首页 > 最新文献

Journal of X-Ray Science and Technology最新文献

英文 中文
Special Section: Medical Applications of X-ray Imaging Techniques. 专栏:X 射线成像技术的医学应用。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01
{"title":"Special Section: Medical Applications of X-ray Imaging Techniques.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast response time gas ionization chamber detector with a grid structure. 具有网格结构的快速响应时间气体电离室探测器。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230219
Jiahao Chang, Chaoyang Zhu, Yuanpeng Song, Zhentao Wang

The time response characteristic of the detector is crucial in radiation imaging systems. Unfortunately, existing parallel plate ionization chamber detectors have a slow response time, which leads to blurry radiation images. To enhance imaging quality, the electrode structure of the detector must be modified to reduce the response time. This paper proposes a gas detector with a grid structure that has a fast response time. In this study, the detector electrostatic field was calculated using COMSOL, while Garfield++ was utilized to simulate the detector's output signal. To validate the accuracy of simulation results, the experimental ionization chamber was tested on the experimental platform. The results revealed that the average electric field intensity in the induced region of the grid detector was increased by at least 33%. The detector response time was reduced to 27% -38% of that of the parallel plate detector, while the sensitivity of the detector was only reduced by 10%. Therefore, incorporating a grid structure within the parallel plate detector can significantly improve the time response characteristics of the gas detector, providing an insight for future detector enhancements.

探测器的时间响应特性在辐射成像系统中至关重要。遗憾的是,现有的平行板电离室探测器响应时间较慢,导致辐射图像模糊不清。为了提高成像质量,必须改变探测器的电极结构以缩短响应时间。本文提出了一种具有快速响应时间的网格结构气体探测器。本研究使用 COMSOL 计算探测器静电场,并使用 Garfield++ 模拟探测器的输出信号。为了验证模拟结果的准确性,在实验平台上对实验电离室进行了测试。结果显示,栅格探测器感应区的平均电场强度至少增加了 33%。探测器的响应时间缩短到平行板探测器的 27% -38%,而探测器的灵敏度仅降低了 10%。因此,在平行板探测器中加入网格结构可以显著改善气体探测器的时间响应特性,为未来探测器的改进提供了启示。
{"title":"A fast response time gas ionization chamber detector with a grid structure.","authors":"Jiahao Chang, Chaoyang Zhu, Yuanpeng Song, Zhentao Wang","doi":"10.3233/XST-230219","DOIUrl":"10.3233/XST-230219","url":null,"abstract":"<p><p>The time response characteristic of the detector is crucial in radiation imaging systems. Unfortunately, existing parallel plate ionization chamber detectors have a slow response time, which leads to blurry radiation images. To enhance imaging quality, the electrode structure of the detector must be modified to reduce the response time. This paper proposes a gas detector with a grid structure that has a fast response time. In this study, the detector electrostatic field was calculated using COMSOL, while Garfield++ was utilized to simulate the detector's output signal. To validate the accuracy of simulation results, the experimental ionization chamber was tested on the experimental platform. The results revealed that the average electric field intensity in the induced region of the grid detector was increased by at least 33%. The detector response time was reduced to 27% -38% of that of the parallel plate detector, while the sensitivity of the detector was only reduced by 10%. Therefore, incorporating a grid structure within the parallel plate detector can significantly improve the time response characteristics of the gas detector, providing an insight for future detector enhancements.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on breast cancer pathological image classification method based on wavelet transform and YOLOv8. 基于小波变换和 YOLOv8 的乳腺癌病理图像分类方法研究
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230296
Yunfeng Yang, Jiaqi Wang

 Breast cancer is one of the cancers with high morbidity and mortality in the world, which is a serious threat to the health of women. With the development of deep learning, the recognition about computer-aided diagnosis technology is getting higher and higher. And the traditional data feature extraction technology has been gradually replaced by the feature extraction technology based on convolutional neural network which helps to realize the automatic recognition and classification of pathological images. In this paper, a novel method based on deep learning and wavelet transform is proposed to classify the pathological images of breast cancer. Firstly, the image flip technique is used to expand the data set, then the two-level wavelet decomposition and reconfiguration technology is used to sharpen and enhance the pathological images. Secondly, the processed data set is divided into the training set and the test set according to 8:2 and 7:3, and the YOLOv8 network model is selected to perform the eight classification tasks of breast cancer pathological images. Finally, the classification accuracy of the proposed method is compared with the classification accuracy obtained by YOLOv8 for the original BreaKHis dataset, and it is found that the algorithm can improve the classification accuracy of images with different magnifications, which proves the effectiveness of combining two-level wavelet decomposition and reconfiguration with YOLOv8 network model.

