首页 > 最新文献

Journal of the Royal Statistical Society Series C-Applied Statistics最新文献

英文 中文
Identification of taxon through classification with partial reject options 通过部分拒绝选项的分类识别分类单元
4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-07-01 DOI: 10.1093/jrsssc/qlad036
Måns Karlsson, Ola Hössjer
Abstract Identification of taxa can significantly be assisted by statistical classification based on trait measurements either individually or by phylogenetic (clustering) methods. In this article, we present a general Bayesian approach for classifying species individually based on measurements of a mixture of continuous and ordinal traits, and any type of covariates. The trait vector is derived from a latent variable with a multivariate Gaussian distribution. Decision rules based on supervised learning are presented that estimate model parameters through blocked Gibbs sampling. These decision regions allow for uncertainty (partial rejection), so that not necessarily one specific category (taxon) is output when new subjects are classified, but rather a set of categories including the most probable taxa. This type of discriminant analysis employs reward functions with a set-valued input argument, so that an optimal Bayes classifier can be defined. We also present a way of safeguarding against outlying new observations, using an analogue of a p-value within our Bayesian setting. We refer to our Bayesian set-valued classifier as the Karlsson–Hössjer method, and it is illustrated on an original ornithological data set of birds. We also incorporate model selection through cross-validation, exemplified on another original data set of birds.
基于个体或系统发育(聚类)方法的统计分类对分类群的鉴定具有重要的辅助作用。在本文中,我们提出了一种通用的贝叶斯方法,用于根据连续和有序特征的混合测量以及任何类型的协变量单独分类物种。特征向量由具有多元高斯分布的潜在变量导出。提出了基于监督学习的决策规则,通过块Gibbs抽样估计模型参数。这些决策区域允许不确定性(部分拒绝),因此在分类新主题时不一定输出一个特定的类别(分类群),而是包含最可能的分类群的一组类别。这种类型的判别分析使用具有集值输入参数的奖励函数,因此可以定义最优贝叶斯分类器。我们还提出了一种防止偏离新观测的方法,在贝叶斯设置中使用p值的模拟。我们将贝叶斯集值分类器称为Karlsson-Hössjer方法,并在鸟类的原始鸟类数据集上进行了说明。我们还通过交叉验证纳入了模型选择,以另一个原始鸟类数据集为例。
{"title":"Identification of taxon through classification with partial reject options","authors":"Måns Karlsson, Ola Hössjer","doi":"10.1093/jrsssc/qlad036","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad036","url":null,"abstract":"Abstract Identification of taxa can significantly be assisted by statistical classification based on trait measurements either individually or by phylogenetic (clustering) methods. In this article, we present a general Bayesian approach for classifying species individually based on measurements of a mixture of continuous and ordinal traits, and any type of covariates. The trait vector is derived from a latent variable with a multivariate Gaussian distribution. Decision rules based on supervised learning are presented that estimate model parameters through blocked Gibbs sampling. These decision regions allow for uncertainty (partial rejection), so that not necessarily one specific category (taxon) is output when new subjects are classified, but rather a set of categories including the most probable taxa. This type of discriminant analysis employs reward functions with a set-valued input argument, so that an optimal Bayes classifier can be defined. We also present a way of safeguarding against outlying new observations, using an analogue of a p-value within our Bayesian setting. We refer to our Bayesian set-valued classifier as the Karlsson–Hössjer method, and it is illustrated on an original ornithological data set of birds. We also incorporate model selection through cross-validation, exemplified on another original data set of birds.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"147 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136260255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A design utility approach for preferentially sampled spatial data 优先采样空间数据的设计实用方法
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-30 DOI: 10.1093/jrsssc/qlad040
Elizabeth J Gray, E. Evangelou
Spatial preferential sampling occurs when the choice of sampling locations depends stochastically on the process of interest. Ignoring this dependence leads to inaccurate inferences. Our framework models experimenter preferences jointly with the spatial process to adjust for this. We dispense with the unrealistic assumption (required by existing methods) of conditional independence of sampling locations by defining a whole design distribution proportional to a utility function on the space of designs. The proposed model likelihood is generally intractable. We provide fitting techniques based on the noisy Markov chain Monte Carlo and demonstrate their usage on a data set of spatially distributed ammonia concentrations.
