidic environments (50 μM to 0.5 mM HCl) at specified incubation times were not detrimental to the biophonic beads regarding luminescence response.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70082"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to Clustering-Triggered Emission Mechanism of Carboxymethyl β-Cyclodextrin Aqueous Solution and Efficient Recognition of Fe<sup>3+</sup> in Mixed Ions.","authors":"","doi":"10.1002/bio.70091","DOIUrl":"https://doi.org/10.1002/bio.70091","url":null,"abstract":"","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70091"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study introduces the idea of a novel fluorescence-based imaging technique combined with a microfluidic platform that enables a precise control of dark transient state populations of fluorescent probes flowing over a uniform, top flat supergaussian excitation field with a constant flow rate. To demonstrate the imaging capability of the proposed detection method, numerical simulations have been performed by considering laser, microscope and flow parameters of experimental setup together with photophysical model and electronic transition rates of fluorescent dyes. As an output data to be assessed, fluorescence image data is simulated numerically for bromine-free carboxyfluorescein and its brominated derivatives having different numbers of bromine atoms. Based on the magnitudes of applied excitation irradiances and flow rates, which can be manually controlled by user during experiments, the presence of dark state populations can appear as broadening, shifts and decays in normalized fluorescence intensity signals that are computed from simulated fluorescence images. As such changes in signals become more pronounced upon an increase in the degree of bromination, it is elicited that heavy atom effect can be resolved by properly tuning excitation powers of laser and flow rates. Proposed imaging method has potential to provide invaluable means to conventional fluorescence methods and can open up new perspectives in biomedical research.
{"title":"A Novel Microfluidic-Based Fluorescence Detection Method Reveals Heavy Atom Effects on Photophysics of Fluorophores With High Triplet Quantum Yield: A Numerical Simulation Study.","authors":"Selim Can Dirican, Barış Demirbay","doi":"10.1002/bio.70090","DOIUrl":"10.1002/bio.70090","url":null,"abstract":"<p><p>The present study introduces the idea of a novel fluorescence-based imaging technique combined with a microfluidic platform that enables a precise control of dark transient state populations of fluorescent probes flowing over a uniform, top flat supergaussian excitation field with a constant flow rate. To demonstrate the imaging capability of the proposed detection method, numerical simulations have been performed by considering laser, microscope and flow parameters of experimental setup together with photophysical model and electronic transition rates of fluorescent dyes. As an output data to be assessed, fluorescence image data is simulated numerically for bromine-free carboxyfluorescein and its brominated derivatives having different numbers of bromine atoms. Based on the magnitudes of applied excitation irradiances and flow rates, which can be manually controlled by user during experiments, the presence of dark state populations can appear as broadening, shifts and decays in normalized fluorescence intensity signals that are computed from simulated fluorescence images. As such changes in signals become more pronounced upon an increase in the degree of bromination, it is elicited that heavy atom effect can be resolved by properly tuning excitation powers of laser and flow rates. Proposed imaging method has potential to provide invaluable means to conventional fluorescence methods and can open up new perspectives in biomedical research.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70090"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Bitam, R Fartas, M Diaf, H Boubekri, A Cheddadi, I R Martin
Er3+-doped BaF2 single crystals were investigated with two primary aims: first, to probe the infrared emissions from the 4I11/2 level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er3+-doped BaF2 single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm. This strong 971-nm emission has an emission cross-section of approximately 0.23 × 10-20 cm2. As with any phenomenon inherent to energy transfer by upconversion, the 4I11/2 fluorescence decay exhibits a rise time followed by a long decay of approximately 15 ms and a positive optical gain from the low values of the population inversion coefficient, which could potentially give rise to laser emission from this level. When we place our crystal on a photovoltaic device illuminated by 1500-nm wavelength radiation, we record a photocurrent of 300 μA at an illumination power of 85 mW. This indicates that the Er3+-doped BaF2 crystal is highly suitable for significantly enhancing the efficiency of silicon-based solar cells.