乳腺癌是世界上发病率和死亡率较高的癌症之一,严重威胁着女性的健康。随着深度学习的发展,人们对计算机辅助诊断技术的认可度越来越高。而传统的数据特征提取技术已逐渐被基于卷积神经网络的特征提取技术所取代,该技术有助于实现病理图像的自动识别和分类。本文提出了一种基于深度学习和小波变换的乳腺癌病理图像分类新方法。首先,利用图像翻转技术扩展数据集,然后利用两级小波分解和重构技术锐化和增强病理图像。其次,将处理后的数据集按照 8:2 和 7:3 分成训练集和测试集,并选择 YOLOv8 网络模型来完成乳腺癌病理图像的八项分类任务。最后,将所提方法的分类准确率与 YOLOv8 对原始 BreaKHis 数据集的分类准确率进行比较,发现该算法可以提高不同放大倍数图像的分类准确率,这证明了将两级小波分解和重构与 YOLOv8 网络模型相结合的有效性。
{"title":"Research on breast cancer pathological image classification method based on wavelet transform and YOLOv8.","authors":"Yunfeng Yang, Jiaqi Wang","doi":"10.3233/XST-230296","DOIUrl":"10.3233/XST-230296","url":null,"abstract":"<p><p> Breast cancer is one of the cancers with high morbidity and mortality in the world, which is a serious threat to the health of women. With the development of deep learning, the recognition about computer-aided diagnosis technology is getting higher and higher. And the traditional data feature extraction technology has been gradually replaced by the feature extraction technology based on convolutional neural network which helps to realize the automatic recognition and classification of pathological images. In this paper, a novel method based on deep learning and wavelet transform is proposed to classify the pathological images of breast cancer. Firstly, the image flip technique is used to expand the data set, then the two-level wavelet decomposition and reconfiguration technology is used to sharpen and enhance the pathological images. Secondly, the processed data set is divided into the training set and the test set according to 8:2 and 7:3, and the YOLOv8 network model is selected to perform the eight classification tasks of breast cancer pathological images. Finally, the classification accuracy of the proposed method is compared with the classification accuracy obtained by YOLOv8 for the original BreaKHis dataset, and it is found that the algorithm can improve the classification accuracy of images with different magnifications, which proves the effectiveness of combining two-level wavelet decomposition and reconfiguration with YOLOv8 network model.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peri-lesion regions in differentiating suspicious breast calcification-only lesions specifically on contrast enhanced mammography. 通过造影剂增强乳腺 X 射线造影术区分可疑乳腺钙化病灶的病灶周围区域。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230332
Kun Cao, Fei Gao, Rong Long, Fan-Dong Zhang, Chen-Cui Huang, Min Cao, Yi-Zhou Yu, Ying-Shi Sun

Purpose: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram.

Methods: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading.

Results: Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p < 0.05; expanded: 0.89 v.s. 0.81, p < 0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy.

Conclusions: The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.

目的:探讨造影剂增强乳腺 X 线造影(CEM)上的钙化周围区域在常规乳腺 X 线造影上仅表现为钙化的乳腺病变的鉴别诊断中的附加价值:纳入因可疑钙化病变而接受CEM检查的患者。测试集包括2017年3月至2019年3月期间的患者,验证集收集于2019年4月至2019年10月期间。钙化由基于机器学习的计算机辅助系统自动检测和分组。除了从钙化区域的低能量(LE)和重组(RC)图像中提取放射学特征外,还尝试提取钙化周围区域,该区域是通过以 1 毫米到 9 毫米的梯度径向扩展注释边缘而生成的。建立了机器学习(ML)模型,将钙化分为恶性和良性两组。通过将 ML 模型与主观阅读相结合,还对诊断矩阵进行了评估:结果:LE 的模型(重要特征wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO;原始_形状_拉长_MLO;wavelet-LHL_glszm_GrayLevelNon-UniformityNormalized_MLO;wavelet-LLH_firstorder_RootMeanSquared_MLO)图像设置了 7 个特征。RC 模型的曲线下面积(AUC)明显优于边界紧凑和边界扩大的 LE 模型(RC 对 LE,紧凑:0.81 对 0.73,p < 0.05;扩大:0.89 对 0.73,p < 0.05):0.89 v.s. 0.81,p < 0.05),与其他尺寸的模型相比,边界扩展 3 毫米的 RC 模型性能最佳(AUC = 0.89)。结合放射科医生的阅读,3 毫米边界的 RC 模型在预测恶性肿瘤方面的灵敏度为 0.871,阴性预测值为 0.937,准确度为 0.843:整合 CEM 上钙化内和钙化周围区域的机器学习模型有望帮助放射科医生预测可疑乳腺钙化的恶性程度。
{"title":"Peri-lesion regions in differentiating suspicious breast calcification-only lesions specifically on contrast enhanced mammography.","authors":"Kun Cao, Fei Gao, Rong Long, Fan-Dong Zhang, Chen-Cui Huang, Min Cao, Yi-Zhou Yu, Ying-Shi Sun","doi":"10.3233/XST-230332","DOIUrl":"10.3233/XST-230332","url":null,"abstract":"<p><strong>Purpose: </strong>The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram.</p><p><strong>Methods: </strong>Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading.</p><p><strong>Results: </strong>Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p < 0.05; expanded: 0.89 v.s. 0.81, p < 0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy.</p><p><strong>Conclusions: </strong>The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139673533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression. 使用互补学习的特征共享多解码器网络,用于抑制光子计数 CT 环形伪影。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230396
Wei Cui, Haipeng Lv, Jiping Wang, Yanyan Zheng, Zhongyi Wu, Hui Zhao, Jian Zheng, Ming Li

