首页 > 最新文献

Journal of the Royal Statistical Society Series C-Applied Statistics最新文献

英文 中文
Reconstructing the Antarctic ice-sheet shape at the Last Glacial Maximum using ice-core data 利用冰芯资料重建末次盛冰期南极冰盖形状
4区 数学 Q2 Mathematics Pub Date : 2023-09-18 DOI: 10.1093/jrsssc/qlad078
Fiona E Turner, Caitlin E Buck, Julie M Jones, Louise C Sime, Irene Malmierca Vallet, Richard D Wilkinson
Abstract The Antarctic ice sheet (AIS) is the Earth’s largest store of frozen water; understanding how it changed in the past allows us to improve projections of how it, and sea levels, may change. Here, we use previous AIS reconstructions, water isotope ratios from ice cores, and simulator predictions of the relationship between the ice-sheet shape and isotope ratios to create a model of the AIS at the Last Glacial Maximum. We develop a prior distribution that captures expert opinion about the AIS, generate a designed ensemble of potential shapes, run these through the climate model HadCM3, and train a Gaussian process emulator of the link between ice-sheet shape and isotope ratios. To make the analysis computationally tractable, we develop a preferential principal component method that allows us to reduce the dimension of the problem in a way that accounts for the differing importance we place in reconstructions, allowing us to create a basis that reflects prior uncertainty. We use Markov chain Monte Carlo to sample from the posterior distribution, finding shapes for which HadCM3 predicts isotope ratios closely matching observations from ice cores. The posterior distribution allows us to quantify the uncertainty in the reconstructed shape, a feature missing in other analyses.
南极冰盖(AIS)是地球上最大的冷冻水储存库;了解它在过去是如何变化的,可以让我们更好地预测它和海平面可能会如何变化。在这里,我们使用以前的AIS重建,来自冰芯的水同位素比率,以及冰盖形状和同位素比率之间关系的模拟器预测来创建末次盛冰期AIS模型。我们开发了一个先验分布,该分布捕获了有关AIS的专家意见,生成了一个设计的潜在形状集合,通过气候模型HadCM3运行这些集合,并训练了一个高斯过程模拟器来模拟冰盖形状和同位素比率之间的联系。为了使分析在计算上易于处理,我们开发了一种优先主成分方法,该方法允许我们以一种方式减少问题的维度,这种方式说明了我们在重建中放置的不同重要性,允许我们创建反映先前不确定性的基础。我们使用马尔科夫链蒙特卡罗从后验分布中取样,发现HadCM3预测的同位素比率与冰芯观测值密切匹配的形状。后验分布使我们能够量化重建形状的不确定性,这是其他分析中缺少的一个特征。
{"title":"Reconstructing the Antarctic ice-sheet shape at the Last Glacial Maximum using ice-core data","authors":"Fiona E Turner, Caitlin E Buck, Julie M Jones, Louise C Sime, Irene Malmierca Vallet, Richard D Wilkinson","doi":"10.1093/jrsssc/qlad078","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad078","url":null,"abstract":"Abstract The Antarctic ice sheet (AIS) is the Earth’s largest store of frozen water; understanding how it changed in the past allows us to improve projections of how it, and sea levels, may change. Here, we use previous AIS reconstructions, water isotope ratios from ice cores, and simulator predictions of the relationship between the ice-sheet shape and isotope ratios to create a model of the AIS at the Last Glacial Maximum. We develop a prior distribution that captures expert opinion about the AIS, generate a designed ensemble of potential shapes, run these through the climate model HadCM3, and train a Gaussian process emulator of the link between ice-sheet shape and isotope ratios. To make the analysis computationally tractable, we develop a preferential principal component method that allows us to reduce the dimension of the problem in a way that accounts for the differing importance we place in reconstructions, allowing us to create a basis that reflects prior uncertainty. We use Markov chain Monte Carlo to sample from the posterior distribution, finding shapes for which HadCM3 predicts isotope ratios closely matching observations from ice cores. The posterior distribution allows us to quantify the uncertainty in the reconstructed shape, a feature missing in other analyses.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135154123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution global precipitation downscaling with latent Gaussian models and non-stationary stochastic partial differential equation structure 基于隐高斯模型和非平稳随机偏微分方程结构的高分辨率全球降水降尺度
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-09-06 DOI: 10.1093/jrsssc/qlad084
Jiachen Zhang, Matthew Bonas, Diogo Bolster, Geir-Arne Fuglstad, S. Castruccio
Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a sustainable access to water resources at urban scale. Mapping a non-stationary, sparse process such as precipitation at very high spatial resolution requires the interpolation of global datasets at the location where ground stations are available with statistical models able to capture complex non-Gaussian global space–time dependence structures. In this work, we propose a new approach based on capturing the spatially varying anisotropy of a latent Gaussian process via a locally deformed stochastic partial differential equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite volume approximation of the SPDE, coupled with integrated nested Laplace approximation ensures feasible Bayesian inference for tens of millions of observations. The simulation studies showcase the improved predictability of the proposed approach against stationary and no-buffer alternatives. The proposed approach is then used to yield high-resolution simulations of daily precipitation across the United States.