{"title":"Investigation of Er<sup>3+</sup>-Doped BaF<sub>2</sub> Single Crystals for Infrared Emission and Photovoltaic Efficiency Enhancement.","authors":"A Bitam, R Fartas, M Diaf, H Boubekri, A Cheddadi, I R Martin","doi":"10.1002/bio.70102","DOIUrl":"https://doi.org/10.1002/bio.70102","url":null,"abstract":"<p><p>Er<sup>3+</sup>-doped BaF<sub>2</sub> single crystals were investigated with two primary aims: first, to probe the infrared emissions from the <sup>4</sup>I<sub>11/2</sub> level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er<sup>3+</sup>-doped BaF<sub>2</sub> single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm. This strong 971-nm emission has an emission cross-section of approximately 0.23 × 10<sup>-20</sup> cm<sup>2</sup>. As with any phenomenon inherent to energy transfer by upconversion, the <sup>4</sup>I<sub>11/2</sub> fluorescence decay exhibits a rise time followed by a long decay of approximately 15 ms and a positive optical gain from the low values of the population inversion coefficient, which could potentially give rise to laser emission from this level. When we place our crystal on a photovoltaic device illuminated by 1500-nm wavelength radiation, we record a photocurrent of 300 μA at an illumination power of 85 mW. This indicates that the Er<sup>3+</sup>-doped BaF<sub>2</sub> crystal is highly suitable for significantly enhancing the efficiency of silicon-based solar cells.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70102"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Liu, Xiaojia Zhao, Hongying Guo, Yongfeng Cai, Tao Zhang
Mercury ions (Hg2+) seriously harm the central nervous system of humans, leading to brain damage and even heart failure and death. Therefore, effective detection of Hg2+ in water quality has become an urgent research field. It is very important to develop economically efficient fluorescent sensors to achieve rapid and sensitive detection of Hg2+. Therefore, the high fluorescence quantum yield fluorescent carbon dots (CDs) with amide group were prepared. The process of preparing CDs was regulated by multiple key factors (carbon source, proportion, time), and the CDs with the best fluorescence performance were selected. It was comprehensively characterized, including fluorescence performance, surface structure, phase, and morphological characteristics. The amide group endows CDs with the ability to act as both donors and acceptors for hydrogen bonding, forming complexes with metal ions, thus making them suitable for the detection of Hg2+. It is worth noting that CDs can quickly detect Hg2+ within 1 min, and there is a good linear relationship within the ranges of 0.001-200 μM and 200-500 μM. The detection limit of UC-CDs is 8.2 nM. This study provides a fluorescent sensor with fast reaction, excellent sensitivity, and selectivity for the efficient detection of Hg2+ in water.
{"title":"Surface Amide-Mediated Synthesis of Bright Blue Fluorescent Carbon Dots for High-Sensitivity Detection of Hg<sup>2+</sup> Ions.","authors":"Shanshan Liu, Xiaojia Zhao, Hongying Guo, Yongfeng Cai, Tao Zhang","doi":"10.1002/bio.70092","DOIUrl":"https://doi.org/10.1002/bio.70092","url":null,"abstract":"<p><p>Mercury ions (Hg<sup>2+</sup>) seriously harm the central nervous system of humans, leading to brain damage and even heart failure and death. Therefore, effective detection of Hg<sup>2+</sup> in water quality has become an urgent research field. It is very important to develop economically efficient fluorescent sensors to achieve rapid and sensitive detection of Hg<sup>2+</sup>. Therefore, the high fluorescence quantum yield fluorescent carbon dots (CDs) with amide group were prepared. The process of preparing CDs was regulated by multiple key factors (carbon source, proportion, time), and the CDs with the best fluorescence performance were selected. It was comprehensively characterized, including fluorescence performance, surface structure, phase, and morphological characteristics. The amide group endows CDs with the ability to act as both donors and acceptors for hydrogen bonding, forming complexes with metal ions, thus making them suitable for the detection of Hg<sup>2+</sup>. It is worth noting that CDs can quickly detect Hg<sup>2+</sup> within 1 min, and there is a good linear relationship within the ranges of 0.001-200 μM and 200-500 μM. The detection limit of UC-CDs is 8.2 nM. This study provides a fluorescent sensor with fast reaction, excellent sensitivity, and selectivity for the efficient detection of Hg<sup>2+</sup> in water.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70092"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergey A Piontkovski, Hajir M Al-Lawati, Khalid A Al-Hashmi, Alexandr V Melnik
Bioluminescence is a functional property used by many marine organisms for multilateral communications. In the Arabian Sea, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid and Swezy, 1921, contributes gradually to the bioluminescent potential (BP) of the phytoplankton community. Experiments, field sampling, and remote sensing were employed, to estimate the seasonal variation of the BP and the abundance of cells in the northwestern Arabian Sea. An experimental setup for BP measurements integrated a "Chelsea Instruments" GlowTracka sensor, which required ~5 N. scintillans cells to obtain a statistically robust signal. Plankton were sampled with 200-μm mesh size nets, in the upper mixed layer. Also, N. scintillans cells were counted in Niskin bottle samples collected from the deep chlorophyll maximum. The remotely sensed chlorophyll-a concentration was analyzed, for the period from 2000 to 2022. A positive linear relationship between the abundance of N. scintillans cells in experiments and their BP was elucidated. Peaks of BP in experiments fit the Northeast and Southwest Monsoon periods and so did the N. scintillans abundance peaks in situ. These findings showed that BP may serve as an indicator of N. scintillans abundance and biomass in the northwestern Arabian Sea.
