首页 > 最新文献

Journal of the American Medical Informatics Association最新文献

英文 中文
A GIS software-based method to identify public health data belonging to address-defined communities. 一种基于地理信息系统软件的方法,用于识别属于地址定义社区的公共卫生数据。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-01 DOI: 10.1093/jamia/ocae235
Amanda M Lam, Mariana C Singletary, Theresa Cullen

Objective: This communication presents the results of defining a tribal health jurisdiction by a combination of tribal affiliation (TA) and case address.

Materials and methods: Through a county-tribal partnership, Geographic Information System (GIS) software and custom code were used to extract tribal data from county data by identifying reservation addresses in county extracts of COVID-19 case records from December 30, 2019, to December 31, 2022 (n = 374 653) and COVID-19 vaccination records from December 1, 2020, to April 18, 2023 (n = 2 355 058).

Results: The tool identified 1.91 times as many case records and 3.76 times as many vaccination records as filtering by TA alone.

Discussion and conclusion: This method of identifying communities by patient address, in combination with TA and enrollment, can help tribal health jurisdictions attain equitable access to public health data, when done in partnership with a data sharing agreement. This methodology has potential applications for other populations underrepresented in public health and clinical research.

目的本通报介绍了通过部落隶属关系和病例地址组合定义部落卫生管辖区的结果:通过县与部落合作,使用 GIS 软件和自定义代码从县数据中提取部落数据,方法是在县提取的 2019 年 12 月 30 日至 2022 年 12 月 31 日的 COVID-19 病例记录(n = 374,653 个)和 2020 年 12 月 1 日至 2023 年 4 月 18 日的 COVID-19 疫苗接种记录(n = 2,355,058 个)中识别保留地地址:结果:该工具识别出的病例记录和疫苗接种记录分别是通过部落隶属关系筛选出的病例记录和疫苗接种记录的 1.91 倍和 3.76 倍:这种通过患者地址识别社区的方法与部落隶属关系和注册情况相结合,如果与数据共享协议合作,可以帮助部落卫生辖区公平地获取公共卫生数据。这种方法还有可能应用于其他在公共卫生和临床研究中代表性不足的人群。
{"title":"A GIS software-based method to identify public health data belonging to address-defined communities.","authors":"Amanda M Lam, Mariana C Singletary, Theresa Cullen","doi":"10.1093/jamia/ocae235","DOIUrl":"10.1093/jamia/ocae235","url":null,"abstract":"<p><strong>Objective: </strong>This communication presents the results of defining a tribal health jurisdiction by a combination of tribal affiliation (TA) and case address.</p><p><strong>Materials and methods: </strong>Through a county-tribal partnership, Geographic Information System (GIS) software and custom code were used to extract tribal data from county data by identifying reservation addresses in county extracts of COVID-19 case records from December 30, 2019, to December 31, 2022 (n = 374 653) and COVID-19 vaccination records from December 1, 2020, to April 18, 2023 (n = 2 355 058).</p><p><strong>Results: </strong>The tool identified 1.91 times as many case records and 3.76 times as many vaccination records as filtering by TA alone.</p><p><strong>Discussion and conclusion: </strong>This method of identifying communities by patient address, in combination with TA and enrollment, can help tribal health jurisdictions attain equitable access to public health data, when done in partnership with a data sharing agreement. This methodology has potential applications for other populations underrepresented in public health and clinical research.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2716-2721"},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of wearable device data and multi-scale entropy analysis on improving hospital readmission prediction. 可穿戴设备数据和多尺度熵分析对改善再入院预测的影响。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-01 DOI: 10.1093/jamia/ocae242
Vishal Nagarajan, Supreeth Prajwal Shashikumar, Atul Malhotra, Shamim Nemati, Gabriel Wardi

Objective: Unplanned readmissions following a hospitalization remain common despite significant efforts to curtail these. Wearable devices may offer help identify patients at high risk for an unplanned readmission.

Materials and methods: We conducted a multi-center retrospective cohort study using data from the All of Us data repository. We included subjects with wearable data and developed a baseline Feedforward Neural Network (FNN) model and a Long Short-Term Memory (LSTM) time-series deep learning model to predict daily, unplanned rehospitalizations up to 90 days from discharge. In addition to demographic and laboratory data from subjects, post-discharge data input features include wearable data and multiscale entropy features based on intraday wearable time series. The most significant features in the LSTM model were determined by permutation feature importance testing.

Results: In sum, 612 patients met inclusion criteria. The complete LSTM model had a higher area under the receiver operating characteristic curve than the FNN model (0.83 vs 0.795). The 5 most important input features included variables from multiscale entropy (steps) and number of active steps per day.

Discussion: Data available from wearable devices can improve ability to predict readmissions. Prior work has focused on predictors available up to discharge or on additional data abstracted from wearable devices. Our results from 35 institutions highlight how multiscale entropy can improve readmission prediction and may impact future work in this domain.

Conclusion: Wearable data and multiscale entropy can improve prediction of a deep-learning model to predict unplanned 90-day readmissions. Prospective studies are needed to validate these findings.