获得高分辨率的降水数据地图可以为利益相关者提供关键的见解,以评估城市尺度上水资源的可持续利用。在非常高的空间分辨率下绘制非平稳的稀疏过程,如降水,需要在地面站可用的统计模型能够捕获复杂的非高斯全局时空依赖结构的位置插值全球数据集。在这项工作中,我们提出了一种新的方法,该方法基于通过局部变形的随机偏微分方程(SPDE)捕获潜在高斯过程的空间变化各向异性,该方法具有缓冲,允许陆地和海洋的不同空间结构。SPDE的有限体积近似与集成嵌套拉普拉斯近似相结合,确保了对数千万个观测值的可行贝叶斯推断。仿真研究表明,相对于固定和无缓冲方案,所提出的方法具有更好的可预测性。然后,该方法被用于生成美国各地日降水的高分辨率模拟。
{"title":"High-resolution global precipitation downscaling with latent Gaussian models and non-stationary stochastic partial differential equation structure","authors":"Jiachen Zhang, Matthew Bonas, Diogo Bolster, Geir-Arne Fuglstad, S. Castruccio","doi":"10.1093/jrsssc/qlad084","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad084","url":null,"abstract":"\u0000 Obtaining high-resolution maps of precipitation data can provide key insights to stakeholders to assess a sustainable access to water resources at urban scale. Mapping a non-stationary, sparse process such as precipitation at very high spatial resolution requires the interpolation of global datasets at the location where ground stations are available with statistical models able to capture complex non-Gaussian global space–time dependence structures. In this work, we propose a new approach based on capturing the spatially varying anisotropy of a latent Gaussian process via a locally deformed stochastic partial differential equation (SPDE) with a buffer allowing for a different spatial structure across land and sea. The finite volume approximation of the SPDE, coupled with integrated nested Laplace approximation ensures feasible Bayesian inference for tens of millions of observations. The simulation studies showcase the improved predictability of the proposed approach against stationary and no-buffer alternatives. The proposed approach is then used to yield high-resolution simulations of daily precipitation across the United States.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86900064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Models and methods for analysing clustered recurrent hospitalisations in the presence of COVID-19 effects. 分析存在 COVID-19 影响的聚类复发性住院的模型和方法。
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-09-06 eCollection Date: 2024-01-01 DOI: 10.1093/jrsssc/qlad082
Xuemei Ding, Kevin He, John D Kalbfleisch

Recurrent events such as hospitalisations are outcomes that can be used to monitor dialysis facilities' quality of care. However, current methods are not adequate to analyse data from many facilities with multiple hospitalisations, especially when adjustments are needed for multiple time scales. It is also controversial whether direct or indirect standardisation should be used in comparing facilities. This study is motivated by the need of the Centers for Medicare and Medicaid Services to evaluate US dialysis facilities using Medicare claims, which involve almost 8,000 facilities and over 500,000 dialysis patients. This scope is challenging for current statistical software's computational power. We propose a method that has a flexible baseline rate function and is computationally efficient. Additionally, the proposed method shares advantages of both indirect and direct standardisation. The method is evaluated under a range of simulation settings and demonstrates substantially improved computational efficiency over the existing R package survival. Finally, we illustrate the method with an important application to monitoring dialysis facilities in the U.S., while making time-dependent adjustments for the effects of COVID-19.