{"title":"Seasonal Variability of Bioluminescence and Abundance of the Dinoflagellate Noctiluca scintillans in the Arabian Sea.","authors":"Sergey A Piontkovski, Hajir M Al-Lawati, Khalid A Al-Hashmi, Alexandr V Melnik","doi":"10.1002/bio.70057","DOIUrl":"https://doi.org/10.1002/bio.70057","url":null,"abstract":"<p><p>Bioluminescence is a functional property used by many marine organisms for multilateral communications. In the Arabian Sea, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid and Swezy, 1921, contributes gradually to the bioluminescent potential (BP) of the phytoplankton community. Experiments, field sampling, and remote sensing were employed, to estimate the seasonal variation of the BP and the abundance of cells in the northwestern Arabian Sea. An experimental setup for BP measurements integrated a \"Chelsea Instruments\" GlowTracka sensor, which required ~5 N. scintillans cells to obtain a statistically robust signal. Plankton were sampled with 200-μm mesh size nets, in the upper mixed layer. Also, N. scintillans cells were counted in Niskin bottle samples collected from the deep chlorophyll maximum. The remotely sensed chlorophyll-a concentration was analyzed, for the period from 2000 to 2022. A positive linear relationship between the abundance of N. scintillans cells in experiments and their BP was elucidated. Peaks of BP in experiments fit the Northeast and Southwest Monsoon periods and so did the N. scintillans abundance peaks in situ. These findings showed that BP may serve as an indicator of N. scintillans abundance and biomass in the northwestern Arabian Sea.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70057"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cong Shao, Xiaoxuan Wang, Jingying Dai, Honglian Dai
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site. By Gaussian's transition state calculations, HClO will cut off the photoinduced electron transfer (PET) effect of TPE-NS by hydrolysis reaction, thus emitting strong fluorescence. TPE-NS has rapid recognition and excellent specificity for HClO, and the limit of detection is 7.27 μM. Finally, TPE-NS was successfully used for the visualization of endogenous and exogenous HClO in cell experiments.
{"title":"Highly Selective AIEgen-Based \"Turn On\" Fluorescent Imaging for Inflammation Detection.","authors":"Cong Shao, Xiaoxuan Wang, Jingying Dai, Honglian Dai","doi":"10.1002/bio.70075","DOIUrl":"https://doi.org/10.1002/bio.70075","url":null,"abstract":"<p><p>Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site. By Gaussian's transition state calculations, HClO will cut off the photoinduced electron transfer (PET) effect of TPE-NS by hydrolysis reaction, thus emitting strong fluorescence. TPE-NS has rapid recognition and excellent specificity for HClO, and the limit of detection is 7.27 μM. Finally, TPE-NS was successfully used for the visualization of endogenous and exogenous HClO in cell experiments.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70075"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I I Kindrat, B V Padlyak, A Drzewiecki, I M Teslyuk, V T Adamiv
Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with Li2B4O7 (or Li2O-2B2O3) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the 5D4 → 7FJ (J = 6-0) and 5D3 → 7FJ (J = 5-3) transitions of Tb3+ (4f8) ions. The most intense PL band of Tb3+ ions at 541 nm (5D4 → 7F5 transition) is characterised by a lifetime slightly exceeding 2.6 ms. PL spectra of the Ag-containing glass show two broad weakly resolved emission bands in the violet-green spectral range attributed to Ag+ ions and nonplasmonic Ag nanoclusters. Decay kinetics of these bands are nonmonoexponential, characterised by an average lifetime in the microsecond range. A significant enhancement of the PL intensity and PL QY of Tb3+ ions was observed in Tb-Ag codoped LTB glass in comparison with Tb-doped LTB glass. The excitation energy transfer (EET) mechanisms from Ag+ ions and Ag nanoclusters to Tb3+ ions were explored.