目的:住院后意外再入院的情况仍然很常见,尽管我们已经做出了很大努力来减少这种情况的发生。可穿戴设备可帮助识别意外再入院的高风险患者:我们利用 "我们所有人 "数据存储库中的数据开展了一项多中心回顾性队列研究。我们纳入了拥有可穿戴数据的受试者,并开发了一个基线前馈神经网络(FNN)模型和一个长短期记忆(LSTM)时间序列深度学习模型,以预测出院后 90 天内每天的意外再入院情况。除了受试者的人口统计学和实验室数据外,出院后数据输入特征还包括可穿戴数据和基于日内可穿戴时间序列的多尺度熵特征。LSTM 模型中最重要的特征是通过置换特征重要性测试确定的:共有 612 名患者符合纳入标准。完整的 LSTM 模型比 FNN 模型具有更高的接收者工作特征曲线下面积(0.83 对 0.795)。5个最重要的输入特征包括多尺度熵变量(步数)和每天活动步数:讨论:可穿戴设备提供的数据可提高再入院预测能力。之前的工作主要集中在出院前的预测指标或从可穿戴设备中抽取的额外数据。我们从 35 家机构中得出的结果突显了多尺度熵如何改善再入院预测,并可能影响该领域未来的工作:结论:可穿戴数据和多尺度熵可以提高深度学习模型的预测能力,从而预测计划外 90 天再入院情况。需要进行前瞻性研究来验证这些发现。
{"title":"Impact of wearable device data and multi-scale entropy analysis on improving hospital readmission prediction.","authors":"Vishal Nagarajan, Supreeth Prajwal Shashikumar, Atul Malhotra, Shamim Nemati, Gabriel Wardi","doi":"10.1093/jamia/ocae242","DOIUrl":"10.1093/jamia/ocae242","url":null,"abstract":"<p><strong>Objective: </strong>Unplanned readmissions following a hospitalization remain common despite significant efforts to curtail these. Wearable devices may offer help identify patients at high risk for an unplanned readmission.</p><p><strong>Materials and methods: </strong>We conducted a multi-center retrospective cohort study using data from the All of Us data repository. We included subjects with wearable data and developed a baseline Feedforward Neural Network (FNN) model and a Long Short-Term Memory (LSTM) time-series deep learning model to predict daily, unplanned rehospitalizations up to 90 days from discharge. In addition to demographic and laboratory data from subjects, post-discharge data input features include wearable data and multiscale entropy features based on intraday wearable time series. The most significant features in the LSTM model were determined by permutation feature importance testing.</p><p><strong>Results: </strong>In sum, 612 patients met inclusion criteria. The complete LSTM model had a higher area under the receiver operating characteristic curve than the FNN model (0.83 vs 0.795). The 5 most important input features included variables from multiscale entropy (steps) and number of active steps per day.</p><p><strong>Discussion: </strong>Data available from wearable devices can improve ability to predict readmissions. Prior work has focused on predictors available up to discharge or on additional data abstracted from wearable devices. Our results from 35 institutions highlight how multiscale entropy can improve readmission prediction and may impact future work in this domain.</p><p><strong>Conclusion: </strong>Wearable data and multiscale entropy can improve prediction of a deep-learning model to predict unplanned 90-day readmissions. Prospective studies are needed to validate these findings.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2679-2688"},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards cross-application model-agnostic federated cohort discovery. 实现跨应用模型的联合队列发现。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-01 DOI: 10.1093/jamia/ocae211
Nicholas J Dobbins, Michele Morris, Eugene Sadhu, Douglas MacFadden, Marc-Danie Nazaire, William Simons, Griffin Weber, Shawn Murphy, Shyam Visweswaran

Objectives: To demonstrate that 2 popular cohort discovery tools, Leaf and the Shared Health Research Information Network (SHRINE), are readily interoperable. Specifically, we adapted Leaf to interoperate and function as a node in a federated data network that uses SHRINE and dynamically generate queries for heterogeneous data models.

Materials and methods: SHRINE queries are designed to run on the Informatics for Integrating Biology & the Bedside (i2b2) data model. We created functionality in Leaf to interoperate with a SHRINE data network and dynamically translate SHRINE queries to other data models. We randomly selected 500 past queries from the SHRINE-based national Evolve to Next-Gen Accrual to Clinical Trials (ENACT) network for evaluation, and an additional 100 queries to refine and debug Leaf's translation functionality. We created a script for Leaf to convert the terms in the SHRINE queries into equivalent structured query language (SQL) concepts, which were then executed on 2 other data models.

Results and discussion: 91.1% of the generated queries for non-i2b2 models returned counts within 5% (or ±5 patients for counts under 100) of i2b2, with 91.3% recall. Of the 8.9% of queries that exceeded the 5% margin, 77 of 89 (86.5%) were due to errors introduced by the Python script or the extract-transform-load process, which are easily fixed in a production deployment. The remaining errors were due to Leaf's translation function, which was later fixed.

Conclusion: Our results support that cohort discovery applications such as Leaf and SHRINE can interoperate in federated data networks with heterogeneous data models.

目的证明两种流行的队列发现工具--Leaf和共享健康研究信息网络(SHRINE)--可随时互操作。具体来说,我们对Leaf进行了改编,使其能够互操作,并作为使用SHRINE的联合数据网络中的一个节点,为异构数据模型动态生成查询:SHRINE查询被设计为在生物与床边整合信息学(i2b2)数据模型上运行。我们在Leaf中创建了与SHRINE数据网络互操作的功能,并将SHRINE查询动态转换为其他数据模型。我们从基于 SHRINE 的国家级 "进化到下一代临床试验(ENACT)"网络中随机选取了 500 个过去的查询进行评估,并另外选取了 100 个查询来完善和调试利夫的翻译功能。我们为 Leaf 创建了一个脚本,用于将 SHRINE 查询中的术语转换为等效的结构化查询语言(SQL)概念,然后在另外两个数据模型上执行。结果与讨论:在为非 i2b2 模型生成的查询中,91.1% 返回的计数在 i2b2 的 5%(或计数低于 100 的±5 名患者)以内,召回率为 91.3%。在 8.9% 超过 5% 的查询中,89 项中的 77 项(86.5%)是由于 Python 脚本或提取-转换-加载过程中引入的错误造成的,这些错误在生产部署中很容易修复。其余的错误是由于 Leaf 的翻译功能造成的,该功能后来得到了修复:我们的研究结果表明,像 Leaf 和 SHRINE 这样的队列发现应用程序可以在具有异构数据模型的联合数据网络中实现互操作。
{"title":"Towards cross-application model-agnostic federated cohort discovery.","authors":"Nicholas J Dobbins, Michele Morris, Eugene Sadhu, Douglas MacFadden, Marc-Danie Nazaire, William Simons, Griffin Weber, Shawn Murphy, Shyam Visweswaran","doi":"10.1093/jamia/ocae211","DOIUrl":"10.1093/jamia/ocae211","url":null,"abstract":"<p><strong>Objectives: </strong>To demonstrate that 2 popular cohort discovery tools, Leaf and the Shared Health Research Information Network (SHRINE), are readily interoperable. Specifically, we adapted Leaf to interoperate and function as a node in a federated data network that uses SHRINE and dynamically generate queries for heterogeneous data models.</p><p><strong>Materials and methods: </strong>SHRINE queries are designed to run on the Informatics for Integrating Biology & the Bedside (i2b2) data model. We created functionality in Leaf to interoperate with a SHRINE data network and dynamically translate SHRINE queries to other data models. We randomly selected 500 past queries from the SHRINE-based national Evolve to Next-Gen Accrual to Clinical Trials (ENACT) network for evaluation, and an additional 100 queries to refine and debug Leaf's translation functionality. We created a script for Leaf to convert the terms in the SHRINE queries into equivalent structured query language (SQL) concepts, which were then executed on 2 other data models.</p><p><strong>Results and discussion: </strong>91.1% of the generated queries for non-i2b2 models returned counts within 5% (or ±5 patients for counts under 100) of i2b2, with 91.3% recall. Of the 8.9% of queries that exceeded the 5% margin, 77 of 89 (86.5%) were due to errors introduced by the Python script or the extract-transform-load process, which are easily fixed in a production deployment. The remaining errors were due to Leaf's translation function, which was later fixed.</p><p><strong>Conclusion: </strong>Our results support that cohort discovery applications such as Leaf and SHRINE can interoperate in federated data networks with heterogeneous data models.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2202-2209"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of digital tools to promote hospital quality and safety on adverse events after discharge. 促进医院质量与安全的数字化工具对出院后不良事件的影响。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-01 DOI: 10.1093/jamia/ocae176
Anant Vasudevan, Savanna Plombon, Nicholas Piniella, Alison Garber, Maria Malik, Erin O'Fallon, Abhishek Goyal, Esteban Gershanik, Vivek Kumar, Julie Fiskio, Cathy Yoon, Stuart R Lipsitz, Jeffrey L Schnipper, Anuj K Dalal

Objectives: Post-discharge adverse events (AEs) are common and heralded by new and worsening symptoms (NWS). We evaluated the effect of electronic health record (EHR)-integrated digital tools designed to promote quality and safety in hospitalized patients on NWS and AEs after discharge.