住院等经常性事件可用于监测透析机构的护理质量。然而,目前的方法不足以分析来自许多设施的多次住院数据,尤其是需要对多个时间尺度进行调整时。此外,在比较透析机构时应采用直接标准化还是间接标准化也存在争议。美国联邦医疗保险和医疗补助服务中心(Centers for Medicare and Medicaid Services)需要使用联邦医疗保险报销单对美国的透析机构进行评估,其中涉及近 8000 家机构和 50 多万名透析患者。这一范围对于目前统计软件的计算能力来说具有挑战性。我们提出了一种具有灵活基线率函数且计算效率高的方法。此外,该方法还具有间接标准化和直接标准化的优点。我们在一系列模拟设置下对该方法进行了评估,结果表明,与现有的 R 软件包 survival 相比,该方法的计算效率大幅提高。最后,我们通过对美国透析设施监测的一个重要应用来说明该方法,同时针对 COVID-19 的影响进行了随时间变化的调整。
{"title":"Models and methods for analysing clustered recurrent hospitalisations in the presence of COVID-19 effects.","authors":"Xuemei Ding, Kevin He, John D Kalbfleisch","doi":"10.1093/jrsssc/qlad082","DOIUrl":"10.1093/jrsssc/qlad082","url":null,"abstract":"<p><p>Recurrent events such as hospitalisations are outcomes that can be used to monitor dialysis facilities' quality of care. However, current methods are not adequate to analyse data from many facilities with multiple hospitalisations, especially when adjustments are needed for multiple time scales. It is also controversial whether direct or indirect standardisation should be used in comparing facilities. This study is motivated by the need of the Centers for Medicare and Medicaid Services to evaluate US dialysis facilities using Medicare claims, which involve almost 8,000 facilities and over 500,000 dialysis patients. This scope is challenging for current statistical software's computational power. We propose a method that has a flexible baseline rate function and is computationally efficient. Additionally, the proposed method shares advantages of both indirect and direct standardisation. The method is evaluated under a range of simulation settings and demonstrates substantially improved computational efficiency over the existing <b>R</b> package <i>survival</i>. Finally, we illustrate the method with an important application to monitoring dialysis facilities in the U.S., while making time-dependent adjustments for the effects of COVID-19.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82474150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing present and future risk of water damage using. Response to Comments 评估当前和未来的水损害风险。评论回复
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-16 DOI: 10.1093/jrsssc/qlad067
Claudio Heinrich‐Mertsching, J. C. Wahl, A. Ordoñez, M. Stien, John Elvsborg, O. Haug, T. Thorarinsdottir
{"title":"Assessing present and future risk of water damage using. Response to Comments","authors":"Claudio Heinrich‐Mertsching, J. C. Wahl, A. Ordoñez, M. Stien, John Elvsborg, O. Haug, T. Thorarinsdottir","doi":"10.1093/jrsssc/qlad067","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad067","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83202519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ankur Dutta’s contribution to the Discussion of “The First Discussion Meeting on Statistical aspects of climate change” Ankur Dutta对“气候变化统计方面的第一次讨论会议”讨论的贡献
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-16 DOI: 10.1093/jrsssc/qlad052
Ankur Dutta
{"title":"Ankur Dutta’s contribution to the Discussion of “The First Discussion Meeting on Statistical aspects of climate change”","authors":"Ankur Dutta","doi":"10.1093/jrsssc/qlad052","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad052","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82465798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating a brain network predictive of stress and genotype with supervised autoencoders. 用监督自编码器估计预测压力和基因型的脑网络。
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1093/jrsssc/qlad035
Austin Talbot, David Dunson, Kafui Dzirasa, David Carlson

Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant outcome. We use supervised autoencoders (SAEs) to improve predictive performance in this context, describe the conditions where SAEs improve predictions, and provide modelling constraints to ensure biological relevance. We experimentally validate our approach by finding a network associated with stress that aligns with a previous stimulation protocol and characterizing a genotype associated with bipolar disorder.

