Pub Date : 2026-01-28DOI: 10.1523/JNEUROSCI.0762-25.2025
Pascal Fenske, Hassan Hosseini, Boris Bouazza-Arostegui, Thorsten Trimbuch, Melissa A Herman, Christian Rosenmund
Baker-Gordon syndrome (BAGOS) is a neurodevelopmental disorder (NDD) linked to a series of de novo mutations in the synaptic vesicle protein, Synaptotagmin-1 (SYT1). SYT1 is the major calcium sensor for synaptic transmission, and therefore a key molecule in neuronal communication. Several approaches have been used to reveal the underlying molecular mechanisms that lead to BAGOS pathology. While the murine genetic deletion, loss-of-function approach has proven valuable for modeling human diseases, human-induced pluripotent stem cells (hiPSCs) offer a powerful new strategy. In this study, we compare the phenotypes of BAGOS-associated SYT1 mutant variants in murine and human neuron models of either sex. In the well-established murine SYT1 knock-out (KO) model, we found that although all SYT1 mutant variants were correctly localized to the synaptic compartment, none could effectively rescue synaptic transmission. To examine the phenotype of BAGOS-associated SYT1 mutations in the context of human neurons, we generated a SYT1 KO hiPSC line via CRISPR/Cas9 gene editing and used this to derive neurons. As in mouse neurons, SYT1 KO in hiPSCs-derived human neurons strongly impairs synchronous release. Surprisingly, fast synaptic transmission could be rescued to varying extents in the human SYT1 KO model using BAGOS SYT1 mutants. However, overexpression of BAGOS SYT1 mutants in either WT mouse neurons or hiPSC-derived human neurons, a condition closer to the heterozygotic genotype of patients, revealed a dominant-negative effect of the mutant proteins. Our findings suggest that impaired neurotransmitter release efficacy caused by mutations in synaptic proteins may contribute to NDD pathophysiology.
{"title":"Baker-Gordon Syndrome-Associated Synaptotagmin-1 Mutations Reduce Synaptic Strength in Mouse Primary and Human-Induced Neuronal Culture Models.","authors":"Pascal Fenske, Hassan Hosseini, Boris Bouazza-Arostegui, Thorsten Trimbuch, Melissa A Herman, Christian Rosenmund","doi":"10.1523/JNEUROSCI.0762-25.2025","DOIUrl":"10.1523/JNEUROSCI.0762-25.2025","url":null,"abstract":"<p><p>Baker-Gordon syndrome (BAGOS) is a neurodevelopmental disorder (NDD) linked to a series of de novo mutations in the synaptic vesicle protein, Synaptotagmin-1 (SYT1). SYT1 is the major calcium sensor for synaptic transmission, and therefore a key molecule in neuronal communication. Several approaches have been used to reveal the underlying molecular mechanisms that lead to BAGOS pathology. While the murine genetic deletion, loss-of-function approach has proven valuable for modeling human diseases, human-induced pluripotent stem cells (hiPSCs) offer a powerful new strategy. In this study, we compare the phenotypes of BAGOS-associated SYT1 mutant variants in murine and human neuron models of either sex. In the well-established murine SYT1 knock-out (KO) model, we found that although all SYT1 mutant variants were correctly localized to the synaptic compartment, none could effectively rescue synaptic transmission. To examine the phenotype of BAGOS-associated SYT1 mutations in the context of human neurons, we generated a SYT1 KO hiPSC line via CRISPR/Cas9 gene editing and used this to derive neurons. As in mouse neurons, SYT1 KO in hiPSCs-derived human neurons strongly impairs synchronous release. Surprisingly, fast synaptic transmission could be rescued to varying extents in the human SYT1 KO model using BAGOS SYT1 mutants. However, overexpression of BAGOS SYT1 mutants in either WT mouse neurons or hiPSC-derived human neurons, a condition closer to the heterozygotic genotype of patients, revealed a dominant-negative effect of the mutant proteins. Our findings suggest that impaired neurotransmitter release efficacy caused by mutations in synaptic proteins may contribute to NDD pathophysiology.