首页 > 最新文献

Journal of the American Medical Informatics Association最新文献

英文 中文
Trending in the right direction: critical access hospitals increased adoption of advanced electronic health record functions from 2018 to 2023. 趋势方向正确:2018 年至 2023 年,关键通道医院增加了先进电子病历功能的采用。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae267
Nate C Apathy, A Jay Holmgren, Paige Nong, Julia Adler-Milstein, Jordan Everson

Objectives: We analyzed trends in adoption of advanced patient engagement and clinical data analytics functionalities among critical access hospitals (CAHs) and non-CAHs to assess how historical gaps have changed.

Materials and methods: We used 2014, 2018, and 2023 data from the American Hospital Association Annual Survey IT Supplement to measure differences in adoption rates (ie, the "adoption gap") of patient engagement and clinical data analytics functionalities across CAHs and non-CAHs. We measured changes over time in CAH and non-CAH adoption of 6 "core" clinical data analytics functionalities, 5 "core" patient engagement functionalities, 5 new patient engagement functionalities, and 3 bulk data export use cases. We constructed 2 composite measures for core functionalities and analyzed adoption for other functionalities individually.

Results: Core functionality adoption increased from 21% of CAHs in 2014 to 56% in 2023 for clinical data analytics and 18% to 49% for patient engagement. The CAH adoption gap in both domains narrowed from 2018 to 2023 (both P < .01). More than 90% of all hospitals had adopted viewing and downloading electronic data and clinical notes by 2023. The largest CAH adoption gaps in 2023 were for Fast Healthcare Interoperability Resources (FHIR) bulk export use cases (eg, analytics and reporting: 63% of CAHs, 81% of non-CAHs, P < .001).

Discussion: Adoption of advanced electronic health record functionalities has increased for CAHs and non-CAHs, and some adoption gaps have been closed since 2018. However, CAHs may continue to struggle with clinical data analytics and FHIR-based functionalities.

Conclusion: Some crucial patient engagement functionalities have reached near-universal adoption; however, policymakers should consider programs to support CAHs in closing remaining adoption gaps.

目的:我们分析了重症监护医院(CAH)和非重症监护医院采用先进的患者参与和临床数据分析功能的趋势:我们分析了关键通道医院(CAH)和非CAH采用先进的患者参与和临床数据分析功能的趋势,以评估历史差距的变化情况:我们使用《美国医院协会年度调查 IT 补充报告》中的 2014 年、2018 年和 2023 年数据来衡量重症监护医院和非重症监护医院在患者参与和临床数据分析功能采用率方面的差异(即 "采用差距")。我们测量了 CAH 和非 CAH 对 6 个 "核心 "临床数据分析功能、5 个 "核心 "患者参与功能、5 个新的患者参与功能和 3 个批量数据导出用例的采用率随时间的变化情况。我们为核心功能构建了两个综合衡量标准,并对其他功能的采用情况进行了单独分析:采用核心功能的 CAH 在临床数据分析方面的比例从 2014 年的 21% 提高到 2023 年的 56%,在患者参与方面的比例从 18% 提高到 49%。从 2018 年到 2023 年,CAH 在这两个领域的采用率差距均有所缩小(均为 P 讨论):CAH 和非 CAH 对高级电子病历功能的采用率有所提高,自 2018 年以来,一些采用率差距已经缩小。然而,CAH 可能会继续在临床数据分析和基于 FHIR 的功能方面苦苦挣扎:一些重要的患者参与功能已接近普遍采用;然而,政策制定者应考虑制定计划,支持 CAH 缩小剩余的采用差距。
{"title":"Trending in the right direction: critical access hospitals increased adoption of advanced electronic health record functions from 2018 to 2023.","authors":"Nate C Apathy, A Jay Holmgren, Paige Nong, Julia Adler-Milstein, Jordan Everson","doi":"10.1093/jamia/ocae267","DOIUrl":"10.1093/jamia/ocae267","url":null,"abstract":"<p><strong>Objectives: </strong>We analyzed trends in adoption of advanced patient engagement and clinical data analytics functionalities among critical access hospitals (CAHs) and non-CAHs to assess how historical gaps have changed.</p><p><strong>Materials and methods: </strong>We used 2014, 2018, and 2023 data from the American Hospital Association Annual Survey IT Supplement to measure differences in adoption rates (ie, the \"adoption gap\") of patient engagement and clinical data analytics functionalities across CAHs and non-CAHs. We measured changes over time in CAH and non-CAH adoption of 6 \"core\" clinical data analytics functionalities, 5 \"core\" patient engagement functionalities, 5 new patient engagement functionalities, and 3 bulk data export use cases. We constructed 2 composite measures for core functionalities and analyzed adoption for other functionalities individually.</p><p><strong>Results: </strong>Core functionality adoption increased from 21% of CAHs in 2014 to 56% in 2023 for clinical data analytics and 18% to 49% for patient engagement. The CAH adoption gap in both domains narrowed from 2018 to 2023 (both P < .01). More than 90% of all hospitals had adopted viewing and downloading electronic data and clinical notes by 2023. The largest CAH adoption gaps in 2023 were for Fast Healthcare Interoperability Resources (FHIR) bulk export use cases (eg, analytics and reporting: 63% of CAHs, 81% of non-CAHs, P < .001).</p><p><strong>Discussion: </strong>Adoption of advanced electronic health record functionalities has increased for CAHs and non-CAHs, and some adoption gaps have been closed since 2018. However, CAHs may continue to struggle with clinical data analytics and FHIR-based functionalities.</p><p><strong>Conclusion: </strong>Some crucial patient engagement functionalities have reached near-universal adoption; however, policymakers should consider programs to support CAHs in closing remaining adoption gaps.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"71-78"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research for all: building a diverse researcher community for the All of Us Research Program. 全民研究:为 "全民研究计划 "建立一个多元化的研究人员社区。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae270
Rubin Baskir, Minnkyong Lee, Sydney J McMaster, Jessica Lee, Faith Blackburne-Proctor, Romuladus Azuine, Nakia Mack, Sheri D Schully, Martin Mendoza, Janeth Sanchez, Yong Crosby, Erica Zumba, Michael Hahn, Naomi Aspaas, Ahmed Elmi, Shanté Alerté, Elizabeth Stewart, Danielle Wilfong, Meag Doherty, Margaret M Farrell, Grace B Hébert, Sula Hood, Cheryl M Thomas, Debra D Murray, Brendan Lee, Louisa A Stark, Megan A Lewis, Jen D Uhrig, Laura R Bartlett, Edgar Gil Rico, Adolph Falcón, Elizabeth Cohn, Mitchell R Lunn, Juno Obedin-Maliver, Linda Cottler, Milton Eder, Fornessa T Randal, Jason Karnes, KiTani Lemieux, Nelson Lemieux, Nelson Lemieux, Lilanta Bradley, Ronnie Tepp, Meredith Wilson, Monica Rodriguez, Chris Lunt, Karriem Watson

