We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
本文提出了一种基于快速全局核模糊c-means-F (FGKFCM-F)的聚类算法,其中F为核化特征空间。该算法使用基于核的模糊c-均值- f (KFCM-F)作为局部搜索过程,通过求解所有中间问题,以增量方式推导出近最优解。该算法由于继承了KFCM-F算法的增量特性和非线性特性,克服了模糊c-均值算法对初始化的敏感性和不能使用非线性可分数据的缺点。为了在不显著影响求解质量的前提下降低计算复杂度,提出了一种加速方案。在一个非线性人工数据集和一个真实语音信号数据集上进行了实验,以测试所提出的算法用于辅音/元音分割。仿真结果证明了该算法在两种类型数据集上提高聚类性能的有效性。
{"title":"Erratum to: Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal","authors":"Xian Zang, IV FelipeP.Vista, K. Chong","doi":"10.1631/jzus.C13e0320","DOIUrl":"https://doi.org/10.1631/jzus.C13e0320","url":null,"abstract":"We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"1086"},"PeriodicalIF":0.0,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C13e0320","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67535336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
本文提出了一种基于快速全局核模糊c-means-F (FGKFCM-F)的聚类算法,其中F为核化特征空间。该算法使用基于核的模糊c-均值- f (KFCM-F)作为局部搜索过程,通过求解所有中间问题,以增量方式推导出近最优解。该算法由于继承了KFCM-F算法的增量特性和非线性特性,克服了模糊c-均值算法对初始化的敏感性和不能使用非线性可分数据的缺点。为了在不显著影响求解质量的前提下降低计算复杂度,提出了一种加速方案。在一个非线性人工数据集和一个真实语音信号数据集上进行了实验,以测试所提出的算法用于辅音/元音分割。仿真结果证明了该算法在两种类型数据集上提高聚类性能的有效性。
{"title":"Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal","authors":"Xian Zang, IV FelipeP.Vista, K. Chong","doi":"10.1631/jzus.C1300320","DOIUrl":"https://doi.org/10.1631/jzus.C1300320","url":null,"abstract":"We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"551 - 563"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300320","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67534845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We address a framework for the analysis of extended fuzzy logic (FLe) and elaborate mainly the key characteristics of FLe by proving several qualification theorems and proposing a new mathematical tool named the A-granule. Specifically, we reveal that within FLe a solution in the presence of incomplete information approaches the one gained by complete information. It is also proved that the answers and their validities have a structural isomorphism within the same context. This relationship is then used to prove the representation theorem that addresses the rationality of FLe-based reasoning. As a consequence of the developed theoretical description of FLe, we assert that in order to solve a problem, having complete information is not a critical need; however, with more information, the answers achieved become more specific. Furthermore, reasoning based on FLe has the advantage of being computationally less expensive in the analysis of a given problem and is faster.
{"title":"A framework for analysis of extended fuzzy logic","authors":"F. Sabahi, M. Akbarzadeh-T.","doi":"10.1631/jzus.C1300217","DOIUrl":"https://doi.org/10.1631/jzus.C1300217","url":null,"abstract":"We address a framework for the analysis of extended fuzzy logic (FLe) and elaborate mainly the key characteristics of FLe by proving several qualification theorems and proposing a new mathematical tool named the A-granule. Specifically, we reveal that within FLe a solution in the presence of incomplete information approaches the one gained by complete information. It is also proved that the answers and their validities have a structural isomorphism within the same context. This relationship is then used to prove the representation theorem that addresses the rationality of FLe-based reasoning. As a consequence of the developed theoretical description of FLe, we assert that in order to solve a problem, having complete information is not a critical need; however, with more information, the answers achieved become more specific. Furthermore, reasoning based on FLe has the advantage of being computationally less expensive in the analysis of a given problem and is faster.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"584 - 591"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67534358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing (SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order representation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hyperedges. Experiments on Flickr image datasets verify the performance of our proposed approach.
{"title":"Probabilistic hypergraph based hash codes for social image search","authors":"Y. Xie, Huimin Yu, Roland Hu","doi":"10.1631/jzus.C1300268","DOIUrl":"https://doi.org/10.1631/jzus.C1300268","url":null,"abstract":"With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing (SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order representation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hyperedges. Experiments on Flickr image datasets verify the performance of our proposed approach.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"537 - 550"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300268","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67534511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The original version of this article unfortunately contained a mistake. The affiliation of the first author was incorrect. The correct affiliation is: Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran. Journal of Zhejiang University-SCIENCE C (Computers & Electronics) ISSN 1869-1951 (Print); ISSN 1869-196X (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn
{"title":"Erratum to: Dynamic task scheduling modeling in unstructured heterogeneous multiprocessor systems","authors":"Hamid Tabatabaee, M. Akbarzadeh-T., N. Pariz","doi":"10.1631/jzus.C13e0204","DOIUrl":"https://doi.org/10.1631/jzus.C13e0204","url":null,"abstract":"The original version of this article unfortunately contained a mistake. The affiliation of the first author was incorrect. The correct affiliation is: Department of Computer Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran. Journal of Zhejiang University-SCIENCE C (Computers & Electronics) ISSN 1869-1951 (Print); ISSN 1869-196X (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"26 5 1","pages":"592 - 592"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C13e0204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67535316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Li, Xin Ding, Junku Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, H. Bao
Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit (CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units (GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance. Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.