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12853263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145879397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ventral pallidum (VP) lies at the intersection of basal ganglia and basal forebrain circuitry, possessing attributes of both major subcortical systems. Basal forebrain cholinergic neurons are rapidly recruited by reinforcement feedback and project to cortical and subcortical forebrain targets; in contrast, striatal cholinergic cells are local interneurons exhibiting classical 'pause-burst' responses to rewards. However, VP cholinergic neurons (VPCNs) are less characterized, and it is unclear whether basal forebrain and striatal type cholinergic neurons mix in the VP. Therefore, we performed anterograde and mono-transsynaptic retrograde labeling, in vitro acute slice recordings and bulk calcium recordings of VPCNs in mice of either sex. We found that VPCNs broadly interact with the mesocorticolimbic circuit that processes rewards and punishments, targeting the basolateral amygdala, the medial prefrontal cortex and the lateral habenula, while receiving inputs from the nucleus accumbens, hypothalamus, central amygdala, bed nucleus of stria terminalis and the ventral tegmental area. Bulk calcium recordings revealed that VPCNs responded to rewards, punishments and reward-predicting cues. Acute slice recordings showed that most VPCNs resembled the bursting type of basal forebrain cholinergic neurons (BFCNs), while a few of them were of the regular rhythmic type, which differentiated most VPCNs from striatal cholinergic interneurons. These results were confirmed by in vivo electrophysiological recordings of putative VPCNs. We conclude that VPCNs show burst firing and specialized connectivity to relay aversive and appetitive stimuli to the reinforcement circuitry, possibly implicated in mood disorders and addiction.Significance statement The ventral pallidum is a special brain area, being part of both the basal ganglia system implicated in goal-directed behavior and the basal forebrain system implicated in learning and attention. It houses, among others, neurons that release the neurotransmitter acetylcholine. While these cholinergic neurons have distinct characteristics in other regions of the basal ganglia and basal forebrain, it is unclear whether those in the ventral pallidum resemble one or the other or both. Here we demonstrate that they are closer to basal forebrain cholinergic neurons both anatomically and functionally, especially resembling a burst-firing subtype thereof. In accordance, we found that they convey information about aversive and appetitive stimuli to the reinforcement circuitry, possibly implicated in mood disorders and addiction.
{"title":"Most ventral pallidal cholinergic neurons are bursting basal forebrain cholinergic neurons with mesocorticolimbic connectivity.","authors":"Dániel Schlingloff,Írisz Szabó,Éva Gulyás,Bálint Király,Réka Kispál,Marcus Stephenson-Jones,Balázs Hangya","doi":"10.1523/jneurosci.0415-25.2026","DOIUrl":"https://doi.org/10.1523/jneurosci.0415-25.2026","url":null,"abstract":"The ventral pallidum (VP) lies at the intersection of basal ganglia and basal forebrain circuitry, possessing attributes of both major subcortical systems. Basal forebrain cholinergic neurons are rapidly recruited by reinforcement feedback and project to cortical and subcortical forebrain targets; in contrast, striatal cholinergic cells are local interneurons exhibiting classical 'pause-burst' responses to rewards. However, VP cholinergic neurons (VPCNs) are less characterized, and it is unclear whether basal forebrain and striatal type cholinergic neurons mix in the VP. Therefore, we performed anterograde and mono-transsynaptic retrograde labeling, in vitro acute slice recordings and bulk calcium recordings of VPCNs in mice of either sex. We found that VPCNs broadly interact with the mesocorticolimbic circuit that processes rewards and punishments, targeting the basolateral amygdala, the medial prefrontal cortex and the lateral habenula, while receiving inputs from the nucleus accumbens, hypothalamus, central amygdala, bed nucleus of stria terminalis and the ventral tegmental area. Bulk calcium recordings revealed that VPCNs responded to rewards, punishments and reward-predicting cues. Acute slice recordings showed that most VPCNs resembled the bursting type of basal forebrain cholinergic neurons (BFCNs), while a few of them were of the regular rhythmic type, which differentiated most VPCNs from striatal cholinergic interneurons. These results were confirmed by in vivo electrophysiological recordings of putative VPCNs. We conclude that VPCNs show burst firing and specialized connectivity to relay aversive and appetitive stimuli to the reinforcement circuitry, possibly implicated in mood disorders and addiction.Significance statement The ventral pallidum is a special brain area, being part of both the basal ganglia system implicated in goal-directed behavior and the basal forebrain system implicated in learning and attention. It houses, among others, neurons that release the neurotransmitter acetylcholine. While these cholinergic neurons have distinct characteristics in other regions of the basal ganglia and basal forebrain, it is unclear whether those in the ventral pallidum resemble one or the other or both. Here we demonstrate that they are closer to basal forebrain cholinergic neurons both anatomically and functionally, especially resembling a burst-firing subtype thereof. In accordance, we found that they convey information about aversive and appetitive stimuli to the reinforcement circuitry, possibly implicated in mood disorders and addiction.","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"33 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146069917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-28DOI: 10.1523/JNEUROSCI.1490-25.2025