Background: Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT.

Objective: To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images.

Methods: Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details.

Results: We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods.

Conclusions: In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.

背景:光子计数计算机断层扫描(Photon-counting CT)利用光子计数探测器对入射光子进行精确计数并测量其能量。与传统的能量积分探测器相比,这些探测器能提供更好的图像对比度和材料区分度。然而,与传统的螺旋 CT 不同,光子计数 CT 由于光子计数有限和探测器响应变化,往往会出现更明显的环状伪影:为了全面解决这一问题,我们提出了一种新颖的特征共享多解码器网络(FSMDN),利用互补学习来抑制光子计数 CT 图像中的环状伪影:具体来说,我们采用特征共享编码器来提取上下文和环状伪影特征,从而促进有效的特征共享。这些共享特征还可由专用于上下文和环状伪影通道的独立解码器并行处理。通过互补学习,这种方法在保留组织细节的同时,在伪影抑制方面实现了卓越的性能:我们对带有三强度环状伪影的光子计数 CT 图像进行了大量实验。定性和定量结果表明,我们的网络模型在校正不同程度的环状伪影方面表现优异,同时与对比方法相比,我们的网络模型表现出更高的稳定性和鲁棒性:本文介绍了一种新型深度学习网络,旨在减轻光子计数 CT 图像中的环状伪影。结果表明,我们提出的网络模型是一种基于深度学习的抑制环状伪影的新方法,具有可行性和有效性。
{"title":"Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression.","authors":"Wei Cui, Haipeng Lv, Jiping Wang, Yanyan Zheng, Zhongyi Wu, Hui Zhao, Jian Zheng, Ming Li","doi":"10.3233/XST-230396","DOIUrl":"10.3233/XST-230396","url":null,"abstract":"<p><strong>Background: </strong>Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT.</p><p><strong>Objective: </strong>To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images.</p><p><strong>Methods: </strong>Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details.</p><p><strong>Results: </strong>We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods.</p><p><strong>Conclusions: </strong>In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A feasibility study to predict 3D dose delivery accuracy for IMRT using DenseNet with log files. 使用带有日志文件的 DenseNet 预测 IMRT 3D 剂量输送准确性的可行性研究。
IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-01-01 DOI: 10.3233/XST-230412
Ying Huang, Ruxin Cai, Yifei Pi, Kui Ma, Qing Kong, Weihai Zhuo, Yan Kong

Objective: This study aims to explore the feasibility of DenseNet in the establishment of a three-dimensional (3D) gamma prediction model of IMRT based on the actual parameters recorded in the log files during delivery.

Methods: A total of 55 IMRT plans (including 367 fields) were randomly selected. The gamma analysis was performed using gamma criteria of 3% /3 mm (Dose Difference/Distance to Agreement), 3% /2 mm, 2% /3 mm, and 2% /2 mm with a 10% dose threshold. In addition, the log files that recorded the gantry angle, monitor units (MU), multi-leaf collimator (MLC), and jaws position during delivery were collected. These log files were then converted to MU-weighted fluence maps as the input of DenseNet, gamma passing rates (GPRs) under four different gamma criteria as the output, and mean square errors (MSEs) as the loss function of this model.