Objectives: The NIH All of Us Research Program (All of Us) is engaging a diverse community of more than 10 000 registered researchers using a robust engagement ecosystem model. We describe strategies used to build an ecosystem that attracts and supports a diverse and inclusive researcher community to use the All of Us dataset and provide metrics on All of Us researcher usage growth.

Materials and methods: Researcher audiences and diversity categories were defined to guide a strategy. A researcher engagement strategy was codeveloped with program partners to support a researcher engagement ecosystem. An adapted ecological model guided the ecosystem to address multiple levels of influence to support All of Us data use. Statistics from the All of Us Researcher Workbench demographic survey describe trends in researchers' and institutional use of the Workbench and publication numbers.

Results: From 2022 to 2024, some 13 partner organizations and their subawardees conducted outreach, built capacity, or supported researchers and institutions in using the data. Trends indicate that Workbench registrations and use have increased over time, including among researchers underrepresented in the biomedical workforce. Data Use and Registration Agreements from minority-serving institutions also increased.

Discussion: All of Us built a diverse, inclusive, and growing research community via intentional engagement with researchers and via partnerships to address systemic data access issues. Future programs will provide additional support to researchers and institutions to ameliorate All of Us data use challenges.

Conclusion: The approach described helps address structural inequities in the biomedical research field to advance health equity.