Emily Wiecek, Luis D Ramirez, Michaela Klimova, Sam Ling
Our visual system can recognize patterns across many spatial scales. A fundamental assumption in visual neuroscience is that this ability relies on the putative scale-invariant properties of receptive fields (RFs) in early vision, whereby the spatial area over which a visual neuron responds is proportional to the spatial scale of information it can encode (i.e., spatial frequency, SF). In other words, the resolution of spatial sampling of a RF is assumed to be constant in the visual cortex. However, this assumption has gone untested in the human visual cortex. To address this, we leveraged model-based fMRI techniques that characterize the spatial tuning and SF preferences of cortical subpopulations sampled within a voxel across eight participants (five females, three males). We find that the voxel-wise ratio between peak SF tuning and RF size-expressed as "cycles per RF"-remains constant across visual areas V1, V2, and V3, suggesting that, at the population level, SF preferences are inversely proportional to the RF size, a tenet of scale invariance in early human vision.
{"title":"Spatial Frequency Tuning Follows Scale Invariance in the Human Visual Cortex.","authors":"Emily Wiecek, Luis D Ramirez, Michaela Klimova, Sam Ling","doi":"10.1523/JNEUROSCI.1490-25.2025","DOIUrl":"10.1523/JNEUROSCI.1490-25.2025","url":null,"abstract":"<p><p>Our visual system can recognize patterns across many spatial scales. A fundamental assumption in visual neuroscience is that this ability relies on the putative scale-invariant properties of receptive fields (RFs) in early vision, whereby the spatial area over which a visual neuron responds is proportional to the spatial scale of information it can encode (i.e., spatial frequency, SF). In other words, the resolution of spatial sampling of a RF is assumed to be constant in the visual cortex. However, this assumption has gone untested in the human visual cortex. To address this, we leveraged model-based fMRI techniques that characterize the spatial tuning and SF preferences of cortical subpopulations sampled within a voxel across eight participants (five females, three males). We find that the voxel-wise ratio between peak SF tuning and RF size-expressed as \"cycles per RF\"-remains constant across visual areas V1, V2, and V3, suggesting that, at the population level, SF preferences are inversely proportional to the RF size, a tenet of scale invariance in early human vision.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12853248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146004491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-28DOI: 10.1523/JNEUROSCI.0180-25.2025
Evan A Kattner, Terrence R Stanford, Emilio Salinas
Visuospatial attention is key for parsing visual information and selecting targets to look at. Based on regimented laboratory tasks, it is now well-established that three types of mechanism determine when and where attention is deployed; these are stimulus-driven (exogenous), goal-driven (endogenous), and history-driven (reflecting recent experience). It is unclear, however, how these distinct attentional signals interact and contribute in visual environments that are more akin to natural scanning, when stimuli may change rapidly and no fixation requirements are imposed. Here, we investigate this via a gamified task in which participants (male and female) make continuous saccadic choices at a rapid pace-and yet, perceptual performance can be accurately tracked over time as the choice process unfolds. The results reveal unequivocal markers of exogenous capture toward salient stimuli; endogenous guidance toward valuable targets and relevant locations; and history-driven effects, which produce large, involuntary modulations in processing capacity. Under dynamic conditions, success probability is dictated by temporally precise interplay between different forms of spatial attention, with recent history making a particularly prominent contribution.