Results: Under different gamma criteria, the accuracy of a 3D GPR prediction model decreased with the implementation of stricter gamma criteria. In the test set, the mean absolute error (MAE) of the prediction model under the gamma criteria of 3% /3 mm, 2% /3 mm, 3% /2 mm, and 2% /2 mm was 1.41, 1.44, 3.29, and 3.54, respectively; the root mean square error (RMSE) was 1.91, 1.85, 4.27, and 4.40, respectively; the Sr was 0.487, 0.554, 0.573, and 0.506, respectively. There was a correlation between predicted and measured GPRs (P < 0.01). Additionally, there was no significant difference in the accuracy between the validation set and the test set. The accuracy in the high GPR group was high, and the MAE in the high GPR group was smaller than that in the low GPR group under four different gamma criteria.

Conclusions: In this study, a 3D GPR prediction model of patient-specific QA using DenseNet was established based on log files. As an auxiliary tool for 3D dose verification in IMRT, this model is expected to improve the accuracy and efficiency of dose validation.

研究目的本研究旨在探索 DenseNet 在建立 IMRT 的三维(3D)伽马预测模型方面的可行性,该模型基于投放过程中记录在日志文件中的实际参数:方法:随机选取了55个IMRT计划(包括367个场)。伽马分析采用的伽马标准为 3% /3 mm(剂量差/一致距离)、3% /2 mm、2% /3 mm 和 2% /2 mm,剂量阈值为 10%。此外,还收集了记录投放过程中龙门架角度、监控单元(MU)、多叶准直器(MLC)和钳口位置的日志文件。然后,将这些日志文件转换成 MU 加权通量图,作为 DenseNet 的输入;将四种不同伽马标准下的伽马通过率(GPR)作为输出;将均方误差(MSE)作为该模型的损失函数:结果:在不同的伽马标准下,三维 GPR 预测模型的准确度随着实施更严格的伽马标准而降低。在测试集中,预测模型在 3% /3 mm、2% /3 mm、3% /2 mm 和 2% /2 mm 伽马标准下的平均绝对误差(MAE)分别为 1.41、1.44、3.29 和 3.54;均方根误差(RMSE)分别为 1.91、1.85、4.27 和 4.40;Sr 分别为 0.487、0.554、0.573 和 0.506。预测的 GPR 与测量的 GPR 之间存在相关性(P < 0.01)。此外,验证集和测试集之间的准确率没有明显差异。在四种不同的伽马标准下,高 GPR 组的准确率较高,且高 GPR 组的 MAE 小于低 GPR 组:本研究基于日志文件,利用 DenseNet 建立了患者特定 QA 的三维 GPR 预测模型。作为 IMRT 中三维剂量验证的辅助工具,该模型有望提高剂量验证的准确性和效率。
{"title":"A feasibility study to predict 3D dose delivery accuracy for IMRT using DenseNet with log files.","authors":"Ying Huang, Ruxin Cai, Yifei Pi, Kui Ma, Qing Kong, Weihai Zhuo, Yan Kong","doi":"10.3233/XST-230412","DOIUrl":"10.3233/XST-230412","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to explore the feasibility of DenseNet in the establishment of a three-dimensional (3D) gamma prediction model of IMRT based on the actual parameters recorded in the log files during delivery.</p><p><strong>Methods: </strong>A total of 55 IMRT plans (including 367 fields) were randomly selected. The gamma analysis was performed using gamma criteria of 3% /3 mm (Dose Difference/Distance to Agreement), 3% /2 mm, 2% /3 mm, and 2% /2 mm with a 10% dose threshold. In addition, the log files that recorded the gantry angle, monitor units (MU), multi-leaf collimator (MLC), and jaws position during delivery were collected. These log files were then converted to MU-weighted fluence maps as the input of DenseNet, gamma passing rates (GPRs) under four different gamma criteria as the output, and mean square errors (MSEs) as the loss function of this model.</p><p><strong>Results: </strong>Under different gamma criteria, the accuracy of a 3D GPR prediction model decreased with the implementation of stricter gamma criteria. In the test set, the mean absolute error (MAE) of the prediction model under the gamma criteria of 3% /3 mm, 2% /3 mm, 3% /2 mm, and 2% /2 mm was 1.41, 1.44, 3.29, and 3.54, respectively; the root mean square error (RMSE) was 1.91, 1.85, 4.27, and 4.40, respectively; the Sr was 0.487, 0.554, 0.573, and 0.506, respectively. There was a correlation between predicted and measured GPRs (P < 0.01). Additionally, there was no significant difference in the accuracy between the validation set and the test set. The accuracy in the high GPR group was high, and the MAE in the high GPR group was smaller than that in the low GPR group under four different gamma criteria.</p><p><strong>Conclusions: </strong>In this study, a 3D GPR prediction model of patient-specific QA using DenseNet was established based on log files. As an auxiliary tool for 3D dose verification in IMRT, this model is expected to improve the accuracy and efficiency of dose validation.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of cutout factors with small and narrow fields using various dosimetry detectors in electron beam keloid radiotherapy. 在电子束瘢痕疙瘩放射治疗中使用各种剂量检测器评估小场和窄场的切出因子。
IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-01-01 DOI: 10.3233/XST-240059
Yu-Fang Lin, Chen-Hsi Hsieh, Hui-Ju Tien, Yi-Huan Lee, Yi-Chun Chen, Lu-Han Lai, Shih-Ming Hsu, Pei-Wei Shueng

Background: The inherent problems in the existence of electron equilibrium and steep dose fall-off pose difficulties for small- and narrow-field dosimetry.