Materials and methods: Adult general medicine patients at a community hospital were enrolled. We implemented a dashboard which clinicians used to assess safety risks during interdisciplinary rounds. Post-implementation patients were randomized to complete a discharge checklist whose responses were incorporated into the dashboard. Outcomes were assessed using EHR review and 30-day call data adjudicated by 2 clinicians and analyzed using Poisson regression. We conducted comparisons of each exposure on post-discharge outcomes and used selected variables and NWS as independent predictors to model post-discharge AEs using multivariable logistic regression.

Results: A total of 260 patients (122 pre, 71 post [dashboard], 67 post [dashboard plus discharge checklist]) enrolled. The adjusted incidence rate ratios (aIRR) for NWS and AEs were unchanged in the post- compared to pre-implementation period. For patient-reported NWS, aIRR was non-significantly higher for dashboard plus discharge checklist compared to dashboard participants (1.23 [0.97,1.56], P = .08). For post-implementation patients with an AE, aIRR for duration of injury (>1 week) was significantly lower for dashboard plus discharge checklist compared to dashboard participants (0 [0,0.53], P < .01). In multivariable models, certain patient-reported NWS were associated with AEs (3.76 [1.89,7.82], P < .01).

Discussion: While significant reductions in post-discharge AEs were not observed, checklist participants experiencing a post-discharge AE were more likely to report NWS and had a shorter duration of injury.

Conclusion: Interventions designed to prompt patients to report NWS may facilitate earlier detection of AEs after discharge.

Clinicaltrials.gov: NCT05232656.

目的:出院后不良事件(AEs)很常见,并以新症状和恶化症状(NWS)为先兆。我们评估了旨在提高住院患者质量和安全的电子健康记录(EHR)集成数字工具对出院后新症状和不良事件的影响:研究对象为一家社区医院的成人全科患者。我们实施了一个仪表板,临床医生在跨学科查房时用它来评估安全风险。实施后,患者被随机分配填写出院核对表,并将其回复纳入仪表板。结果通过电子病历审查和 30 天呼叫数据进行评估,由两名临床医生裁定,并使用泊松回归进行分析。我们比较了每种暴露对出院后结果的影响,并将选定变量和 NWS 作为独立预测因子,使用多变量逻辑回归对出院后 AEs 进行建模:共有 260 名患者(122 名出院前、71 名出院后[仪表板]、67 名出院后[仪表板加出院检查单])参加了研究。与实施前相比,实施后 NWS 和 AE 的调整后发病率比 (aIRR) 保持不变。就患者报告的 NWS 而言,与仪表板参与者相比,仪表板加出院核对表参与者的 aIRR 较高,但无显著性差异(1.23 [0.97,1.56],P = .08)。对于实施后出现 AE 的患者,与仪表板参与者相比,仪表板加出院核对表患者的损伤持续时间(>1 周)的 aIRR 显著降低(0 [0,0.53],P 讨论):虽然没有观察到出院后 AE 的明显减少,但出院后发生 AE 的核对表参与者更有可能报告 NWS,且受伤持续时间更短:结论:旨在促使患者报告 NWS 的干预措施可能有助于更早地发现出院后 AE:NCT05232656。
{"title":"Effect of digital tools to promote hospital quality and safety on adverse events after discharge.","authors":"Anant Vasudevan, Savanna Plombon, Nicholas Piniella, Alison Garber, Maria Malik, Erin O'Fallon, Abhishek Goyal, Esteban Gershanik, Vivek Kumar, Julie Fiskio, Cathy Yoon, Stuart R Lipsitz, Jeffrey L Schnipper, Anuj K Dalal","doi":"10.1093/jamia/ocae176","DOIUrl":"10.1093/jamia/ocae176","url":null,"abstract":"<p><strong>Objectives: </strong>Post-discharge adverse events (AEs) are common and heralded by new and worsening symptoms (NWS). We evaluated the effect of electronic health record (EHR)-integrated digital tools designed to promote quality and safety in hospitalized patients on NWS and AEs after discharge.</p><p><strong>Materials and methods: </strong>Adult general medicine patients at a community hospital were enrolled. We implemented a dashboard which clinicians used to assess safety risks during interdisciplinary rounds. Post-implementation patients were randomized to complete a discharge checklist whose responses were incorporated into the dashboard. Outcomes were assessed using EHR review and 30-day call data adjudicated by 2 clinicians and analyzed using Poisson regression. We conducted comparisons of each exposure on post-discharge outcomes and used selected variables and NWS as independent predictors to model post-discharge AEs using multivariable logistic regression.</p><p><strong>Results: </strong>A total of 260 patients (122 pre, 71 post [dashboard], 67 post [dashboard plus discharge checklist]) enrolled. The adjusted incidence rate ratios (aIRR) for NWS and AEs were unchanged in the post- compared to pre-implementation period. For patient-reported NWS, aIRR was non-significantly higher for dashboard plus discharge checklist compared to dashboard participants (1.23 [0.97,1.56], P = .08). For post-implementation patients with an AE, aIRR for duration of injury (>1 week) was significantly lower for dashboard plus discharge checklist compared to dashboard participants (0 [0,0.53], P < .01). In multivariable models, certain patient-reported NWS were associated with AEs (3.76 [1.89,7.82], P < .01).</p><p><strong>Discussion: </strong>While significant reductions in post-discharge AEs were not observed, checklist participants experiencing a post-discharge AE were more likely to report NWS and had a shorter duration of injury.</p><p><strong>Conclusion: </strong>Interventions designed to prompt patients to report NWS may facilitate earlier detection of AEs after discharge.</p><p><strong>Clinicaltrials.gov: </strong>NCT05232656.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2304-2314"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of reinforcement learning for natural language processing and applications in healthcare. 回顾强化学习在自然语言处理和医疗保健中的应用。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-01 DOI: 10.1093/jamia/ocae215
Ying Liu, Haozhu Wang, Huixue Zhou, Mingchen Li, Yu Hou, Sicheng Zhou, Fang Wang, Rama Hoetzlein, Rui Zhang

Importance: Reinforcement learning (RL) represents a pivotal avenue within natural language processing (NLP), offering a potent mechanism for acquiring optimal strategies in task completion. This literature review studies various NLP applications where RL has demonstrated efficacy, with notable applications in healthcare settings.