{"title":"Procedural generation and real-time rendering of a marine ecosystem","authors":"Rong Li, Xin Ding, Junku Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, H. Bao","doi":"10.1631/jzus.C1300342","DOIUrl":"https://doi.org/10.1631/jzus.C1300342","url":null,"abstract":"Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit (CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units (GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance. Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"514 - 524"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67535162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS provides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms of robustness and position accuracy.
{"title":"A robust optical/inertial data fusion system for motion tracking of the robot manipulator","authors":"Jing Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Changchun Zhang","doi":"10.1631/jzus.C1300302","DOIUrl":"https://doi.org/10.1631/jzus.C1300302","url":null,"abstract":"We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS provides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms of robustness and position accuracy.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"574 - 583"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67534589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices, specified postures, simple background, and stable illumination. In this paper, a contactless personal identification system is proposed based on matching hand geometry features and color features. An inexpensive Kinect sensor is used to acquire depth and color images of the hand. During image acquisition, no pegs or surfaces are used to constrain hand position or posture. We segment the hand from the background through depth images through a process which is insensitive to illumination and background. Then finger orientations and landmark points, like finger tips or finger valleys, are obtained by geodesic hand contour analysis. Geometric features are extracted from depth images and palmprint features from intensity images. In previous systems, hand features like finger length and width are normalized, which results in the loss of the original geometric features. In our system, we transform 2D image points into real world coordinates, so that the geometric features remain invariant to distance and perspective effects. Extensive experiments demonstrate that the proposed hand-biometric-based personal identification system is effective and robust in various practical situations.
{"title":"Contact-free and pose-invariant hand-biometric-based personal identification system using RGB and depth data","authors":"Can Wang, Hong Liu, Xingyan Liu","doi":"10.1631/jzus.C1300190","DOIUrl":"https://doi.org/10.1631/jzus.C1300190","url":null,"abstract":"Hand-biometric-based personal identification is considered to be an effective method for automatic recognition. However, existing systems require strict constraints during data acquisition, such as costly devices, specified postures, simple background, and stable illumination. In this paper, a contactless personal identification system is proposed based on matching hand geometry features and color features. An inexpensive Kinect sensor is used to acquire depth and color images of the hand. During image acquisition, no pegs or surfaces are used to constrain hand position or posture. We segment the hand from the background through depth images through a process which is insensitive to illumination and background. Then finger orientations and landmark points, like finger tips or finger valleys, are obtained by geodesic hand contour analysis. Geometric features are extracted from depth images and palmprint features from intensity images. In previous systems, hand features like finger length and width are normalized, which results in the loss of the original geometric features. In our system, we transform 2D image points into real world coordinates, so that the geometric features remain invariant to distance and perspective effects. Extensive experiments demonstrate that the proposed hand-biometric-based personal identification system is effective and robust in various practical situations.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"525 - 536"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67533730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yatao Zhang, Cheng-yu Liu, Shoushui Wei, C. Wei, Feifei Liu
We propose a systematic ECG quality classification method based on a kernel support vector machine (KSVM) and genetic algorithm (GA) to determine whether ECGs collected via mobile phone are acceptable or not. This method includes mainly three modules, i.e., lead-fall detection, feature extraction, and intelligent classification. First, lead-fall detection is executed to make the initial classification. Then the power spectrum, baseline drifts, amplitude difference, and other time-domain features for ECGs are analyzed and quantified to form the feature matrix. Finally, the feature matrix is assessed using KSVM and GA to determine the ECG quality classification results. A Gaussian radial basis function (GRBF) is employed as the kernel function of KSVM and its performance is compared with that of the Mexican hat wavelet function (MHWF). GA is used to determine the optimal parameters of the KSVM classifier and its performance is compared with that of the grid search (GS) method. The performance of the proposed method was tested on a database from PhysioNet/Computing in Cardiology Challenge 2011, which includes 1500 12-lead ECG recordings. True positive (TP), false positive (FP), and classification accuracy were used as the assessment indices. For training database set A (1000 recordings), the optimal results were obtained using the combination of lead-fall, GA, and GRBF methods, and the corresponding results were: TP 92.89%, FP 5.68%, and classification accuracy 94.00%. For test database set B (500 recordings), the optimal results were also obtained using the combination of lead-fall, GA, and GRBF methods, and the classification accuracy was 91.80%.