有针对性的大脑刺激有可能治疗精神疾病。我们开发了一种方法,通过识别相关的多区域电动力学来帮助设计协议。我们的方法将这些动态建模为潜在网络的叠加,其中潜在变量预测相关结果。在这种情况下,我们使用监督式自动编码器(sae)来提高预测性能,描述sae改进预测的条件,并提供建模约束以确保生物学相关性。我们通过实验验证了我们的方法,找到了与压力相关的网络,与先前的刺激方案一致,并表征了与双相情感障碍相关的基因型。
{"title":"Estimating a brain network predictive of stress and genotype with supervised autoencoders.","authors":"Austin Talbot,&nbsp;David Dunson,&nbsp;Kafui Dzirasa,&nbsp;David Carlson","doi":"10.1093/jrsssc/qlad035","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad035","url":null,"abstract":"<p><p>Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant outcome. We use supervised autoencoders (SAEs) to improve predictive performance in this context, describe the conditions where SAEs improve predictions, and provide modelling constraints to ensure biological relevance. We experimentally validate our approach by finding a network associated with stress that aligns with a previous stimulation protocol and characterizing a genotype associated with bipolar disorder.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10163295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proposer of the vote of thanks to Narayanan, Kosmidis and Dellaportas and contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football” 向Narayanan, Kosmidis和Dellaportas表示感谢,并对“灵活标记时空点过程在足协足球事件序列中的应用”的讨论作出贡献
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-07-28 DOI: 10.1093/jrsssc/qlad071
D. Karlis
{"title":"Proposer of the vote of thanks to Narayanan, Kosmidis and Dellaportas and contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football”","authors":"D. Karlis","doi":"10.1093/jrsssc/qlad071","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad071","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74125391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ron Yurko and Rebecca Nugent’s contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football” by Narayanan, Kosmidis and Dellaportas Ron Yurko和Rebecca Nugent对Narayanan、Kosmidis和delaportas关于“灵活的标记时空点过程与足协足球事件序列的应用”的讨论的贡献
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-07-27 DOI: 10.1093/jrsssc/qlad069
Ronald Yurko, Rebecca Nugent
{"title":"Ron Yurko and Rebecca Nugent’s contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football” by Narayanan, Kosmidis and Dellaportas","authors":"Ronald Yurko, Rebecca Nugent","doi":"10.1093/jrsssc/qlad069","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad069","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76269443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seconder of the vote of thanks to Narayanan, Kosmidis and Dellaportas and contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football” 其次,感谢Narayanan, Kosmidis和delaportas对“灵活的标记时空点过程及其在足协足球事件序列中的应用”的讨论所做的贡献
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-07-27 DOI: 10.1093/jrsssc/qlad072
Leonardo Egidi
{"title":"Seconder of the vote of thanks to Narayanan, Kosmidis and Dellaportas and contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football”","authors":"Leonardo Egidi","doi":"10.1093/jrsssc/qlad072","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad072","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74107240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paul Smith’s contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football” by Narayanan, Kosmidis and Dellaportas Paul Smith对Narayanan, Kosmidis和delaportas关于“灵活的标记时空点过程在足协足球事件序列中的应用”的讨论的贡献
IF 1.6 4区 数学 Q2 Mathematics Pub Date : 2023-07-26 DOI: 10.1093/jrsssc/qlad070
Paul A. Smith
{"title":"Paul Smith’s contribution to the Discussion of “Flexible marked spatio-temporal point processes with applications to event sequences from association football” by Narayanan, Kosmidis and Dellaportas","authors":"Paul A. Smith","doi":"10.1093/jrsssc/qlad070","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad070","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81334409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the Royal Statistical Society Series C-Applied Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1