{"title":"Contributions of Distinct Attention Mechanisms to Saccadic Choices in a Gamified, Dynamic Environment.","authors":"Evan A Kattner, Terrence R Stanford, Emilio Salinas","doi":"10.1523/JNEUROSCI.0180-25.2025","DOIUrl":"10.1523/JNEUROSCI.0180-25.2025","url":null,"abstract":"<p><p>Visuospatial attention is key for parsing visual information and selecting targets to look at. Based on regimented laboratory tasks, it is now well-established that three types of mechanism determine when and where attention is deployed; these are stimulus-driven (exogenous), goal-driven (endogenous), and history-driven (reflecting recent experience). It is unclear, however, how these distinct attentional signals interact and contribute in visual environments that are more akin to natural scanning, when stimuli may change rapidly and no fixation requirements are imposed. Here, we investigate this via a gamified task in which participants (male and female) make continuous saccadic choices at a rapid pace-and yet, perceptual performance can be accurately tracked over time as the choice process unfolds. The results reveal unequivocal markers of exogenous capture toward salient stimuli; endogenous guidance toward valuable targets and relevant locations; and history-driven effects, which produce large, involuntary modulations in processing capacity. Under dynamic conditions, success probability is dictated by temporally precise interplay between different forms of spatial attention, with recent history making a particularly prominent contribution.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12853255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145679289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-28DOI: 10.1523/JNEUROSCI.1626-25.2025
Kara K Cover, Kerry Elliott, Sarah M Preuss, Richard J Krauzlis
The basal ganglia play a key role in visual perceptual decisions. Despite being the primary target in the basal ganglia for inputs from the visual cortex, the posterior striatum's (PS) involvement in visual perceptual behavior remains unknown in rodents. We reveal that the PS direct pathway is largely segregated from the dorsomedial striatum (DMS) direct pathway, the other major striatal target for visual cortex. We investigated the role of the PS in visual perceptual decisions by optogenetically stimulating striatal medium spiny neurons in the direct pathway (D1-MSNs) of male and female mice performing a visual change-detection task. PS D1-MSN activation robustly biased visual decisions in a manner dependent on visual context, timing, and reward expectation. We examined the effects of PS and DMS direct pathway activation on neuronal activity in the superior colliculus (SC), a major output target of the basal ganglia. Activation of either direct pathway rapidly modulated SC neurons, but mostly targeted different SC neurons and had opposite effects. These results demonstrate that the PS in rodents provides an important route for controlling visual decisions, in parallel with the better known DMS, and with distinct anatomical and functional properties.Significance Statement The rodent posterior striatum (PS) is strongly innervated by visual cortex and thalamus, but its functional role in visual behavior has not been explored. We show that the PS initiates a direct pathway through the basal ganglia that is anatomically distinct from the more commonly studied dorsomedial striatum (DMS). Activating the PS direct pathway selectively biases decisions for expected, valued visual events. We also show that both DMS and PS direct pathways modulate neuronal activity in the superior colliculus, a structure critical for visual processing and sensorimotor function, and preferentially modulate collicular units with properties relevant in the visual detection task. These findings identify a distinct and novel circuit through the basal ganglia for controlling visually guided perceptual decisions.