{"title":"ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix","authors":"Yatao Zhang, Cheng-yu Liu, Shoushui Wei, C. Wei, Feifei Liu","doi":"10.1631/jzus.C1300264","DOIUrl":"https://doi.org/10.1631/jzus.C1300264","url":null,"abstract":"We propose a systematic ECG quality classification method based on a kernel support vector machine (KSVM) and genetic algorithm (GA) to determine whether ECGs collected via mobile phone are acceptable or not. This method includes mainly three modules, i.e., lead-fall detection, feature extraction, and intelligent classification. First, lead-fall detection is executed to make the initial classification. Then the power spectrum, baseline drifts, amplitude difference, and other time-domain features for ECGs are analyzed and quantified to form the feature matrix. Finally, the feature matrix is assessed using KSVM and GA to determine the ECG quality classification results. A Gaussian radial basis function (GRBF) is employed as the kernel function of KSVM and its performance is compared with that of the Mexican hat wavelet function (MHWF). GA is used to determine the optimal parameters of the KSVM classifier and its performance is compared with that of the grid search (GS) method. The performance of the proposed method was tested on a database from PhysioNet/Computing in Cardiology Challenge 2011, which includes 1500 12-lead ECG recordings. True positive (TP), false positive (FP), and classification accuracy were used as the assessment indices. For training database set A (1000 recordings), the optimal results were obtained using the combination of lead-fall, GA, and GRBF methods, and the corresponding results were: TP 92.89%, FP 5.68%, and classification accuracy 94.00%. For test database set B (500 recordings), the optimal results were also obtained using the combination of lead-fall, GA, and GRBF methods, and the classification accuracy was 91.80%.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"564 - 573"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67534177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Adeel Ali Shah, M. Shiraz, Mostofa Kamal Nasir, R. M. Noor
Over the past few years, numerous traffic safety applications have been developed using vehicular ad hoc networks (VANETs). These applications represent public interest and require network-wide dissemination techniques. On the other hand, certain non-safety applications do not require network-wide dissemination techniques. Such applications can be characterized by their individual interest between two vehicles that are geographically apart. In the existing literature, several proposals of unicast protocols exist that can be used for these non-safety applications. Among the proposals, unicast protocols for city scenarios are considered to be most challenging. This implies that in city scenarios unicast protocols show minimal persistence towards highly dynamic vehicular characteristics, including mobility, road structure, and physical environment. Unlike other studies, this review is motivated by the diversity of vehicular characteristics and difficulty of unicast protocol adaption in city scenarios. The review starts with the categorization of unicast protocols for city scenarios according to their requirement for a predefined unicast path. Then, properties of typical city roads are discussed, which helps to explore limitations in efficient unicast communication. Through an exhaustive literature review, we propose a thematic taxonomy based on different aspects of unicast protocol operation. It is followed by a review of selected unicast protocols for city scenarios that reveal their fundamental characteristics. Several significant parameters from the taxonomy are used to qualitatively compare the reviewed protocols. Qualitative comparison also includes critical investigation of distinct approaches taken by researchers in experimental protocol evaluation. As an outcome of this review, we point out open research issues in unicast routing.
{"title":"Unicast routing protocols for urban vehicular networks: review, taxonomy, and open research issues","authors":"Syed Adeel Ali Shah, M. Shiraz, Mostofa Kamal Nasir, R. M. Noor","doi":"10.1631/jzus.C1300332","DOIUrl":"https://doi.org/10.1631/jzus.C1300332","url":null,"abstract":"Over the past few years, numerous traffic safety applications have been developed using vehicular ad hoc networks (VANETs). These applications represent public interest and require network-wide dissemination techniques. On the other hand, certain non-safety applications do not require network-wide dissemination techniques. Such applications can be characterized by their individual interest between two vehicles that are geographically apart. In the existing literature, several proposals of unicast protocols exist that can be used for these non-safety applications. Among the proposals, unicast protocols for city scenarios are considered to be most challenging. This implies that in city scenarios unicast protocols show minimal persistence towards highly dynamic vehicular characteristics, including mobility, road structure, and physical environment. Unlike other studies, this review is motivated by the diversity of vehicular characteristics and difficulty of unicast protocol adaption in city scenarios. The review starts with the categorization of unicast protocols for city scenarios according to their requirement for a predefined unicast path. Then, properties of typical city roads are discussed, which helps to explore limitations in efficient unicast communication. Through an exhaustive literature review, we propose a thematic taxonomy based on different aspects of unicast protocol operation. It is followed by a review of selected unicast protocols for city scenarios that reveal their fundamental characteristics. Several significant parameters from the taxonomy are used to qualitatively compare the reviewed protocols. Qualitative comparison also includes critical investigation of distinct approaches taken by researchers in experimental protocol evaluation. As an outcome of this review, we point out open research issues in unicast routing.","PeriodicalId":49947,"journal":{"name":"Journal of Zhejiang University-Science C-Computers & Electronics","volume":"15 1","pages":"489 - 513"},"PeriodicalIF":0.0,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1631/jzus.C1300332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67534488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}