{"title":"The Impact of Silver Codoping on Tb<sup>3+</sup> Luminescence in Lithium Tetraborate Glasses.","authors":"I I Kindrat, B V Padlyak, A Drzewiecki, I M Teslyuk, V T Adamiv","doi":"10.1002/bio.70074","DOIUrl":"https://doi.org/10.1002/bio.70074","url":null,"abstract":"<p><p>Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with Li<sub>2</sub>B<sub>4</sub>O<sub>7</sub> (or Li<sub>2</sub>O-2B<sub>2</sub>O<sub>3</sub>) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>J</sub> (J = 6-0) and <sup>5</sup>D<sub>3</sub> → <sup>7</sup>F<sub>J</sub> (J = 5-3) transitions of Tb<sup>3+</sup> (4f<sup>8</sup>) ions. The most intense PL band of Tb<sup>3+</sup> ions at 541 nm (<sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>5</sub> transition) is characterised by a lifetime slightly exceeding 2.6 ms. PL spectra of the Ag-containing glass show two broad weakly resolved emission bands in the violet-green spectral range attributed to Ag<sup>+</sup> ions and nonplasmonic Ag nanoclusters. Decay kinetics of these bands are nonmonoexponential, characterised by an average lifetime in the microsecond range. A significant enhancement of the PL intensity and PL QY of Tb<sup>3+</sup> ions was observed in Tb-Ag codoped LTB glass in comparison with Tb-doped LTB glass. The excitation energy transfer (EET) mechanisms from Ag<sup>+</sup> ions and Ag nanoclusters to Tb<sup>3+</sup> ions were explored.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70074"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a series of BaSrCaWO6:x%Mn4+, y%La3+ (x = 0.1, 0.5, 0.6, 1.5; y = 0, 5, 10, 15, 20) red-emitting phosphors were synthesized by the high-temperature solid-state method. The structure and optical properties of the samples were systematically studied by the characterizations of x-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectra, photoluminescence (PL) spectra, photoluminescence excitation (PLE) spectra, and quantum efficiency (QE). It was found that the addition of La3+ ions plays significant roles on the luminous performance of phosphors as compared with the nonluminous BaSrCaWO6:Mn (BSCW:Mn), which can be attributed to the Mn2+ → Mn4+ oxidation process induced by La3+ doping. The BSCW:0.5%Mn, 15%La3+ phosphor exhibited a strong emission peak at 685 nm with a CIE chromaticity coordinate at (0.720, 0.279), which is suitable for application in indoor plant cultivations. The BSCW:0.5%Mn, 15%La3+ phosphor exhibited an IQE of 47.8% and a high absorption efficiency of 72.8% with the EQE of 34.8%. Besides, the phosphor also showed the thermal stability with the emission intensity at 423 K being 48% of the emission intensity at 298 K. These results indicate that the synthesized BSCW:0.5%Mn, 15%La3+ phosphor could be a potential phosphor to be applied in plant growth LEDs.