Objective: To investigate the cutout factors for keloid electron radiotherapy using various dosimetry detectors for small and narrow fields.

Method: The measurements were performed in a solid water phantom with nine different cutout shapes. Five dosimetry detectors were used in the study: pinpoint 3D ionization chamber, Farmer chamber, semiflex chamber, Classic Markus parallel plate chamber, and EBT3 film.

Results: The results demonstrated good agreement between the semiflex and pinpoint chambers. Furthermore, there was no difference between the Farmer and pinpoint chambers for large cutouts. For the EBT3 film, half of the cases had differences greater than 1%, and the maximum discrepancy compared with the reference chamber was greater than 2% for the narrow field.

Conclusion: The parallel plate, semiflex chamber and EBT3 film are suitable dosimeters that are comparable with pinpoint 3D chambers in small and narrow electron fields. Notably, a semiflex chamber could be an alternative option to a pinpoint 3D chamber for cutout widths≥3 cm. It is very important to perform patient-specific cutout factor calibration with an appropriate dosimeter for keloid radiotherapy.

背景:电子平衡和剂量陡降的固有问题给小野和窄野剂量测定带来了困难:目的:使用各种剂量测定探测器研究小场和窄场瘢痕电子放射治疗的切口系数:方法:在具有九种不同切口形状的固体水模型中进行测量。研究中使用了五种剂量测定探测器:针尖三维电离室、法玛室、半柔性室、经典马库斯平行板室和 EBT3 胶片:结果表明,半柔性电离室和针尖电离室之间的一致性很好。此外,法默室和针尖室在大切口方面没有差异。就 EBT3 胶片而言,半数病例的差异大于 1%,在窄视野中,与参考室相比的最大差异大于 2%:结论:平行板、半柔性腔体和 EBT3 薄膜都是合适的剂量计,在小电子场和窄电子场中可与针尖三维腔体相媲美。值得注意的是,在切口宽度≥3 厘米时,半柔性腔体可作为针尖三维腔体的替代选择。在瘢痕疙瘩放疗中,使用合适的剂量计对患者的特定切口系数进行校准非常重要。
{"title":"Evaluation of cutout factors with small and narrow fields using various dosimetry detectors in electron beam keloid radiotherapy.","authors":"Yu-Fang Lin, Chen-Hsi Hsieh, Hui-Ju Tien, Yi-Huan Lee, Yi-Chun Chen, Lu-Han Lai, Shih-Ming Hsu, Pei-Wei Shueng","doi":"10.3233/XST-240059","DOIUrl":"10.3233/XST-240059","url":null,"abstract":"<p><strong>Background: </strong>The inherent problems in the existence of electron equilibrium and steep dose fall-off pose difficulties for small- and narrow-field dosimetry.</p><p><strong>Objective: </strong>To investigate the cutout factors for keloid electron radiotherapy using various dosimetry detectors for small and narrow fields.</p><p><strong>Method: </strong>The measurements were performed in a solid water phantom with nine different cutout shapes. Five dosimetry detectors were used in the study: pinpoint 3D ionization chamber, Farmer chamber, semiflex chamber, Classic Markus parallel plate chamber, and EBT3 film.</p><p><strong>Results: </strong>The results demonstrated good agreement between the semiflex and pinpoint chambers. Furthermore, there was no difference between the Farmer and pinpoint chambers for large cutouts. For the EBT3 film, half of the cases had differences greater than 1%, and the maximum discrepancy compared with the reference chamber was greater than 2% for the narrow field.</p><p><strong>Conclusion: </strong>The parallel plate, semiflex chamber and EBT3 film are suitable dosimeters that are comparable with pinpoint 3D chambers in small and narrow electron fields. Notably, a semiflex chamber could be an alternative option to a pinpoint 3D chamber for cutout widths≥3 cm. It is very important to perform patient-specific cutout factor calibration with an appropriate dosimeter for keloid radiotherapy.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning technology for detection and grading of cancer tissue using tumour ultrasound images1. 利用肿瘤超声图像对癌症组织进行检测和分级的学习技术1。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230085
Liyan Zhang, Ruiyan Xu, Jingde Zhao

Background: Early diagnosis of breast cancer is crucial to perform effective therapy. Many medical imaging modalities including MRI, CT, and ultrasound are used to diagnose cancer.