目标:美国国立卫生研究院的 "我们所有人研究计划"(All of Us)正在利用一个强大的参与生态系统模式吸引一个由 10,000 多名注册研究人员组成的多元化社区。我们描述了为建立一个吸引和支持多元化、包容性研究人员社区使用 All of Us 数据集的生态系统所采用的策略,并提供了有关 All of Us 研究人员使用量增长的指标:定义研究人员受众和多样性类别,为战略提供指导。与项目合作伙伴共同制定了研究人员参与战略,以支持研究人员参与生态系统。一个经过调整的生态模型为生态系统提供指导,以解决多层次的影响问题,支持 "我们所有 "数据的使用。来自 "我们所有 "研究人员工作台人口调查的统计数据描述了研究人员和机构使用工作台的趋势以及发表论文的数量:从 2022 年到 2024 年,约有 13 个合作伙伴组织及其次级受款人开展了外联活动、能力建设或支持研究人员和机构使用数据。趋势表明,随着时间的推移,Workbench 的注册量和使用量都在增加,其中包括在生物医学队伍中代表性不足的研究人员。来自少数民族服务机构的数据使用和注册协议也有所增加:讨论:"我们所有人 "计划通过有意识地与研究人员接触,并通过合作伙伴关系来解决系统性数据访问问题,从而建立了一个多样化、包容性和不断发展的研究社区。未来的计划将为研究人员和机构提供更多支持,以改善 "我们所有 "数据使用方面的挑战:结论:所述方法有助于解决生物医学研究领域的结构性不平等问题,从而促进健康公平。
{"title":"Research for all: building a diverse researcher community for the All of Us Research Program.","authors":"Rubin Baskir, Minnkyong Lee, Sydney J McMaster, Jessica Lee, Faith Blackburne-Proctor, Romuladus Azuine, Nakia Mack, Sheri D Schully, Martin Mendoza, Janeth Sanchez, Yong Crosby, Erica Zumba, Michael Hahn, Naomi Aspaas, Ahmed Elmi, Shanté Alerté, Elizabeth Stewart, Danielle Wilfong, Meag Doherty, Margaret M Farrell, Grace B Hébert, Sula Hood, Cheryl M Thomas, Debra D Murray, Brendan Lee, Louisa A Stark, Megan A Lewis, Jen D Uhrig, Laura R Bartlett, Edgar Gil Rico, Adolph Falcón, Elizabeth Cohn, Mitchell R Lunn, Juno Obedin-Maliver, Linda Cottler, Milton Eder, Fornessa T Randal, Jason Karnes, KiTani Lemieux, Nelson Lemieux, Nelson Lemieux, Lilanta Bradley, Ronnie Tepp, Meredith Wilson, Monica Rodriguez, Chris Lunt, Karriem Watson","doi":"10.1093/jamia/ocae270","DOIUrl":"10.1093/jamia/ocae270","url":null,"abstract":"<p><strong>Objectives: </strong>The NIH All of Us Research Program (All of Us) is engaging a diverse community of more than 10 000 registered researchers using a robust engagement ecosystem model. We describe strategies used to build an ecosystem that attracts and supports a diverse and inclusive researcher community to use the All of Us dataset and provide metrics on All of Us researcher usage growth.</p><p><strong>Materials and methods: </strong>Researcher audiences and diversity categories were defined to guide a strategy. A researcher engagement strategy was codeveloped with program partners to support a researcher engagement ecosystem. An adapted ecological model guided the ecosystem to address multiple levels of influence to support All of Us data use. Statistics from the All of Us Researcher Workbench demographic survey describe trends in researchers' and institutional use of the Workbench and publication numbers.</p><p><strong>Results: </strong>From 2022 to 2024, some 13 partner organizations and their subawardees conducted outreach, built capacity, or supported researchers and institutions in using the data. Trends indicate that Workbench registrations and use have increased over time, including among researchers underrepresented in the biomedical workforce. Data Use and Registration Agreements from minority-serving institutions also increased.</p><p><strong>Discussion: </strong>All of Us built a diverse, inclusive, and growing research community via intentional engagement with researchers and via partnerships to address systemic data access issues. Future programs will provide additional support to researchers and institutions to ameliorate All of Us data use challenges.</p><p><strong>Conclusion: </strong>The approach described helps address structural inequities in the biomedical research field to advance health equity.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"38-50"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Are medical history data fit for risk stratification of patients with chest pain in emergency care? Comparing data collected from patients using computerized history taking with data documented by physicians in the electronic health record in the CLEOS-CPDS prospective cohort study. 更正:病史数据是否适合对急诊胸痛患者进行风险分层?在 CLEOS-CPDS 前瞻性队列研究中,将使用电脑病史采集系统收集的患者数据与医生在电子健康记录中记录的数据进行比较。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae252
{"title":"Correction to: Are medical history data fit for risk stratification of patients with chest pain in emergency care? Comparing data collected from patients using computerized history taking with data documented by physicians in the electronic health record in the CLEOS-CPDS prospective cohort study.","authors":"","doi":"10.1093/jamia/ocae252","DOIUrl":"10.1093/jamia/ocae252","url":null,"abstract":"","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"261-263"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of personal protective equipment nonadherence detection: computer vision versus human observers. 个人防护装备不符合性检测的比较分析:计算机视觉与人类观察者。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae262
Mary S Kim, Beomseok Park, Genevieve J Sippel, Aaron H Mun, Wanzhao Yang, Kathleen H McCarthy, Emely Fernandez, Marius George Linguraru, Aleksandra Sarcevic, Ivan Marsic, Randall S Burd

Objectives: Human monitoring of personal protective equipment (PPE) adherence among healthcare providers has several limitations, including the need for additional personnel during staff shortages and decreased vigilance during prolonged tasks. To address these challenges, we developed an automated computer vision system for monitoring PPE adherence in healthcare settings. We assessed the system performance against human observers detecting nonadherence in a video surveillance experiment.

Materials and methods: The automated system was trained to detect 15 classes of eyewear, masks, gloves, and gowns using an object detector and tracker. To assess how the system performs compared to human observers in detecting nonadherence, we designed a video surveillance experiment under 2 conditions: variations in video durations (20, 40, and 60 seconds) and the number of individuals in the videos (3 versus 6). Twelve nurses participated as human observers. Performance was assessed based on the number of detections of nonadherence.

Results: Human observers detected fewer instances of nonadherence than the system (parameter estimate -0.3, 95% CI -0.4 to -0.2, P < .001). Human observers detected more nonadherence during longer video durations (parameter estimate 0.7, 95% CI 0.4-1.0, P < .001). The system achieved a sensitivity of 0.86, specificity of 1, and Matthew's correlation coefficient of 0.82 for detecting PPE nonadherence.