{"title":"Development of High-Efficiency BaSrCaWO<sub>6</sub>:Mn<sup>4+</sup> Red-Emitting Phosphors via La<sup>3+</sup> Addition Strategy.","authors":"Jing Dong, Jingwei Li, Chengli Hu, Pengfei Yin, Xing Feng, Cuiping Zhou, Yi Zhang","doi":"10.1002/bio.70081","DOIUrl":"https://doi.org/10.1002/bio.70081","url":null,"abstract":"<p><p>In this paper, a series of BaSrCaWO<sub>6</sub>:x%Mn<sup>4+</sup>, y%La<sup>3+</sup> (x = 0.1, 0.5, 0.6, 1.5; y = 0, 5, 10, 15, 20) red-emitting phosphors were synthesized by the high-temperature solid-state method. The structure and optical properties of the samples were systematically studied by the characterizations of x-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectra, photoluminescence (PL) spectra, photoluminescence excitation (PLE) spectra, and quantum efficiency (QE). It was found that the addition of La<sup>3+</sup> ions plays significant roles on the luminous performance of phosphors as compared with the nonluminous BaSrCaWO<sub>6</sub>:Mn (BSCW:Mn), which can be attributed to the Mn<sup>2+</sup> → Mn<sup>4+</sup> oxidation process induced by La<sup>3+</sup> doping. The BSCW:0.5%Mn, 15%La<sup>3+</sup> phosphor exhibited a strong emission peak at 685 nm with a CIE chromaticity coordinate at (0.720, 0.279), which is suitable for application in indoor plant cultivations. The BSCW:0.5%Mn, 15%La<sup>3+</sup> phosphor exhibited an IQE of 47.8% and a high absorption efficiency of 72.8% with the EQE of 34.8%. Besides, the phosphor also showed the thermal stability with the emission intensity at 423 K being 48% of the emission intensity at 298 K. These results indicate that the synthesized BSCW:0.5%Mn, 15%La<sup>3+</sup> phosphor could be a potential phosphor to be applied in plant growth LEDs.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70081"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, the development of red Mn4+-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn4+-activated fluoride luminescent materials is still a crucial issue. Herein, a new red Rb2NaVF6:Mn4+ luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method. Mn4+ ions prefer to occupy VF6 octahedra based on the accurate Rietveld refinement results. Accordingly, the as-prepared Rb2NaVF6:Mn4+ exhibits a broad absorption region from 300 to 500 nm with a maximum of 468 nm, matching well with the near-ultraviolet and blue InGaN chip. Upon 468 nm excitation, Rb2NaVF6:Mn4+ can emit narrow-band red light at 632 nm. Notably, Rb2NaVF6:Mn4+ shows superior antithermal quenching properties, of which the integrated intensities at 175°C can realize as high as 140% than that at 25°C. Owing to the diverse thermal quenching behavior between anti-Stokes and Stokes emission, Rb2NaVF6:Mn4+ displays promising candidates in optical thermometry sensors with a relative sensitivity Sr of 0.49%. This study offers new insight into developing antithermal quenching red Mn4+-activated fluoride luminescent materials.
{"title":"Realizing Antithermal Quenching Red Emission in Mn<sup>4+</sup>-Activated Rb<sub>2</sub>NaVF<sub>6</sub> for Optical Thermometry Sensor Application.","authors":"Hui Jia, Hanrui Liao, Weilun Zhang, Wei Wang, Jinxuan Sun, Wei Li, Yi Wei","doi":"10.1002/bio.70084","DOIUrl":"https://doi.org/10.1002/bio.70084","url":null,"abstract":"<p><p>Currently, the development of red Mn<sup>4+</sup>-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn<sup>4+</sup>-activated fluoride luminescent materials is still a crucial issue. Herein, a new red Rb<sub>2</sub>NaVF<sub>6</sub>:Mn<sup>4+</sup> luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method. Mn<sup>4+</sup> ions prefer to occupy VF<sub>6</sub> octahedra based on the accurate Rietveld refinement results. Accordingly, the as-prepared Rb<sub>2</sub>NaVF<sub>6</sub>:Mn<sup>4+</sup> exhibits a broad absorption region from 300 to 500 nm with a maximum of 468 nm, matching well with the near-ultraviolet and blue InGaN chip. Upon 468 nm excitation, Rb<sub>2</sub>NaVF<sub>6</sub>:Mn<sup>4+</sup> can emit narrow-band red light at 632 nm. Notably, Rb<sub>2</sub>NaVF<sub>6</sub>:Mn<sup>4+</sup> shows superior antithermal quenching properties, of which the integrated intensities at 175°C can realize as high as 140% than that at 25°C. Owing to the diverse thermal quenching behavior between anti-Stokes and Stokes emission, Rb<sub>2</sub>NaVF<sub>6</sub>:Mn<sup>4+</sup> displays promising candidates in optical thermometry sensors with a relative sensitivity S<sub>r</sub> of 0.49%. This study offers new insight into developing antithermal quenching red Mn<sup>4+</sup>-activated fluoride luminescent materials.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70084"},"PeriodicalIF":3.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}