{"title":"A distinct circuit for biasing visual perceptual decisions and modulating superior colliculus activity through the mouse posterior striatum.","authors":"Kara K Cover, Kerry Elliott, Sarah M Preuss, Richard J Krauzlis","doi":"10.1523/JNEUROSCI.1626-25.2025","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1626-25.2025","url":null,"abstract":"<p><p>The basal ganglia play a key role in visual perceptual decisions. Despite being the primary target in the basal ganglia for inputs from the visual cortex, the posterior striatum's (PS) involvement in visual perceptual behavior remains unknown in rodents. We reveal that the PS direct pathway is largely segregated from the dorsomedial striatum (DMS) direct pathway, the other major striatal target for visual cortex. We investigated the role of the PS in visual perceptual decisions by optogenetically stimulating striatal medium spiny neurons in the direct pathway (D1-MSNs) of male and female mice performing a visual change-detection task. PS D1-MSN activation robustly biased visual decisions in a manner dependent on visual context, timing, and reward expectation. We examined the effects of PS and DMS direct pathway activation on neuronal activity in the superior colliculus (SC), a major output target of the basal ganglia. Activation of either direct pathway rapidly modulated SC neurons, but mostly targeted different SC neurons and had opposite effects. These results demonstrate that the PS in rodents provides an important route for controlling visual decisions, in parallel with the better known DMS, and with distinct anatomical and functional properties.<b>Significance Statement</b> The rodent posterior striatum (PS) is strongly innervated by visual cortex and thalamus, but its functional role in visual behavior has not been explored. We show that the PS initiates a direct pathway through the basal ganglia that is anatomically distinct from the more commonly studied dorsomedial striatum (DMS). Activating the PS direct pathway selectively biases decisions for expected, valued visual events. We also show that both DMS and PS direct pathways modulate neuronal activity in the superior colliculus, a structure critical for visual processing and sensorimotor function, and preferentially modulate collicular units with properties relevant in the visual detection task. These findings identify a distinct and novel circuit through the basal ganglia for controlling visually guided perceptual decisions.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146108150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-26DOI: 10.1523/JNEUROSCI.1640-25.2026
Elizabeth H T Chang, Sara M Dyslin, Ryan Staples, Andrew T DeMarco, Peter E Turkeltaub
Reading is a fundamental skill for communication, learning, and daily life. Alexia, an acquired reading disorder typically caused by left hemisphere stroke, impairs both oral and silent word reading. However, most research and clinical assessments focus on oral reading. Functional imaging studies in typical readers suggest partly shared and partly distinct neural bases of oral versus silent reading, but this has never been assessed in a lesion study. We examined oral word reading and silent word recognition, measured by a lexical decision task, in 85 chronic left hemisphere stroke survivors (46 males, 39 females), comparing efficiency scores combining speed and accuracy to those of 69 neurologically healthy adults (36 males, 33 females). The stroke group had greater deficits in oral reading than lexical decision. Performance on the two tasks was highly correlated suggesting shared substrates, albeit with considerable unexplained variance. Support vector regression-based lesion-symptom mapping localized lesions associated with deficits in the two tasks. Oral reading deficits were associated with lesions to the superior temporal and supramarginal gyri, and the rolandic operculum after controlling for lexical decision performance. Lexical decision deficits were linked to lesions in angular gyrus, even after controlling for oral reading performance. A novel conjunction analysis found that lesions of angular and middle temporal gyri, extending into ventral occipitotemporal cortex, affected performance on both tasks, suggesting shared neural substrates. These findings suggest that neurocognitive bases of silent reading and reading aloud are partly shared and partly distinct. Alexia assessments should include both silent and oral reading tasks.Significance Statement Silent reading is essential for daily life, but has received less attention than oral reading in research on acquired reading deficits, i.e., alexia. While functional imaging suggests partially distinct activation patterns for oral and silent reading, lesion-symptom mapping offers a critical method for identifying brain regions necessary for task performance. This is the first lesion mapping study to compare oral and silent reading within the same individuals. Using lexical decision as a proxy for silent reading, we found partly shared and partly distinct neural substrates for silent versus oral reading. These findings reveal overlapping but differentially weighted neural systems and underscore the need to assess silent reading alongside oral reading when assessing alexia.