Objectives: To systematically explore the applications of RL in NLP, focusing on its effectiveness in acquiring optimal strategies, particularly in healthcare settings, and provide a comprehensive understanding of RL's potential in NLP tasks.

Materials and methods: Adhering to the PRISMA guidelines, an exhaustive literature review was conducted to identify instances where RL has exhibited success in NLP applications, encompassing dialogue systems, machine translation, question-answering, text summarization, and information extraction. Our methodological approach involves closely examining the technical aspects of RL methodologies employed in these applications, analyzing algorithms, states, rewards, actions, datasets, and encoder-decoder architectures.

Results: The review of 93 papers yields insights into RL algorithms, prevalent techniques, emergent trends, and the fusion of RL methods in NLP healthcare applications. It clarifies the strategic approaches employed, datasets utilized, and the dynamic terrain of RL-NLP systems, thereby offering a roadmap for research and development in RL and machine learning techniques in healthcare. The review also addresses ethical concerns to ensure equity, transparency, and accountability in the evolution and application of RL-based NLP technologies, particularly within sensitive domains such as healthcare.

Discussion: The findings underscore the promising role of RL in advancing NLP applications, particularly in healthcare, where its potential to optimize decision-making and enhance patient outcomes is significant. However, the ethical challenges and technical complexities associated with RL demand careful consideration and ongoing research to ensure responsible and effective implementation.

Conclusions: By systematically exploring RL's applications in NLP and providing insights into technical analysis, ethical implications, and potential advancements, this review contributes to a deeper understanding of RL's role for language processing.

重要性:强化学习(RL)是自然语言处理(NLP)中的一个重要途径,它提供了一种在完成任务过程中获得最佳策略的有效机制。这篇文献综述研究了强化学习在 NLP 中的各种应用,其中强化学习在医疗保健领域的应用效果显著:系统探索 RL 在 NLP 中的应用,重点关注其在获取最佳策略方面的有效性,尤其是在医疗保健领域的应用,并全面了解 RL 在 NLP 任务中的潜力:根据 PRISMA 准则,我们进行了详尽的文献综述,以确定 RL 在 NLP 应用中取得成功的实例,包括对话系统、机器翻译、问题解答、文本摘要和信息提取。我们的方法包括仔细研究这些应用中采用的 RL 方法的技术方面,分析算法、状态、奖励、操作、数据集和编码器-解码器架构:通过对 93 篇论文的综述,我们深入了解了 RL 算法、流行技术、新兴趋势以及 RL 方法在 NLP 医疗保健应用中的融合。它阐明了所采用的战略方法、利用的数据集以及 RL-NLP 系统的动态范围,从而为医疗保健领域的 RL 和机器学习技术的研究与开发提供了路线图。该综述还探讨了伦理问题,以确保基于 RL 的 NLP 技术在发展和应用过程中的公平性、透明度和问责制,尤其是在医疗保健等敏感领域:讨论:研究结果强调了 RL 在推进 NLP 应用方面的重要作用,尤其是在医疗保健领域,因为它在优化决策和提高患者治疗效果方面具有巨大潜力。然而,与 RL 相关的伦理挑战和技术复杂性需要仔细考虑和持续研究,以确保负责任和有效的实施:本综述系统地探讨了 RL 在 NLP 中的应用,并对技术分析、伦理影响和潜在进步提出了见解,有助于加深对 RL 在语言处理中的作用的理解。
{"title":"A review of reinforcement learning for natural language processing and applications in healthcare.","authors":"Ying Liu, Haozhu Wang, Huixue Zhou, Mingchen Li, Yu Hou, Sicheng Zhou, Fang Wang, Rama Hoetzlein, Rui Zhang","doi":"10.1093/jamia/ocae215","DOIUrl":"10.1093/jamia/ocae215","url":null,"abstract":"<p><strong>Importance: </strong>Reinforcement learning (RL) represents a pivotal avenue within natural language processing (NLP), offering a potent mechanism for acquiring optimal strategies in task completion. This literature review studies various NLP applications where RL has demonstrated efficacy, with notable applications in healthcare settings.</p><p><strong>Objectives: </strong>To systematically explore the applications of RL in NLP, focusing on its effectiveness in acquiring optimal strategies, particularly in healthcare settings, and provide a comprehensive understanding of RL's potential in NLP tasks.</p><p><strong>Materials and methods: </strong>Adhering to the PRISMA guidelines, an exhaustive literature review was conducted to identify instances where RL has exhibited success in NLP applications, encompassing dialogue systems, machine translation, question-answering, text summarization, and information extraction. Our methodological approach involves closely examining the technical aspects of RL methodologies employed in these applications, analyzing algorithms, states, rewards, actions, datasets, and encoder-decoder architectures.</p><p><strong>Results: </strong>The review of 93 papers yields insights into RL algorithms, prevalent techniques, emergent trends, and the fusion of RL methods in NLP healthcare applications. It clarifies the strategic approaches employed, datasets utilized, and the dynamic terrain of RL-NLP systems, thereby offering a roadmap for research and development in RL and machine learning techniques in healthcare. The review also addresses ethical concerns to ensure equity, transparency, and accountability in the evolution and application of RL-based NLP technologies, particularly within sensitive domains such as healthcare.</p><p><strong>Discussion: </strong>The findings underscore the promising role of RL in advancing NLP applications, particularly in healthcare, where its potential to optimize decision-making and enhance patient outcomes is significant. However, the ethical challenges and technical complexities associated with RL demand careful consideration and ongoing research to ensure responsible and effective implementation.</p><p><strong>Conclusions: </strong>By systematically exploring RL's applications in NLP and providing insights into technical analysis, ethical implications, and potential advancements, this review contributes to a deeper understanding of RL's role for language processing.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2379-2393"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostic accuracy of deep learning using speech samples in depression: a systematic review and meta-analysis. 利用语音样本进行深度学习对抑郁症的诊断准确性:系统综述和荟萃分析。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-01 DOI: 10.1093/jamia/ocae189
Lidan Liu, Lu Liu, Hatem A Wafa, Florence Tydeman, Wanqing Xie, Yanzhong Wang

Objective: This study aims to conduct a systematic review and meta-analysis of the diagnostic accuracy of deep learning (DL) using speech samples in depression.

Materials and methods: This review included studies reporting diagnostic results of DL algorithms in depression using speech data, published from inception to January 31, 2024, on PubMed, Medline, Embase, PsycINFO, Scopus, IEEE, and Web of Science databases. Pooled accuracy, sensitivity, and specificity were obtained by random-effect models. The diagnostic Precision Study Quality Assessment Tool (QUADAS-2) was used to assess the risk of bias.