Discussion: An automated system simultaneously tracks multiple objects and individuals. The system performance is also independent of observation duration, an improvement over human monitoring.

Conclusion: The automated system presents a potential solution for scalable monitoring of hospital-wide infection control practices and improving PPE usage in healthcare settings.

目标:人工监控医疗保健提供者对个人防护设备(PPE)的遵守情况有几个局限性,包括在人员短缺时需要额外的人员,以及在长时间工作时警惕性降低。为了应对这些挑战,我们开发了一种自动计算机视觉系统,用于监控医疗机构中个人防护设备的使用情况。我们在视频监控实验中评估了该系统与人类观察员检测不遵守情况的性能:使用物体检测器和跟踪器对自动系统进行了训练,以检测 15 类眼镜、口罩、手套和防护服。为了评估该系统与人类观察者相比在检测不遵守规定方面的表现,我们设计了一个视频监控实验,实验有两个条件:视频持续时间(20、40 和 60 秒)和视频中的人数(3 对 6)。12 名护士作为人类观察员参与了实验。根据检测到的不遵医嘱行为的数量来评估绩效:结果:人工观察者发现的不遵医嘱情况少于系统(参数估计值-0.3,95% CI -0.4至-0.2,P 讨论):自动系统可同时追踪多个物体和个人。该系统的性能还不受观察时间长短的影响,这是对人工监控的一种改进:自动系统为可扩展的医院感染控制实践监控和改善医疗机构中个人防护设备的使用提供了一个潜在的解决方案。
{"title":"Comparative analysis of personal protective equipment nonadherence detection: computer vision versus human observers.","authors":"Mary S Kim, Beomseok Park, Genevieve J Sippel, Aaron H Mun, Wanzhao Yang, Kathleen H McCarthy, Emely Fernandez, Marius George Linguraru, Aleksandra Sarcevic, Ivan Marsic, Randall S Burd","doi":"10.1093/jamia/ocae262","DOIUrl":"10.1093/jamia/ocae262","url":null,"abstract":"<p><strong>Objectives: </strong>Human monitoring of personal protective equipment (PPE) adherence among healthcare providers has several limitations, including the need for additional personnel during staff shortages and decreased vigilance during prolonged tasks. To address these challenges, we developed an automated computer vision system for monitoring PPE adherence in healthcare settings. We assessed the system performance against human observers detecting nonadherence in a video surveillance experiment.</p><p><strong>Materials and methods: </strong>The automated system was trained to detect 15 classes of eyewear, masks, gloves, and gowns using an object detector and tracker. To assess how the system performs compared to human observers in detecting nonadherence, we designed a video surveillance experiment under 2 conditions: variations in video durations (20, 40, and 60 seconds) and the number of individuals in the videos (3 versus 6). Twelve nurses participated as human observers. Performance was assessed based on the number of detections of nonadherence.</p><p><strong>Results: </strong>Human observers detected fewer instances of nonadherence than the system (parameter estimate -0.3, 95% CI -0.4 to -0.2, P < .001). Human observers detected more nonadherence during longer video durations (parameter estimate 0.7, 95% CI 0.4-1.0, P < .001). The system achieved a sensitivity of 0.86, specificity of 1, and Matthew's correlation coefficient of 0.82 for detecting PPE nonadherence.</p><p><strong>Discussion: </strong>An automated system simultaneously tracks multiple objects and individuals. The system performance is also independent of observation duration, an improvement over human monitoring.</p><p><strong>Conclusion: </strong>The automated system presents a potential solution for scalable monitoring of hospital-wide infection control practices and improving PPE usage in healthcare settings.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"163-171"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The journey to building a diverse, equitable, and inclusive American Medical Informatics Association. 建立一个多元化、公平和包容的美国医学信息学协会的历程。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae258
Tiffani J Bright, Oliver J Bear Don't Walk Iv, Carl Erwin Johnson, Carolyn Petersen, Patricia C Dykes, Krista G Martin, Kevin B Johnson, Lois Walters-Threat, Catherine K Craven, Robert J Lucero, Gretchen P Jackson, Rubina F Rizvi

Objective: The American Medical Informatics Association (AMIA) Task Force on Diversity, Equity, and Inclusion (DEI) was established to address systemic racism and health disparities in biomedical and health informatics, aligning with AMIA's mission to transform healthcare. AMIA's DEI initiatives were spurred by member voices responding to police brutality and COVID-19's impact on Black/African American communities.

Materials and methods: The Task Force, consisting of 20 members across 3 groups aligned with AMIA's 2020-2025 Strategic Plan, met biweekly to develop DEI recommendations with the help of 16 additional volunteers. These recommendations were reviewed, prioritized, and presented to the AMIA Board of Directors for approval.

Results: In 9 months, the Task Force (1) created a logic model to support workforce diversity and raise AMIA's DEI awareness, (2) conducted an environmental scan of other associations' DEI activities, (3) developed a DEI framework for AMIA meetings, (4) gathered member feedback, (5) cultivated DEI educational resources, (6) created a Board nominations and diversity session, (7) reviewed the Board's Strategic Planning for DEI alignment, (8) led a program to increase diversity at the 2020 AMIA Virtual Annual Symposium, and (9) standardized socially-assigned race and ethnicity data collection.