Objective: This study aims to investigate feasibility of applying transfer learning techniques to train convoluted neural networks (CNNs) to automatically diagnose breast cancer via ultrasound images.

Methods: Transfer learning techniques helped CNNs recognise breast cancer in ultrasound images. Each model's training and validation accuracies were assessed using the ultrasound image dataset. Ultrasound images educated and tested the models.

Results: MobileNet had the greatest accuracy during training and DenseNet121 during validation. Transfer learning algorithms can detect breast cancer in ultrasound images.

Conclusions: Based on the results, transfer learning models may be useful for automated breast cancer diagnosis in ultrasound images. However, only a trained medical professional should diagnose cancer, and computational approaches should only be used to help make quick decisions.

背景:乳腺癌的早期诊断对有效治疗至关重要。包括核磁共振成像(MRI)、计算机断层扫描(CT)和超声波在内的许多医学成像模式都可用于诊断癌症:本研究旨在探讨应用迁移学习技术训练卷积神经网络(CNN)通过超声波图像自动诊断乳腺癌的可行性:方法:迁移学习技术帮助卷积神经网络识别超声波图像中的乳腺癌。利用超声波图像数据集评估了每个模型的训练和验证精确度。超声图像对模型进行了教育和测试:结果:MobileNet 在训练期间的准确率最高,DenseNet 121 在验证期间的准确率最高。迁移学习算法可以检测出超声波图像中的乳腺癌:根据结果,迁移学习模型可用于超声图像中的乳腺癌自动诊断。不过,只有经过培训的专业医生才能诊断癌症,而计算方法只能用于帮助快速做出决定。
{"title":"Learning technology for detection and grading of cancer tissue using tumour ultrasound images1.","authors":"Liyan Zhang, Ruiyan Xu, Jingde Zhao","doi":"10.3233/XST-230085","DOIUrl":"10.3233/XST-230085","url":null,"abstract":"<p><strong>Background: </strong>Early diagnosis of breast cancer is crucial to perform effective therapy. Many medical imaging modalities including MRI, CT, and ultrasound are used to diagnose cancer.</p><p><strong>Objective: </strong>This study aims to investigate feasibility of applying transfer learning techniques to train convoluted neural networks (CNNs) to automatically diagnose breast cancer via ultrasound images.</p><p><strong>Methods: </strong>Transfer learning techniques helped CNNs recognise breast cancer in ultrasound images. Each model's training and validation accuracies were assessed using the ultrasound image dataset. Ultrasound images educated and tested the models.</p><p><strong>Results: </strong>MobileNet had the greatest accuracy during training and DenseNet121 during validation. Transfer learning algorithms can detect breast cancer in ultrasound images.</p><p><strong>Conclusions: </strong>Based on the results, transfer learning models may be useful for automated breast cancer diagnosis in ultrasound images. However, only a trained medical professional should diagnose cancer, and computational approaches should only be used to help make quick decisions.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning framework for simulation of artifacts in paranasal sinuses diagnosis using CT images. 利用 CT 图像模拟副鼻窦诊断伪影的机器学习框架。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230284
Abdullah Musleh

In the medical field, diagnostic tools that make use of deep neural networks have reached a level of performance never before seen. A proper diagnosis of a patient's condition is crucial in modern medicine since it determines whether or not the patient will receive the care they need. Data from a sinus CT scan is uploaded to a computer and displayed on a high-definition monitor to give the surgeon a clear anatomical orientation before endoscopic sinus surgery. In this study, a unique method is presented for detecting and diagnosing paranasal sinus disorders using machine learning. The researchers behind the current study designed their own approach. To speed up diagnosis, one of the primary goals of our study is to create an algorithm that can accurately evaluate the paranasal sinuses in CT scans. The proposed technology makes it feasible to automatically cut down on the number of CT scan images that require investigators to manually search through them all. In addition, the approach offers an automatic segmentation that may be used to locate the paranasal sinus region and crop it accordingly. As a result, the suggested method dramatically reduces the amount of data that is necessary during the training phase. As a result, this results in an increase in the efficiency of the computer while retaining a high degree of performance accuracy. The suggested method not only successfully identifies sinus irregularities but also automatically executes the necessary segmentation without requiring any manual cropping. This eliminates the need for time-consuming and error-prone human labor. When tested with actual CT scans, the method in question was discovered to have an accuracy of 95.16 percent while retaining a sensitivity of 99.14 percent throughout.