Results: A total of 25 studies met the inclusion criteria and 8 of them were used in the meta-analysis. The pooled estimates of accuracy, specificity, and sensitivity for depression detection models were 0.87 (95% CI, 0.81-0.93), 0.85 (95% CI, 0.78-0.91), and 0.82 (95% CI, 0.71-0.94), respectively. When stratified by model structure, the highest pooled diagnostic accuracy was 0.89 (95% CI, 0.81-0.97) in the handcrafted group.

Discussion: To our knowledge, our study is the first meta-analysis on the diagnostic performance of DL for depression detection from speech samples. All studies included in the meta-analysis used convolutional neural network (CNN) models, posing problems in deciphering the performance of other DL algorithms. The handcrafted model performed better than the end-to-end model in speech depression detection.

Conclusions: The application of DL in speech provided a useful tool for depression detection. CNN models with handcrafted acoustic features could help to improve the diagnostic performance.

Protocol registration: The study protocol was registered on PROSPERO (CRD42023423603).

研究目的本研究旨在对使用语音样本的深度学习(DL)对抑郁症的诊断准确性进行系统综述和荟萃分析:本综述纳入了PubMed、Medline、Embase、PsycINFO、Scopus、IEEE和Web of Science数据库中从开始到2024年1月31日发表的、报告使用语音数据的深度学习算法对抑郁症的诊断结果的研究。通过随机效应模型得出了汇总的准确性、敏感性和特异性。诊断精确性研究质量评估工具(QUADAS-2)用于评估偏倚风险:共有 25 项研究符合纳入标准,其中 8 项用于荟萃分析。抑郁检测模型的准确性、特异性和敏感性的汇总估计值分别为 0.87(95% CI,0.81-0.93)、0.85(95% CI,0.78-0.91)和 0.82(95% CI,0.71-0.94)。按模型结构分层后,手工组的汇总诊断准确率最高,为 0.89(95% CI,0.81-0.97):据我们所知,我们的研究是首次对 DL 从语音样本中检测抑郁的诊断性能进行荟萃分析。所有纳入荟萃分析的研究都使用了卷积神经网络(CNN)模型,这给解读其他 DL 算法的性能带来了问题。在语音抑郁检测中,手工制作的模型比端到端模型表现更好:在语音中应用 DL 为抑郁检测提供了有用的工具。带有手工制作声学特征的 CNN 模型有助于提高诊断性能:研究方案已在 PROSPERO(CRD42023423603)上注册。
{"title":"Diagnostic accuracy of deep learning using speech samples in depression: a systematic review and meta-analysis.","authors":"Lidan Liu, Lu Liu, Hatem A Wafa, Florence Tydeman, Wanqing Xie, Yanzhong Wang","doi":"10.1093/jamia/ocae189","DOIUrl":"10.1093/jamia/ocae189","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to conduct a systematic review and meta-analysis of the diagnostic accuracy of deep learning (DL) using speech samples in depression.</p><p><strong>Materials and methods: </strong>This review included studies reporting diagnostic results of DL algorithms in depression using speech data, published from inception to January 31, 2024, on PubMed, Medline, Embase, PsycINFO, Scopus, IEEE, and Web of Science databases. Pooled accuracy, sensitivity, and specificity were obtained by random-effect models. The diagnostic Precision Study Quality Assessment Tool (QUADAS-2) was used to assess the risk of bias.</p><p><strong>Results: </strong>A total of 25 studies met the inclusion criteria and 8 of them were used in the meta-analysis. The pooled estimates of accuracy, specificity, and sensitivity for depression detection models were 0.87 (95% CI, 0.81-0.93), 0.85 (95% CI, 0.78-0.91), and 0.82 (95% CI, 0.71-0.94), respectively. When stratified by model structure, the highest pooled diagnostic accuracy was 0.89 (95% CI, 0.81-0.97) in the handcrafted group.</p><p><strong>Discussion: </strong>To our knowledge, our study is the first meta-analysis on the diagnostic performance of DL for depression detection from speech samples. All studies included in the meta-analysis used convolutional neural network (CNN) models, posing problems in deciphering the performance of other DL algorithms. The handcrafted model performed better than the end-to-end model in speech depression detection.</p><p><strong>Conclusions: </strong>The application of DL in speech provided a useful tool for depression detection. CNN models with handcrafted acoustic features could help to improve the diagnostic performance.</p><p><strong>Protocol registration: </strong>The study protocol was registered on PROSPERO (CRD42023423603).</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"2394-2404"},"PeriodicalIF":4.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can GPT-3.5 generate and code discharge summaries? GPT-3.5 能否生成出院摘要并对其进行编码?
IF 6.4 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-14 DOI: 10.1093/jamia/ocae132
Matúš Falis, Aryo Pradipta Gema, Hang Dong, Luke Daines, Siddharth Basetti, Michael Holder, Rose S Penfold, Alexandra Birch, Beatrice Alex
Objectives The aim of this study was to investigate GPT-3.5 in generating and coding medical documents with International Classification of Diseases (ICD)-10 codes for data augmentation on low-resource labels. Materials and Methods Employing GPT-3.5 we generated and coded 9606 discharge summaries based on lists of ICD-10 code descriptions of patients with infrequent (or generation) codes within the MIMIC-IV dataset. Combined with the baseline training set, this formed an augmented training set. Neural coding models were trained on baseline and augmented data and evaluated on an MIMIC-IV test set. We report micro- and macro-F1 scores on the full codeset, generation codes, and their families. Weak Hierarchical Confusion Matrices determined within-family and outside-of-family coding errors in the latter codesets. The coding performance of GPT-3.5 was evaluated on prompt-guided self-generated data and real MIMIC-IV data. Clinicians evaluated the clinical acceptability of the generated documents. Results Data augmentation results in slightly lower overall model performance but improves performance for the generation candidate codes and their families, including 1 absent from the baseline training data. Augmented models display lower out-of-family error rates. GPT-3.5 identifies ICD-10 codes by their prompted descriptions but underperforms on real data. Evaluators highlight the correctness of generated concepts while suffering in variety, supporting information, and narrative. Discussion and Conclusion While GPT-3.5 alone given our prompt setting is unsuitable for ICD-10 coding, it supports data augmentation for training neural models. Augmentation positively affects generation code families but mainly benefits codes with existing examples. Augmentation reduces out-of-family errors. Documents generated by GPT-3.5 state prompted concepts correctly but lack variety, and authenticity in narratives.