Discussion: The Task Force proposed actionable recommendations that focused on AMIA's role in addressing systemic racism and health equity, helping the organization understand its member diversity.

Conclusion: This work supported marginalized groups, broadened the research agenda, and positioned AMIA as a DEI leader while reinforcing the need for ongoing transformation within informatics.

目标:美国医学信息学协会(American Medical Informatics Association,AMIA)多样性、公平性和包容性(Diversity, Equity, and Inclusion,DEI)工作组的成立旨在解决生物医学和健康信息学中的系统性种族主义和健康差异问题,这与 AMIA 改变医疗保健的使命相一致。AMIA的 "多样性与包容性"(DEI)倡议是由成员对警察暴力和COVID-19对黑人/非裔美国人社区的影响所发出的呼声推动的:工作组由 20 名成员组成,涉及 3 个与 AMIA 2020-2025 年战略计划相一致的小组,每两周召开一次会议,在另外 16 名志愿者的帮助下制定 DEI 建议。这些建议经过审核、排定优先次序后,提交给 AMIA 董事会批准:在 9 个月的时间里,特别工作组(1)创建了一个逻辑模型,以支持劳动力多样性并提高 AMIA 的 DEI 意识;(2)对其他协会的 DEI 活动进行了环境扫描;(3)为 AMIA 会议制定了 DEI 框架;(4)收集了会员反馈意见;(5)开发了 DEI 教育资源、(6) 创建了董事会提名和多样性会议,(7) 审查了董事会的战略规划,使其与 DEI 保持一致,(8) 在 2020 年 AMIA 虚拟年度研讨会上领导了一项提高多样性的计划,(9) 将社会分配的种族和民族数据收集标准化。讨论:工作组提出了可操作的建议,重点关注 AMIA 在解决系统性种族主义和健康公平方面的作用,帮助该组织了解其成员的多样性:这项工作为边缘化群体提供了支持,拓宽了研究议程,并将 AMIA 定位为 DEI 领导者,同时加强了信息学内部持续转型的必要性。
{"title":"The journey to building a diverse, equitable, and inclusive American Medical Informatics Association.","authors":"Tiffani J Bright, Oliver J Bear Don't Walk Iv, Carl Erwin Johnson, Carolyn Petersen, Patricia C Dykes, Krista G Martin, Kevin B Johnson, Lois Walters-Threat, Catherine K Craven, Robert J Lucero, Gretchen P Jackson, Rubina F Rizvi","doi":"10.1093/jamia/ocae258","DOIUrl":"10.1093/jamia/ocae258","url":null,"abstract":"<p><strong>Objective: </strong>The American Medical Informatics Association (AMIA) Task Force on Diversity, Equity, and Inclusion (DEI) was established to address systemic racism and health disparities in biomedical and health informatics, aligning with AMIA's mission to transform healthcare. AMIA's DEI initiatives were spurred by member voices responding to police brutality and COVID-19's impact on Black/African American communities.</p><p><strong>Materials and methods: </strong>The Task Force, consisting of 20 members across 3 groups aligned with AMIA's 2020-2025 Strategic Plan, met biweekly to develop DEI recommendations with the help of 16 additional volunteers. These recommendations were reviewed, prioritized, and presented to the AMIA Board of Directors for approval.</p><p><strong>Results: </strong>In 9 months, the Task Force (1) created a logic model to support workforce diversity and raise AMIA's DEI awareness, (2) conducted an environmental scan of other associations' DEI activities, (3) developed a DEI framework for AMIA meetings, (4) gathered member feedback, (5) cultivated DEI educational resources, (6) created a Board nominations and diversity session, (7) reviewed the Board's Strategic Planning for DEI alignment, (8) led a program to increase diversity at the 2020 AMIA Virtual Annual Symposium, and (9) standardized socially-assigned race and ethnicity data collection.</p><p><strong>Discussion: </strong>The Task Force proposed actionable recommendations that focused on AMIA's role in addressing systemic racism and health equity, helping the organization understand its member diversity.</p><p><strong>Conclusion: </strong>This work supported marginalized groups, broadened the research agenda, and positioned AMIA as a DEI leader while reinforcing the need for ongoing transformation within informatics.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"3-8"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of routine and structured social needs data collection in improving care in US hospitals. 常规和结构化社会需求数据收集在改善美国医院护理方面的作用。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae279
Chelsea Richwine, Vaishali Patel, Jordan Everson, Bradley Iott

Objectives: To understand how health-related social needs (HRSN) data are collected at US hospitals and implications for use.

Materials and methods: Using 2023 nationally representative survey data on US hospitals (N = 2775), we described hospitals' routine and structured collection and use of HRSN data and examined the relationship between methods of data collection and specific uses. Multivariate logistic regression was used to identify characteristics associated with data collection and use and understand how methods of data collection relate to use.