{"title":"Lesions reveal shared and distinct neurocognitive bases of oral reading and silent word recognition.","authors":"Elizabeth H T Chang, Sara M Dyslin, Ryan Staples, Andrew T DeMarco, Peter E Turkeltaub","doi":"10.1523/JNEUROSCI.1640-25.2026","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1640-25.2026","url":null,"abstract":"<p><p>Reading is a fundamental skill for communication, learning, and daily life. Alexia, an acquired reading disorder typically caused by left hemisphere stroke, impairs both oral and silent word reading. However, most research and clinical assessments focus on oral reading. Functional imaging studies in typical readers suggest partly shared and partly distinct neural bases of oral versus silent reading, but this has never been assessed in a lesion study. We examined oral word reading and silent word recognition, measured by a lexical decision task, in 85 chronic left hemisphere stroke survivors (46 males, 39 females), comparing efficiency scores combining speed and accuracy to those of 69 neurologically healthy adults (36 males, 33 females). The stroke group had greater deficits in oral reading than lexical decision. Performance on the two tasks was highly correlated suggesting shared substrates, albeit with considerable unexplained variance. Support vector regression-based lesion-symptom mapping localized lesions associated with deficits in the two tasks. Oral reading deficits were associated with lesions to the superior temporal and supramarginal gyri, and the rolandic operculum after controlling for lexical decision performance. Lexical decision deficits were linked to lesions in angular gyrus, even after controlling for oral reading performance. A novel conjunction analysis found that lesions of angular and middle temporal gyri, extending into ventral occipitotemporal cortex, affected performance on both tasks, suggesting shared neural substrates. These findings suggest that neurocognitive bases of silent reading and reading aloud are partly shared and partly distinct. Alexia assessments should include both silent and oral reading tasks.<b>Significance Statement</b> Silent reading is essential for daily life, but has received less attention than oral reading in research on acquired reading deficits, i.e., alexia. While functional imaging suggests partially distinct activation patterns for oral and silent reading, lesion-symptom mapping offers a critical method for identifying brain regions necessary for task performance. This is the first lesion mapping study to compare oral and silent reading within the same individuals. Using lexical decision as a proxy for silent reading, we found partly shared and partly distinct neural substrates for silent versus oral reading. These findings reveal overlapping but differentially weighted neural systems and underscore the need to assess silent reading alongside oral reading when assessing alexia.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146054684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-26DOI: 10.1523/JNEUROSCI.1810-25.2025
Maximilian Harkotte, Fabian Heimel, Stoyan Dimitrov, Marion Inostroza, Jan Born
Schema memory refers to generalized knowledge that is formed across multiple episodes containing regularities. Schema memory is thought to be formed in an active systems consolidation process that transforms individual episodic representations into neocortically anchored schema representations and that is facilitated by sleep. Here we show in rats that sleep is indeed critical for the emergence of a new schema memory. Male rats (n = 20) were trained on an elaborated version of the object-place recognition (OPR) task, which allowed for abstraction of a spatial rule across eight encoding episodes spaced 20 minutes apart without intermittent sleep. During each episode, animals freely explored two objects in an open-field arena. Following the encoding phase, animals either slept or were kept awake for two hours, after which they remained undisturbed for 22 hours before schema memory for the spatial rule was assessed. Only animals that slept during the two-hour post-encoding window exhibited schema memory. Prior knowledge conflicting with the spatial rule prevented schema memory formation. c-Fos expression assessed at retrieval indicated that successful schema recall was supported by a more sparsely activated yet highly interconnected network comprising, amongst others, medial prefrontal cortex and hippocampus. Our findings highlight the critical role of immediate post-encoding sleep in forming new spatial schema memory.Significance Statement Schema representations integrate regularities abstracted from multiple episodes. Whether and how the formation of schema representations benefit from sleep is still unclear, partly because evoking abstraction processes across episodes within a single wake period in animal models is challenging. Using an object-place recognition (OPR) - based schema memory task, we show for the first time in rats that sleep critically supports schema memory formation. Rats that slept, but not those kept awake for 2 hours after encoding the eight task episodes, expressed schema memory 24 hours later. Schema recall after sleep was associated with a sparse but distinctly more coordinated network activation, mainly comprising medial prefrontal cortex and hippocampus. Our findings highlight sleep's role in newly forming distributed spatial schema representations.