目的 本研究旨在调查 GPT-3.5 在生成和编码带有国际疾病分类 (ICD) -10 代码的医疗文件时的作用,以便在低资源标签上进行数据扩增。材料与方法 利用 GPT-3.5,我们根据 MIMIC-IV 数据集中具有不常用(或生成)代码的患者的 ICD-10 代码描述列表,生成并编码了 9606 份出院摘要。这与基线训练集相结合,形成了一个增强训练集。神经编码模型在基线数据和增强数据上进行训练,并在 MIMIC-IV 测试集上进行评估。我们报告了完整代码集、一代代码及其族的微观和宏观 F1 分数。弱层次混淆矩阵(Weak Hierarchical Confusion Matrices)确定了后一种代码集的族内和族外编码错误。GPT-3.5 的编码性能在提示引导下的自我生成数据和真实的 MIMIC-IV 数据上进行了评估。临床医生对生成文件的临床可接受性进行了评估。结果 数据扩增导致模型的整体性能略有下降,但提高了生成候选代码及其族的性能,包括基线训练数据中缺少的 1 个代码。增强模型的族外错误率较低。GPT-3.5 可通过提示描述识别 ICD-10 代码,但在真实数据上表现不佳。评估人员强调了生成概念的正确性,但在多样性、支持信息和叙述方面存在不足。讨论与结论 虽然根据我们的提示设置,GPT-3.5 本身并不适合 ICD-10 编码,但它支持用于训练神经模型的数据增强。扩增对生成代码族有积极影响,但主要有利于已有示例的代码。扩增可减少族外错误。GPT-3.5 生成的文档能正确表述提示概念,但缺乏多样性和叙述的真实性。
{"title":"Can GPT-3.5 generate and code discharge summaries?","authors":"Matúš Falis, Aryo Pradipta Gema, Hang Dong, Luke Daines, Siddharth Basetti, Michael Holder, Rose S Penfold, Alexandra Birch, Beatrice Alex","doi":"10.1093/jamia/ocae132","DOIUrl":"https://doi.org/10.1093/jamia/ocae132","url":null,"abstract":"Objectives The aim of this study was to investigate GPT-3.5 in generating and coding medical documents with International Classification of Diseases (ICD)-10 codes for data augmentation on low-resource labels. Materials and Methods Employing GPT-3.5 we generated and coded 9606 discharge summaries based on lists of ICD-10 code descriptions of patients with infrequent (or generation) codes within the MIMIC-IV dataset. Combined with the baseline training set, this formed an augmented training set. Neural coding models were trained on baseline and augmented data and evaluated on an MIMIC-IV test set. We report micro- and macro-F1 scores on the full codeset, generation codes, and their families. Weak Hierarchical Confusion Matrices determined within-family and outside-of-family coding errors in the latter codesets. The coding performance of GPT-3.5 was evaluated on prompt-guided self-generated data and real MIMIC-IV data. Clinicians evaluated the clinical acceptability of the generated documents. Results Data augmentation results in slightly lower overall model performance but improves performance for the generation candidate codes and their families, including 1 absent from the baseline training data. Augmented models display lower out-of-family error rates. GPT-3.5 identifies ICD-10 codes by their prompted descriptions but underperforms on real data. Evaluators highlight the correctness of generated concepts while suffering in variety, supporting information, and narrative. Discussion and Conclusion While GPT-3.5 alone given our prompt setting is unsuitable for ICD-10 coding, it supports data augmentation for training neural models. Augmentation positively affects generation code families but mainly benefits codes with existing examples. Augmentation reduces out-of-family errors. Documents generated by GPT-3.5 state prompted concepts correctly but lack variety, and authenticity in narratives.","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":"18 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal study of the manifestations and mechanisms of technology-related prescribing errors in pediatrics 儿科技术相关处方错误的表现和机制纵向研究
IF 6.4 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-12 DOI: 10.1093/jamia/ocae218
Magdalena Z Raban, Erin Fitzpatrick, Alison Merchant, Bayzidur Rahman, Tim Badgery-Parker, Ling Li, Melissa T Baysari, Peter Barclay, Michael Dickinson, Virginia Mumford, Johanna I Westbrook
Objectives To examine changes in technology-related errors (TREs), their manifestations and underlying mechanisms at 3 time points after the implementation of computerized provider order entry (CPOE) in an electronic health record; and evaluate the clinical decision support (CDS) available to mitigate the TREs at 5-years post-CPOE. Materials and Methods Prescribing errors (n = 1315) of moderate, major, or serious potential harm identified through review of 35 322 orders at 3 time points (immediately, 1-year, and 4-years post-CPOE) were assessed to identify TREs at a tertiary pediatric hospital. TREs were coded using the Technology-Related Error Mechanism classification. TRE rates, percentage of prescribing errors that were TREs, and mechanism rates were compared over time. Each TRE was tested in the CPOE 5-years post-implementation to assess the availability of CDS to mitigate the error. Results TREs accounted for 32.5% (n = 428) of prescribing errors; an adjusted rate of 1.49 TREs/100 orders (95% confidence interval [CI]: 1.06, 1.92). At 1-year post-CPOE, the rate of TREs was 40% lower than immediately post (incident rate ratio [IRR]: 0.60; 95% CI: 0.41, 0.89). However, at 4-years post, the TRE rate was not significantly different to baseline (IRR: 0.80; 95% CI: 0.59, 1.08). “New workflows required by the CPOE” was the most frequent TRE mechanism at all time points. CDS was available to mitigate 32.7% of TREs. Discussion In a pediatric setting, TREs persisted 4-years post-CPOE with no difference in the rate compared to immediately post-CPOE. Conclusion Greater attention is required to address TREs to enhance the safety benefits of systems.
目的 研究在电子病历中实施计算机化医嘱输入 (CPOE) 后,在 3 个时间点上与技术相关的错误 (TRE) 的变化、表现形式和潜在机制;并评估在实施 CPOE 后 5 年中可用于减轻 TRE 的临床决策支持 (CDS)。材料与方法 对一家三级儿科医院在 3 个时间点(即 CPOE 后 1 年和 4 年)审查 35 322 份医嘱后发现的具有中度、重度或严重潜在危害的处方错误(n = 1315)进行评估,以确定 TRE。TRE 采用技术相关错误机制分类法进行编码。对不同时期的 TRE 率、TRE 占处方错误的百分比以及机制率进行了比较。每种 TRE 都在 CPOE 实施 5 年后进行了测试,以评估是否有 CDS 来减轻错误。结果 TRE 占处方错误的 32.5%(n = 428);调整后的比率为 1.49 TRE/100(95% 置信区间 [CI]:1.06, 1.92)。在使用 CPOE 后 1 年,TRE 的发生率比刚使用后低 40%(事故发生率比 [IRR]: 0.60; 95% CI: 0.41, 0.89)。然而,在使用后的 4 年中,TRE 率与基线相比没有显著差异(IRR:0.80;95% CI:0.59, 1.08)。"CPOE 所需的新工作流程 "是所有时间点上最常见的 TRE 机制。CDS 可用于缓解 32.7% 的 TRE。讨论 在儿科环境中,TREs 在 CPOE 实施 4 年后仍然存在,与 CPOE 实施后立即发生的 TREs 相比,发生率没有差异。结论 需要更加关注 TREs 问题,以提高系统的安全效益。