Results: In 2023, 88% of hospitals collected HRSN data (64% routinely, 72% structured). While hospitals commonly used data for internal purposes (eg, discharge planning, 79%), those that collected data routinely and in a structured format (58%) used data for purposes involving coordination or exchange with other organizations (eg, making referrals, 74%) at higher rates than hospitals that collected data but not routinely or in a non-structured format (eg, 93% vs 67% for referrals, P< .05). In multivariate regression, routine and structured data collection was positively associated with all uses of data examined. Hospital location, ownership, system-affiliation, value-based care participation, and critical access designation were associated with HRSN data collection, but only system-affiliation was consistently (positively) associated with use.

Discussion: While most hospitals screen for social needs, fewer collect data routinely and in a structured format that would facilitate downstream use. Routine and structured data collection was associated with greater use, particularly for secondary purposes.

Conclusion: Routine and structured screening may result in more actionable data that facilitates use for various purposes that support patient care and improve community and population health, indicating the importance of continuing efforts to increase routine screening and standardize HRSN data collection.

目的:了解美国医院如何收集与健康相关的社会需求(HRSN)数据及其使用意义:了解美国医院如何收集与健康相关的社会需求(HRSN)数据及其对使用的影响:利用 2023 年美国医院的全国代表性调查数据(N = 2775),我们描述了医院对 HRSN 数据的常规和结构化收集与使用情况,并研究了数据收集方法与具体使用之间的关系。我们使用多变量逻辑回归来确定与数据收集和使用相关的特征,并了解数据收集方法与使用之间的关系:2023 年,88% 的医院收集了 HRSN 数据(64% 为常规数据,72% 为结构化数据)。虽然医院通常将数据用于内部目的(如出院计划,79%),但那些常规收集数据并采用结构化格式的医院(58%)将数据用于与其他组织协调或交流的目的(如转诊,74%),其使用率高于那些未常规收集数据或采用非结构化格式的医院(如转诊,93% vs 67%,P< .05)。在多变量回归中,常规和结构化的数据收集与数据的所有用途均呈正相关。医院位置、所有权、系统隶属关系、基于价值的护理参与度和关键准入指定与 HRSN 数据收集有关,但只有系统隶属关系与数据使用持续(正)相关:讨论:虽然大多数医院都会对社会需求进行筛查,但以常规和结构化格式收集数据以方便下游使用的医院较少。常规和结构化的数据收集与更大程度的使用有关,尤其是用于次要目的:常规和结构化筛查可能会产生更多可操作的数据,便于用于支持患者护理、改善社区和人口健康的各种目的,这表明继续努力增加常规筛查和规范 HRSN 数据收集的重要性。
{"title":"The role of routine and structured social needs data collection in improving care in US hospitals.","authors":"Chelsea Richwine, Vaishali Patel, Jordan Everson, Bradley Iott","doi":"10.1093/jamia/ocae279","DOIUrl":"10.1093/jamia/ocae279","url":null,"abstract":"<p><strong>Objectives: </strong>To understand how health-related social needs (HRSN) data are collected at US hospitals and implications for use.</p><p><strong>Materials and methods: </strong>Using 2023 nationally representative survey data on US hospitals (N = 2775), we described hospitals' routine and structured collection and use of HRSN data and examined the relationship between methods of data collection and specific uses. Multivariate logistic regression was used to identify characteristics associated with data collection and use and understand how methods of data collection relate to use.</p><p><strong>Results: </strong>In 2023, 88% of hospitals collected HRSN data (64% routinely, 72% structured). While hospitals commonly used data for internal purposes (eg, discharge planning, 79%), those that collected data routinely and in a structured format (58%) used data for purposes involving coordination or exchange with other organizations (eg, making referrals, 74%) at higher rates than hospitals that collected data but not routinely or in a non-structured format (eg, 93% vs 67% for referrals, P< .05). In multivariate regression, routine and structured data collection was positively associated with all uses of data examined. Hospital location, ownership, system-affiliation, value-based care participation, and critical access designation were associated with HRSN data collection, but only system-affiliation was consistently (positively) associated with use.</p><p><strong>Discussion: </strong>While most hospitals screen for social needs, fewer collect data routinely and in a structured format that would facilitate downstream use. Routine and structured data collection was associated with greater use, particularly for secondary purposes.</p><p><strong>Conclusion: </strong>Routine and structured screening may result in more actionable data that facilitates use for various purposes that support patient care and improve community and population health, indicating the importance of continuing efforts to increase routine screening and standardize HRSN data collection.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"28-37"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review. 更正:人工智能优化临床试验的招募和保留:范围综述。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae283
{"title":"Correction to: Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review.","authors":"","doi":"10.1093/jamia/ocae283","DOIUrl":"10.1093/jamia/ocae283","url":null,"abstract":"","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"260"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is ChatGPT worthy enough for provisioning clinical decision support? ChatGPT 是否足以提供临床决策支持?
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae282
Partha Pratim Ray
{"title":"Is ChatGPT worthy enough for provisioning clinical decision support?","authors":"Partha Pratim Ray","doi":"10.1093/jamia/ocae282","DOIUrl":"10.1093/jamia/ocae282","url":null,"abstract":"","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"258-259"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based infection diagnostic and prognostic models in post-acute care settings: a systematic review. 基于机器学习的急性期后护理环境感染诊断和预后模型:系统综述。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-01-01 DOI: 10.1093/jamia/ocae278
Zidu Xu, Danielle Scharp, Mollie Hobensack, Jiancheng Ye, Jungang Zou, Sirui Ding, Jingjing Shang, Maxim Topaz

Objectives: This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.