当采样位置的选择随机地取决于感兴趣的过程时,就会出现空间优先采样。忽略这种依赖关系会导致不准确的推断。我们的框架将实验者的偏好与空间过程结合起来进行建模,以对此进行调整。我们通过定义一个与设计空间上的效用函数成比例的整体设计分布,省去了采样位置条件独立的不切实际的假设(现有方法所要求的)。提出的模型可能性通常是难以处理的。我们提供了基于噪声马尔可夫链蒙特卡罗的拟合技术,并演示了它们在空间分布的氨浓度数据集上的使用。
{"title":"A design utility approach for preferentially sampled spatial data","authors":"Elizabeth J Gray, E. Evangelou","doi":"10.1093/jrsssc/qlad040","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad040","url":null,"abstract":"\u0000 Spatial preferential sampling occurs when the choice of sampling locations depends stochastically on the process of interest. Ignoring this dependence leads to inaccurate inferences. Our framework models experimenter preferences jointly with the spatial process to adjust for this. We dispense with the unrealistic assumption (required by existing methods) of conditional independence of sampling locations by defining a whole design distribution proportional to a utility function on the space of designs. The proposed model likelihood is generally intractable. We provide fitting techniques based on the noisy Markov chain Monte Carlo and demonstrate their usage on a data set of spatially distributed ammonia concentrations.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"17 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81990291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Daniel Clarkson, Emma Eastoe and Amber Leeson's (Lancaster University) reply to the Discussion of ‘Statistical aspects of climate change’ 丹尼尔·克拉克森、艾玛·伊斯特奥和安布尔·李森(兰开斯特大学)对“气候变化的统计方面”讨论的答复
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-28 DOI: 10.1093/jrsssc/qlad059
D. Clarkson, E. Eastoe, A. Leeson
{"title":"Daniel Clarkson, Emma Eastoe and Amber Leeson's (Lancaster University) reply to the Discussion of ‘Statistical aspects of climate change’","authors":"D. Clarkson, E. Eastoe, A. Leeson","doi":"10.1093/jrsssc/qlad059","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad059","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"34 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75588026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anna Choi and Tze Leung Lai’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’ 蔡安娜及策良来在“气候变化统计方面的第一次讨论会议”上的发言
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-22 DOI: 10.1093/jrsssc/qlad050
Anna Choi, T. Lai
{"title":"Anna Choi and Tze Leung Lai’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’","authors":"Anna Choi, T. Lai","doi":"10.1093/jrsssc/qlad050","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad050","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"96 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85300919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Richard L Smith’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’ Richard L Smith对“气候变化统计方面的第一次讨论会议”讨论的贡献
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-22 DOI: 10.1093/jrsssc/qlad046
Richard L. Smith
{"title":"Richard L Smith’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’","authors":"Richard L. Smith","doi":"10.1093/jrsssc/qlad046","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad046","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"31 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74066061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional fused targeted ridge regression for health indicator prediction from accelerometer data 二维融合目标脊回归用于加速度计数据健康指标预测
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-20 DOI: 10.1093/jrsssc/qlad041
A. Lettink, M. Chinapaw, W. V. van Wieringen
We present the two-dimensional targeted fused ridge estimator of the linear and logistic regression models. The estimator (i) handles both unpenalised and penalised covariates, (ii) accommodates possible relations among the covariates’ coefficients through a fusion penalty, and (iii) incorporates prior information on the regression parameter through a non-zero shrinkage target. In this work, the aforementioned relations are similarities among the covariates’ coefficients due to spatial proximity in a two-dimensional grid. In an extensive re-analysis of an epidemiological and an image analysis study, we illustrate the use of the estimator’s aforementioned features that result in a tangibly interpretable predictor.