{"title":"Longitudinal study of the manifestations and mechanisms of technology-related prescribing errors in pediatrics","authors":"Magdalena Z Raban, Erin Fitzpatrick, Alison Merchant, Bayzidur Rahman, Tim Badgery-Parker, Ling Li, Melissa T Baysari, Peter Barclay, Michael Dickinson, Virginia Mumford, Johanna I Westbrook","doi":"10.1093/jamia/ocae218","DOIUrl":"https://doi.org/10.1093/jamia/ocae218","url":null,"abstract":"Objectives To examine changes in technology-related errors (TREs), their manifestations and underlying mechanisms at 3 time points after the implementation of computerized provider order entry (CPOE) in an electronic health record; and evaluate the clinical decision support (CDS) available to mitigate the TREs at 5-years post-CPOE. Materials and Methods Prescribing errors (n = 1315) of moderate, major, or serious potential harm identified through review of 35 322 orders at 3 time points (immediately, 1-year, and 4-years post-CPOE) were assessed to identify TREs at a tertiary pediatric hospital. TREs were coded using the Technology-Related Error Mechanism classification. TRE rates, percentage of prescribing errors that were TREs, and mechanism rates were compared over time. Each TRE was tested in the CPOE 5-years post-implementation to assess the availability of CDS to mitigate the error. Results TREs accounted for 32.5% (n = 428) of prescribing errors; an adjusted rate of 1.49 TREs/100 orders (95% confidence interval [CI]: 1.06, 1.92). At 1-year post-CPOE, the rate of TREs was 40% lower than immediately post (incident rate ratio [IRR]: 0.60; 95% CI: 0.41, 0.89). However, at 4-years post, the TRE rate was not significantly different to baseline (IRR: 0.80; 95% CI: 0.59, 1.08). “New workflows required by the CPOE” was the most frequent TRE mechanism at all time points. CDS was available to mitigate 32.7% of TREs. Discussion In a pediatric setting, TREs persisted 4-years post-CPOE with no difference in the rate compared to immediately post-CPOE. Conclusion Greater attention is required to address TREs to enhance the safety benefits of systems.","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":"6 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic health record system use and documentation burden of acute and critical care nurse clinicians: a mixed-methods study 电子健康记录系统的使用与急危重症护理临床护士的记录负担:一项混合方法研究
IF 6.4 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-12 DOI: 10.1093/jamia/ocae239
Hwayoung Cho, Oliver T Nguyen, Michael Weaver, Jennifer Pruitt, Cassie Marcelle, Ramzi G Salloum, Gail Keenan
Objectives Examine electronic health record (EHR) use and factors contributing to documentation burden in acute and critical care nurses. Materials and Methods A mixed-methods design was used guided by Unified Theory of Acceptance and Use of Technology. Key EHR components included, Flowsheets, Medication Administration Records (MAR), Care Plan, Notes, and Navigators. We first identified 5 units with the highest documentation burden in 1 university hospital through EHR log file analyses. Four nurses per unit were recruited and engaged in interviews and surveys designed to examine their perceptions of ease of use and usefulness of the 5 EHR components. A combination of inductive/deductive coding was used for qualitative data analysis. Results Nurses acknowledged the importance of documentation for patient care, yet perceived the required documentation as burdensome with levels varying across the 5 components. Factors contributing to burden included non-EHR issues (patient-to-nurse staffing ratios; patient acuity; suboptimal time management) and EHR usability issues related to design/features. Flowsheets, Care Plan, and Navigators were found to be below acceptable usability and contributed to more burden compared to MAR and Notes. The most troublesome EHR usability issues were data redundancy, poor workflow navigation, and cumbersome data entry based on unit type. Discussion Overall, we used quantitative and qualitative data to highlight challenges with current nursing documentation features in the EHR that contribute to documentation burden. Differences in perceived usability across the EHR documentation components were driven by multiple factors, such as non-alignment with workflows and amount of duplication of prior data entries. Nurses offered several recommendations for improving the EHR, including minimizing redundant or excessive data entry requirements, providing visual cues (eg, clear error messages, highlighting areas where missing or incorrect information are), and integrating decision support. Conclusion Our study generated evidence for nurse EHR use and specific documentation usability issues contributing to burden. Findings can inform the development of solutions for enhancing multi-component EHR usability that accommodates the unique workflow of nurses. Documentation strategies designed to improve nurse working conditions should include non-EHR factors as they also contribute to documentation burden.
目的 研究急诊和重症监护护士使用电子健康记录(EHR)的情况以及造成记录负担的因素。材料和方法 在技术接受和使用统一理论指导下,采用混合方法设计。关键的电子病历组件包括流程表、用药管理记录(MAR)、护理计划、笔记和导航器。我们首先通过对电子病历日志文件的分析,确定了 1 所大学医院中文档负担最重的 5 个科室。我们为每个科室招募了四名护士,并对他们进行了访谈和调查,以了解他们对 5 个电子病历组件的易用性和实用性的看法。定性数据分析采用了归纳/演绎编码相结合的方法。结果 护士们承认文件记录对病人护理的重要性,但认为所需的文件记录是一种负担,5 个组件的负担程度各不相同。造成负担的因素包括非电子病历问题(病人与护士的人员配备比;病人的严重程度;时间管理不理想)和与设计/功能有关的电子病历可用性问题。与 MAR 和 Notes 相比,Flowheets、Care Plan 和 Navigators 的可用性低于可接受水平,造成了更多负担。最令人头疼的电子病历可用性问题是数据冗余、工作流程导航不畅以及根据单位类型输入数据繁琐。讨论 总的来说,我们利用定量和定性数据强调了当前电子病历中护理文件功能所面临的挑战,这些挑战造成了文件记录的负担。EHR 文档组件在可用性方面的感知差异是由多种因素造成的,例如与工作流程不匹配以及重复之前数据录入的数量。护士们提出了一些改进电子病历的建议,包括尽量减少冗余或过多的数据录入要求、提供视觉提示(如清晰的错误信息、突出显示缺失或错误信息的区域)以及整合决策支持。结论 我们的研究为护士使用电子病历和造成负担的特定文档可用性问题提供了证据。研究结果可为制定解决方案提供参考,以提高多组件电子病历的可用性,适应护士独特的工作流程。旨在改善护士工作条件的文档策略应包括非电子病历因素,因为它们也会造成文档负担。
{"title":"Electronic health record system use and documentation burden of acute and critical care nurse clinicians: a mixed-methods study","authors":"Hwayoung Cho, Oliver T Nguyen, Michael Weaver, Jennifer Pruitt, Cassie Marcelle, Ramzi G Salloum, Gail Keenan","doi":"10.1093/jamia/ocae239","DOIUrl":"https://doi.org/10.1093/jamia/ocae239","url":null,"abstract":"Objectives Examine electronic health record (EHR) use and factors contributing to documentation burden in acute and critical care nurses. Materials and Methods A mixed-methods design was used guided by Unified Theory of Acceptance and Use of Technology. Key EHR components included, Flowsheets, Medication Administration Records (MAR), Care Plan, Notes, and Navigators. We first identified 5 units with the highest documentation burden in 1 university hospital through EHR log file analyses. Four nurses per unit were recruited and engaged in interviews and surveys designed to examine their perceptions of ease of use and usefulness of the 5 EHR components. A combination of inductive/deductive coding was used for qualitative data analysis. Results Nurses acknowledged the importance of documentation for patient care, yet perceived the required documentation as burdensome with levels varying across the 5 components. Factors contributing to burden included non-EHR issues (patient-to-nurse staffing ratios; patient acuity; suboptimal time management) and EHR usability issues related to design/features. Flowsheets, Care Plan, and Navigators were found to be below