Materials and methods: PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.

Results: Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.

Discussion and conclusion: Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.

研究目的本研究旨在:(1) 综述基于机器学习(ML)的急性期后护理(PAC)环境中早期感染诊断和预后预测模型;(2) 确定影响感染相关结果的关键风险预测因素;(3) 检验这些模型的质量和局限性:于 2024 年 2 月检索了 PubMed、Web of Science、Scopus、IEEE Xplore、CINAHL 和 ACM 数字图书馆。符合条件的研究利用 PAC 数据开发并评估了感染相关风险的 ML 模型。数据提取遵循 CHARMS 核对表。质量评估采用 PROBAST 工具。数据综合以社会生态概念框架为指导:共纳入 13 项研究,主要集中在呼吸道感染和疗养院。大多数研究使用了结构化电子健康记录数据回归模型。自 2020 年以来,先进的 ML 算法、多模态数据、生物传感器和临床笔记已成为非结构化数据的重要来源。尽管取得了这些进展,但仍没有足够的证据支持其性能比传统模型有所提高。个体层面的风险预测因素,如认知能力受损、功能下降和心动过速等,被普遍使用,而情境层面的预测因素几乎未被使用,从而限制了模型的公平性。偏差的主要来源包括缺乏外部验证、模型校准不足以及对数据复杂性考虑不足:尽管先进的建模方法在 PAC 环境中的感染相关模型中得到了发展,但支持其优越性的证据仍然有限。未来的研究应利用社会生态学的视角来选择预测因子和构建模型,探索 PAC 中的最佳数据模式和 ML 模型用法,同时确保采用严格的方法并考虑公平性。
{"title":"Machine learning-based infection diagnostic and prognostic models in post-acute care settings: a systematic review.","authors":"Zidu Xu, Danielle Scharp, Mollie Hobensack, Jiancheng Ye, Jungang Zou, Sirui Ding, Jingjing Shang, Maxim Topaz","doi":"10.1093/jamia/ocae278","DOIUrl":"10.1093/jamia/ocae278","url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.</p><p><strong>Materials and methods: </strong>PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.</p><p><strong>Results: </strong>Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.</p><p><strong>Discussion and conclusion: </strong>Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"241-252"},"PeriodicalIF":4.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dataset and benchmark for hospital course summarization with adapted large language models. 一个基于大型语言模型的医院课程总结数据集和基准。
IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-12-30 DOI: 10.1093/jamia/ocae312
Asad Aali, Dave Van Veen, Yamin Ishraq Arefeen, Jason Hom, Christian Bluethgen, Eduardo Pontes Reis, Sergios Gatidis, Namuun Clifford, Joseph Daws, Arash S Tehrani, Jangwon Kim, Akshay S Chaudhari

Objective: Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel preprocessed dataset, the MIMIC-IV-BHC, encapsulating clinical note and BHC pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of 2 general-purpose LLMs and 3 healthcare-adapted LLMs.

Materials and methods: Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to 3 open-source LLMs (Clinical-T5-Large, Llama2-13B, and FLAN-UL2) and 2 proprietary LLMs (Generative Pre-trained Transformer [GPT]-3.5 and GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with 5 clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We compare reader preferences for the original and LLM-generated summary using Wilcoxon signed-rank tests. We further request optional qualitative feedback from clinicians to gain deeper insights into their preferences, and we present the frequency of common themes arising from these comments.

Results: The Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of Bilingual Evaluation Understudy (BLEU) and Bidirectional Encoder Representations from Transformers (BERT)-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries (P<.001), highlighting the need for qualitative clinical evaluation.

Discussion and conclusion: We release a foundational clinically relevant dataset, the MIMIC-IV-BHC, and present an open-source benchmark of LLM performance in BHC synthesis from clinical notes. We observe high-quality summarization performance for both in-context proprietary and fine-tuned open-source LLMs using both quantitative metrics and a qualitative clinical reader study. Our research effectively integrates elements from the data assimilation pipeline: our methods use (1) clinical data sources to integrate, (2) data translation, and (3) knowledge creation, while our evaluation strategy paves the way for (4) deployment.