给出了线性回归模型和逻辑回归模型的二维目标融合脊估计。估计器(i)处理未惩罚和惩罚的协变量,(ii)通过融合惩罚容纳协变量系数之间可能的关系,以及(iii)通过非零收缩目标结合回归参数的先验信息。在这项工作中,上述关系是由于二维网格中的空间邻近性而导致协变量系数之间的相似性。在对流行病学和图像分析研究的广泛重新分析中,我们说明了使用估计器的上述特征,从而产生切实可解释的预测器。
{"title":"Two-dimensional fused targeted ridge regression for health indicator prediction from accelerometer data","authors":"A. Lettink, M. Chinapaw, W. V. van Wieringen","doi":"10.1093/jrsssc/qlad041","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad041","url":null,"abstract":"\u0000 We present the two-dimensional targeted fused ridge estimator of the linear and logistic regression models. The estimator (i) handles both unpenalised and penalised covariates, (ii) accommodates possible relations among the covariates’ coefficients through a fusion penalty, and (iii) incorporates prior information on the regression parameter through a non-zero shrinkage target. In this work, the aforementioned relations are similarities among the covariates’ coefficients due to spatial proximity in a two-dimensional grid. In an extensive re-analysis of an epidemiological and an image analysis study, we illustrate the use of the estimator’s aforementioned features that result in a tangibly interpretable predictor.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90622524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Christine P Chai’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’ 柴静雯在“气候变化统计方面的第一次讨论会议”上的发言
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-19 DOI: 10.1093/jrsssc/qlad049
Christine P Chai
{"title":"Christine P Chai’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’","authors":"Christine P Chai","doi":"10.1093/jrsssc/qlad049","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad049","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"7 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75429227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Christian Rohrbeck’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’ Christian Rohrbeck对“气候变化统计方面的第一次讨论会”的讨论的贡献
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-16 DOI: 10.1093/jrsssc/qlad047
C. Rohrbeck
{"title":"Christian Rohrbeck’s contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’","authors":"C. Rohrbeck","doi":"10.1093/jrsssc/qlad047","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad047","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"119 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79409526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proposer of the vote of thanks and contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’ 对“气候变化统计方面的第一次讨论会议”的讨论表示感谢和贡献的提案
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-16 DOI: 10.1093/jrsssc/qlad044
A. Raftery
{"title":"Proposer of the vote of thanks and contribution to the Discussion of ‘The First Discussion Meeting on Statistical aspects of climate change’","authors":"A. Raftery","doi":"10.1093/jrsssc/qlad044","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad044","url":null,"abstract":"","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89650540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vine copula-based Bayesian classification for multivariate time series of electroencephalography eye states 基于藤的多变量脑电图眼状态时间序列贝叶斯分类
IF 1.6 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-16 DOI: 10.1093/jrsssc/qlad038
Chunfang Zhang, C. Czado
Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.
有时,分类任务必须基于为每个类收集的多变量时间序列数据。在这些情况下,每一类的数据都可能表现出非平稳行为以及复杂的依赖结构。在应用贝叶斯分类器之前,我们提出了一种基于vine copula的方法来捕获每个类中的这些特征。Vine copula已经非常成功地模拟了变量之间的不对称尾依赖性,并将其与非平稳单变量时间序列相结合,对每一类的多变量时间序列数据进行了建模。我们使用脑电图神经活动实验的数据来说明这种分类方法,我们想对眼睛状态进行分类。随着时间的推移,头皮上多个位置的神经活动水平被收集起来。我们的方法能够识别相关位置,并允许对数据生成过程进行基于模型的解释。交叉验证研究与该数据集的竞争分类器的比较显示了所提出的分类器的良好性能。
{"title":"Vine copula-based Bayesian classification for multivariate time series of electroencephalography eye states","authors":"Chunfang Zhang, C. Czado","doi":"10.1093/jrsssc/qlad038","DOIUrl":"https://doi.org/10.1093/jrsssc/qlad038","url":null,"abstract":"\u0000 Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"264 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86546868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the Royal Statistical Society Series C-Applied Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1