在医疗领域,利用深度神经网络的诊断工具已经达到了前所未有的性能水平。对病人病情的正确诊断在现代医学中至关重要,因为它决定了病人是否能得到所需的治疗。在内窥镜鼻窦手术前,鼻窦 CT 扫描的数据会被上传到计算机并显示在高清显示器上,为外科医生提供清晰的解剖定位。本研究提出了一种利用机器学习检测和诊断副鼻窦疾病的独特方法。本研究背后的研究人员设计了自己的方法。为了加快诊断速度,我们研究的主要目标之一是创建一种能够准确评估 CT 扫描中副鼻窦的算法。所提出的技术可以自动减少 CT 扫描图像的数量,而这需要研究人员手动搜索所有图像。此外,该方法还提供自动分割功能,可用于定位副鼻窦区域并进行相应裁剪。因此,建议的方法大大减少了训练阶段所需的数据量。因此,在保持高精度性能的同时,也提高了计算机的工作效率。建议的方法不仅能成功识别窦性不规则,还能自动执行必要的分割,无需任何手动裁剪。这样就无需耗时且容易出错的人工操作。在使用实际 CT 扫描进行测试时,发现该方法的准确率达到 95.16%,灵敏度则始终保持在 99.14%。
{"title":"Machine learning framework for simulation of artifacts in paranasal sinuses diagnosis using CT images.","authors":"Abdullah Musleh","doi":"10.3233/XST-230284","DOIUrl":"10.3233/XST-230284","url":null,"abstract":"<p><p>In the medical field, diagnostic tools that make use of deep neural networks have reached a level of performance never before seen. A proper diagnosis of a patient's condition is crucial in modern medicine since it determines whether or not the patient will receive the care they need. Data from a sinus CT scan is uploaded to a computer and displayed on a high-definition monitor to give the surgeon a clear anatomical orientation before endoscopic sinus surgery. In this study, a unique method is presented for detecting and diagnosing paranasal sinus disorders using machine learning. The researchers behind the current study designed their own approach. To speed up diagnosis, one of the primary goals of our study is to create an algorithm that can accurately evaluate the paranasal sinuses in CT scans. The proposed technology makes it feasible to automatically cut down on the number of CT scan images that require investigators to manually search through them all. In addition, the approach offers an automatic segmentation that may be used to locate the paranasal sinus region and crop it accordingly. As a result, the suggested method dramatically reduces the amount of data that is necessary during the training phase. As a result, this results in an increase in the efficiency of the computer while retaining a high degree of performance accuracy. The suggested method not only successfully identifies sinus irregularities but also automatically executes the necessary segmentation without requiring any manual cropping. This eliminates the need for time-consuming and error-prone human labor. When tested with actual CT scans, the method in question was discovered to have an accuracy of 95.16 percent while retaining a sensitivity of 99.14 percent throughout.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139941065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolution analysis of a volumetric coded aperture X-ray diffraction imaging system. 体积编码孔径 X 射线衍射成像系统的分辨率分析。
IF 3 3区 医学 Q2 Physics and Astronomy Pub Date : 2024-01-01 DOI: 10.3233/XST-230244
Zachary Gude, Anuj J Kapadia, Joel A Greenberg

Background: A coded aperture X-ray diffraction (XRD) imaging system can measure the X-ray diffraction form factor from an object in three dimensions -X, Y and Z (depth), broadening the potential application of this technology. However, to optimize XRD systems for specific applications, it is critical to understand how to predict and quantify system performance for each use case.

Objective: The purpose of this work is to present and validate 3D spatial resolution models for XRD imaging systems with a detector-side coded aperture.

Methods: A fan beam coded aperture XRD system was used to scan 3D printed resolution phantoms placed at various locations throughout the system's field of view. The multiplexed scatter data were reconstructed using a model-based iterative reconstruction algorithm, and the resulting volumetric images were evaluated using multiple resolution criteria to compare against the known phantom resolution. We considered the full width at half max and Sparrow criterion as measures of the resolution and compared our results against analytical resolution models from the literature as well as a new theory for predicting the system resolution based on geometric arguments.

Results: We show that our experimental measurements are bounded by the multitude of theoretical resolution predictions, which accurately predict the observed trends and order of magnitude of the spatial and form factor resolutions. However, we find that the expected and observed resolution can vary by approximately a factor of two depending on the choice of metric and model considered. We observe depth resolutions of 7-16 mm and transverse resolutions of 0.6-2 mm for objects throughout the field of view. Furthermore, we observe tradeoffs between the spatial resolution and XRD form factor resolution as a function of sample location.