目的:简要住院过程(BHC)摘要是总结患者住院时间的临床文件。虽然大型语言模型(llm)在自动化现实世界任务方面表现出了卓越的能力,但它们在医疗保健应用程序(如根据临床记录合成bhc)方面的能力尚未得到证实。我们引入了一个新的预处理数据集,MIMIC-IV-BHC,封装了临床记录和BHC对,以适应llm用于BHC合成。此外,我们还介绍了2个通用llm和3个医疗保健llm的汇总性能基准。材料和方法:使用临床记录作为输入,我们将基于提示(使用上下文学习)和基于微调的适应策略应用于3个开源llm(临床- t5 - large, Llama2-13B和FLAN-UL2)和2个专有llm(生成预训练变压器[GPT]-3.5和GPT-4)。我们使用自然语言相似度指标跨多个上下文长度输入评估这些llm。我们进一步与5名临床医生进行了一项临床研究,比较了30个样本中临床医生撰写的bhc和llm生成的bhc,重点关注它们通过提高总结质量来增强临床决策的潜力。我们使用Wilcoxon符号秩检验比较了读者对原始摘要和llm生成摘要的偏好。我们进一步要求临床医生提供可选的定性反馈,以更深入地了解他们的偏好,我们提出了这些评论引起的共同主题的频率。结果:基于双语评价替补(BLEU)和变形金刚双向编码器表征(BERT)-Score的定量评价指标,Llama2-13B微调LLM优于其他领域适应模型。与微调后的Llama2-13B相比,具有情境学习的GPT-4对增加临床笔记输入的情境长度表现出更强的鲁棒性。尽管有可比较的定量指标,但读者研究表明,与llama1 - 13b精调摘要和原始摘要相比,ggt -4与上下文学习生成的摘要有明显的偏好(p讨论和结论:我们发布了一个基础临床相关数据集,MIMIC-IV-BHC,并提出了一个基于临床记录的LLM合成BHC性能的开源基准。我们使用定量指标和定性临床读者研究观察了上下文专有和微调的开源法学硕士的高质量总结性能。我们的研究有效地整合了数据同化管道中的元素:我们的方法使用(1)临床数据源进行整合,(2)数据翻译,(3)知识创造,而我们的评估策略为(4)部署铺平了道路。
{"title":"A dataset and benchmark for hospital course summarization with adapted large language models.","authors":"Asad Aali, Dave Van Veen, Yamin Ishraq Arefeen, Jason Hom, Christian Bluethgen, Eduardo Pontes Reis, Sergios Gatidis, Namuun Clifford, Joseph Daws, Arash S Tehrani, Jangwon Kim, Akshay S Chaudhari","doi":"10.1093/jamia/ocae312","DOIUrl":"https://doi.org/10.1093/jamia/ocae312","url":null,"abstract":"<p><strong>Objective: </strong>Brief hospital course (BHC) summaries are clinical documents that summarize a patient's hospital stay. While large language models (LLMs) depict remarkable capabilities in automating real-world tasks, their capabilities for healthcare applications such as synthesizing BHCs from clinical notes have not been shown. We introduce a novel preprocessed dataset, the MIMIC-IV-BHC, encapsulating clinical note and BHC pairs to adapt LLMs for BHC synthesis. Furthermore, we introduce a benchmark of the summarization performance of 2 general-purpose LLMs and 3 healthcare-adapted LLMs.</p><p><strong>Materials and methods: </strong>Using clinical notes as input, we apply prompting-based (using in-context learning) and fine-tuning-based adaptation strategies to 3 open-source LLMs (Clinical-T5-Large, Llama2-13B, and FLAN-UL2) and 2 proprietary LLMs (Generative Pre-trained Transformer [GPT]-3.5 and GPT-4). We evaluate these LLMs across multiple context-length inputs using natural language similarity metrics. We further conduct a clinical study with 5 clinicians, comparing clinician-written and LLM-generated BHCs across 30 samples, focusing on their potential to enhance clinical decision-making through improved summary quality. We compare reader preferences for the original and LLM-generated summary using Wilcoxon signed-rank tests. We further request optional qualitative feedback from clinicians to gain deeper insights into their preferences, and we present the frequency of common themes arising from these comments.</p><p><strong>Results: </strong>The Llama2-13B fine-tuned LLM outperforms other domain-adapted models given quantitative evaluation metrics of Bilingual Evaluation Understudy (BLEU) and Bidirectional Encoder Representations from Transformers (BERT)-Score. GPT-4 with in-context learning shows more robustness to increasing context lengths of clinical note inputs than fine-tuned Llama2-13B. Despite comparable quantitative metrics, the reader study depicts a significant preference for summaries generated by GPT-4 with in-context learning compared to both Llama2-13B fine-tuned summaries and the original summaries (P<.001), highlighting the need for qualitative clinical evaluation.</p><p><strong>Discussion and conclusion: </strong>We release a foundational clinically relevant dataset, the MIMIC-IV-BHC, and present an open-source benchmark of LLM performance in BHC synthesis from clinical notes. We observe high-quality summarization performance for both in-context proprietary and fine-tuned open-source LLMs using both quantitative metrics and a qualitative clinical reader study. Our research effectively integrates elements from the data assimilation pipeline: our methods use (1) clinical data sources to integrate, (2) data translation, and (3) knowledge creation, while our evaluation strategy paves the way for (4) deployment.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Medical Informatics Association
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1