acceptable usability and contributed to more burden compared to MAR and Notes. The most troublesome EHR usability issues were data redundancy, poor workflow navigation, and cumbersome data entry based on unit type. Discussion Overall, we used quantitative and qualitative data to highlight challenges with current nursing documentation features in the EHR that contribute to documentation burden. Differences in perceived usability across the EHR documentation components were driven by multiple factors, such as non-alignment with workflows and amount of duplication of prior data entries. Nurses offered several recommendations for improving the EHR, including minimizing redundant or excessive data entry requirements, providing visual cues (eg, clear error messages, highlighting areas where missing or incorrect information are), and integrating decision support. Conclusion Our study generated evidence for nurse EHR use and specific documentation usability issues contributing to burden. Findings can inform the development of solutions for enhancing multi-component EHR usability that accommodates the unique workflow of nurses. Documentation strategies designed to improve nurse working conditions should include non-EHR factors as they also contribute to documentation burden.","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":"64 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Goldmine" or "big mess"? An interview study on the challenges of designing, operating, and ensuring the durability of Clinical Data Warehouses in France and Belgium. "金矿 "还是 "烂摊子"?关于法国和比利时临床数据仓库的设计、运行和耐用性挑战的访谈研究。
IF 6.4 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-09-12 DOI: 10.1093/jamia/ocae244
Sonia Priou,Emmanuelle Kempf,Marija Jankovic,Guillaume Lamé
OBJECTIVESClinical Data Warehouses (CDW) are the designated infrastructures to enable access and analysis of large quantities of electronic health record data. Building and managing such systems implies extensive "data work" and coordination between multiple stakeholders. Our study focuses on the challenges these stakeholders face when designing, operating, and ensuring the durability of CDWs for research.MATERIALS AND METHODSWe conducted semistructured interviews with 21 professionals working with CDWs from France and Belgium. All interviews were recorded, transcribed verbatim, and coded inductively.RESULTSPrompted by the AI boom, healthcare institutions launched initiatives to repurpose data they were generating for care without a clear vision of how to generate value. Difficulties in operating CDWs arose quickly, strengthened by the multiplicity and diversity of stakeholders involved and grand discourses on the possibilities of CDWs, disjointed from their actual capabilities. Without proper management of the information flows, stakeholders struggled to build a shared vision. This was evident in our interviewees' contrasting appreciations of what mattered most to ensure data quality. Participants explained they struggled to manage knowledge inside and across institutions, generating knowledge loss, repeated mistakes, and impeding progress locally and nationally.DISCUSSION AND CONCLUSIONManagement issues strongly affect the deployment and operation of CDWs. This may stem from a simplistic linear vision of how this type of infrastructure operates. CDWs remain promising for research, and their design, implementation, and operation require careful management if they are to be successful. Building on innovation management, complex systems, and organizational learning knowledge will help.
目的 临床数据仓库(CDW)是访问和分析大量电子健康记录数据的指定基础设施。建立和管理此类系统需要大量的 "数据工作 "以及多个利益相关者之间的协调。我们的研究重点是这些利益相关者在设计、运行和确保用于研究的 CDW 持久性时所面临的挑战。材料与方法 我们对来自法国和比利时的 21 位从事 CDW 工作的专业人士进行了半结构化访谈。结果在人工智能热潮的推动下,医疗保健机构在没有明确如何产生价值的情况下,开始着手重新利用他们为医疗保健产生的数据。由于参与其中的利益相关者多种多样,加上关于社区数据中心可能性的宏大论述与实际能力脱节,社区数据中心的运营很快出现了困难。由于没有对信息流进行适当管理,利益相关方难以形成共同愿景。这一点在受访者对确保数据质量的最重要因素的不同理解中显而易见。受访者解释说,他们在管理机构内部和机构之间的知识方面举步维艰,导致知识流失、错误不断,阻碍了地方和国家的进步。这可能源于对这类基础设施如何运行的简单线性看法。煤层气数据中心在研究方面仍然大有可为,要想取得成功,其设计、实施和运行都需要精心管理。以创新管理、复杂系统和组织学习知识为基础将有所帮助。
{"title":"\"Goldmine\" or \"big mess\"? An interview study on the challenges of designing, operating, and ensuring the durability of Clinical Data Warehouses in France and Belgium.","authors":"Sonia Priou,Emmanuelle Kempf,Marija Jankovic,Guillaume Lamé","doi":"10.1093/jamia/ocae244","DOIUrl":"https://doi.org/10.1093/jamia/ocae244","url":null,"abstract":"OBJECTIVESClinical Data Warehouses (CDW) are the designated infrastructures to enable access and analysis of large quantities of electronic health record data. Building and managing such systems implies extensive \"data work\" and coordination between multiple stakeholders. Our study focuses on the challenges these stakeholders face when designing, operating, and ensuring the durability of CDWs for research.MATERIALS AND METHODSWe conducted semistructured interviews with 21 professionals working with CDWs from France and Belgium. All interviews were recorded, transcribed verbatim, and coded inductively.RESULTSPrompted by the AI boom, healthcare institutions launched initiatives to repurpose data they were generating for care without a clear vision of how to generate value. Difficulties in operating CDWs arose quickly, strengthened by the multiplicity and diversity of stakeholders involved and grand discourses on the possibilities of CDWs, disjointed from their actual capabilities. Without proper management of the information flows, stakeholders struggled to build a shared vision. This was evident in our interviewees' contrasting appreciations of what mattered most to ensure data quality. Participants explained they struggled to manage knowledge inside and across institutions, generating knowledge loss, repeated mistakes, and impeding progress locally and nationally.DISCUSSION AND CONCLUSIONManagement issues strongly affect the deployment and operation of CDWs. This may stem from a simplistic linear vision of how this type of infrastructure operates. CDWs remain promising for research, and their design, implementation, and operation require careful management if they are to be successful. Building on innovation management, complex systems, and organizational learning knowledge will help.","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":"45 11 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Medical Informatics Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1