Conclusion: The theories evaluated in this study provide a useful framework for estimating the 3D spatial resolution of a detector side coded aperture XRD imaging system. The assumptions and simplifications required by these theories can impact the overall accuracy of describing a particular system, but they also can add to the generalizability of their predictions. Furthermore, understanding the implications of the assumptions behind each theory can help predict performance, as shown by our data's placement between the conservative and idealized theories, and better guide future systems for optimized designs.

背景:编码孔径 X 射线衍射 (XRD) 成像系统可以从 X、Y 和 Z(深度)三个维度测量物体的 X 射线衍射形式因子,从而拓宽了这一技术的潜在应用领域。然而,要针对特定应用优化 XRD 系统,关键是要了解如何针对每种使用情况预测和量化系统性能:这项工作的目的是提出并验证带有探测器侧编码孔径的 XRD 成像系统的三维空间分辨率模型:方法:使用扇形光束编码孔径 XRD 系统扫描放置在整个系统视场不同位置的三维打印分辨率模型。使用基于模型的迭代重建算法对多路复用散射数据进行重建,并使用多种分辨率标准对生成的体积图像进行评估,以便与已知的模型分辨率进行比较。我们将半最大全宽和斯帕罗标准作为分辨率的衡量标准,并将我们的结果与文献中的分析分辨率模型以及基于几何参数预测系统分辨率的新理论进行了比较:结果:我们的实验测量结果表明,我们的实验测量结果受到了众多理论分辨率预测值的限制,这些预测值准确地预测了观察到的空间分辨率和形状系数分辨率的趋势和数量级。然而,我们发现,根据所考虑的度量标准和模型的选择,预期分辨率和观察到的分辨率可能会有大约 2 倍的差异。我们观察到,在整个视场中,物体的深度分辨率为 7-16 毫米,横向分辨率为 0.6-2 毫米。此外,我们还观察到空间分辨率和 XRD 形状因子分辨率之间的权衡与样品位置的函数关系:本研究中评估的理论为估算探测器侧编码孔径 XRD 成像系统的三维空间分辨率提供了一个有用的框架。这些理论所需的假设和简化会影响描述特定系统的整体准确性,但也会增加其预测的通用性。此外,了解每种理论背后假设的含义有助于预测性能(如我们的数据在保守理论和理想化理论之间的位置所示),并更好地指导未来系统的优化设计。
{"title":"Resolution analysis of a volumetric coded aperture X-ray diffraction imaging system.","authors":"Zachary Gude, Anuj J Kapadia, Joel A Greenberg","doi":"10.3233/XST-230244","DOIUrl":"10.3233/XST-230244","url":null,"abstract":"<p><strong>Background: </strong>A coded aperture X-ray diffraction (XRD) imaging system can measure the X-ray diffraction form factor from an object in three dimensions -X, Y and Z (depth), broadening the potential application of this technology. However, to optimize XRD systems for specific applications, it is critical to understand how to predict and quantify system performance for each use case.</p><p><strong>Objective: </strong>The purpose of this work is to present and validate 3D spatial resolution models for XRD imaging systems with a detector-side coded aperture.</p><p><strong>Methods: </strong>A fan beam coded aperture XRD system was used to scan 3D printed resolution phantoms placed at various locations throughout the system's field of view. The multiplexed scatter data were reconstructed using a model-based iterative reconstruction algorithm, and the resulting volumetric images were evaluated using multiple resolution criteria to compare against the known phantom resolution. We considered the full width at half max and Sparrow criterion as measures of the resolution and compared our results against analytical resolution models from the literature as well as a new theory for predicting the system resolution based on geometric arguments.</p><p><strong>Results: </strong>We show that our experimental measurements are bounded by the multitude of theoretical resolution predictions, which accurately predict the observed trends and order of magnitude of the spatial and form factor resolutions. However, we find that the expected and observed resolution can vary by approximately a factor of two depending on the choice of metric and model considered. We observe depth resolutions of 7-16 mm and transverse resolutions of 0.6-2 mm for objects throughout the field of view. Furthermore, we observe tradeoffs between the spatial resolution and XRD form factor resolution as a function of sample location.</p><p><strong>Conclusion: </strong>The theories evaluated in this study provide a useful framework for estimating the 3D spatial resolution of a detector side coded aperture XRD imaging system. The assumptions and simplifications required by these theories can impact the overall accuracy of describing a particular system, but they also can add to the generalizability of their predictions. Furthermore, understanding the implications of the assumptions behind each theory can help predict performance, as shown by our data's placement between the conservative and idealized theories, and better guide future systems for optimized designs.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of X-Ray Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1