{"title":"The emergence of new schema memory requires sleep.","authors":"Maximilian Harkotte, Fabian Heimel, Stoyan Dimitrov, Marion Inostroza, Jan Born","doi":"10.1523/JNEUROSCI.1810-25.2025","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1810-25.2025","url":null,"abstract":"<p><p>Schema memory refers to generalized knowledge that is formed across multiple episodes containing regularities. Schema memory is thought to be formed in an active systems consolidation process that transforms individual episodic representations into neocortically anchored schema representations and that is facilitated by sleep. Here we show in rats that sleep is indeed critical for the emergence of a new schema memory. Male rats (n = 20) were trained on an elaborated version of the object-place recognition (OPR) task, which allowed for abstraction of a spatial rule across eight encoding episodes spaced 20 minutes apart without intermittent sleep. During each episode, animals freely explored two objects in an open-field arena. Following the encoding phase, animals either slept or were kept awake for two hours, after which they remained undisturbed for 22 hours before schema memory for the spatial rule was assessed. Only animals that slept during the two-hour post-encoding window exhibited schema memory. Prior knowledge conflicting with the spatial rule prevented schema memory formation. c-Fos expression assessed at retrieval indicated that successful schema recall was supported by a more sparsely activated yet highly interconnected network comprising, amongst others, medial prefrontal cortex and hippocampus. Our findings highlight the critical role of immediate post-encoding sleep in forming new spatial schema memory.<b>Significance Statement</b> Schema representations integrate regularities abstracted from multiple episodes. Whether and how the formation of schema representations benefit from sleep is still unclear, partly because evoking abstraction processes across episodes within a single wake period in animal models is challenging. Using an object-place recognition (OPR) - based schema memory task, we show for the first time in rats that sleep critically supports schema memory formation. Rats that slept, but not those kept awake for 2 hours after encoding the eight task episodes, expressed schema memory 24 hours later. Schema recall after sleep was associated with a sparse but distinctly more coordinated network activation, mainly comprising medial prefrontal cortex and hippocampus. Our findings highlight sleep's role in newly forming distributed spatial schema representations.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146054752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-23DOI: 10.1523/jneurosci.1580-25.2026
Thomas M Morin,Jordyn L Cowan,Hsiang-Yu Chen,Jourdan H Parent,Jennifer L Crawford,Claire J Ciampa,Vyoma D Shah,Ming Hsu,William J Jagust,Anne S Berry
Aging is accompanied by the disruption of multiple neural systems including alteration in dopamine neurotransmission as well as through the accumulation of neuropathology. Despite broad appreciation that complex mental function relies on integration across systems, there is a general lack of understanding of how multiple age and disease-related brain features interact to drive variation in performance. To address this gap, we used positron emission tomography in male and female humans to examine independent and combined impacts of dopamine synthesis capacity ([18F]Fluoro-L-m-tyrosine) and Alzheimer's disease (AD)-related pathology (amyloid-β: [11C]Pittsburgh Compound B; tau: [18F]Flortaucipir) on memory for rewarding events, which we assessed using functional magnetic resonance imaging (n = 80 young and older adults). We specifically probed dopamine synthesis capacity given evidence that it is upregulated in older age, and may impart resilience to age-related neural losses. In young adults, higher dopamine synthesis capacity was associated with superior overall memory and greater temporal lobe activation. In older adults, neither dopamine nor AD pathology independently predicted memory performance, though higher dopamine synthesis capacity was associated with memory biases for stimuli associated with rewards rather than losses. Instead, we observed interactions between dopamine synthesis and pathology whereby only older adults with minimal pathology showed preservation of positive dopamine-memory associations. In contrast to resilience accounts, the presence of AD pathology disrupted and even reversed relationships between dopamine synthesis, memory, and temporal lobe activation. These results suggest that AD pathological processes acutely alter the mechanisms by which elevated dopamine synthesis supports optimal memory performance.Significance Statement While there is compelling evidence that aging is associated with concomitant alterations in dopamine function and cognition, studies directly linking individual differences in endogenous dopamine with memory performance in older age have shown mixed results. We find that the presence of amyloid-β and tau pathology significantly alters relationships among in vivo measures of dopamine synthesis capacity, brain activity, and behavior such that episodic memory performance appears to be relatively decoupled from the dopamine system in the context of preclinical Alzheimer's disease. These findings suggest that it is critical to account for pathological disease processes when considering the mechanisms by which dopamine influences cognitive function, and have implications for understanding the efficacy of therapeutic interventions targeting the dopamine system.
衰老伴随着多个神经系统的破坏,包括多巴胺神经传递的改变,以及神经病理学的积累。尽管人们普遍认识到复杂的心理功能依赖于跨系统的整合,但人们普遍缺乏对多种年龄和疾病相关的大脑特征如何相互作用以驱动表现变化的理解。为了解决这一差距,我们使用正电子发射断层扫描技术在男性和女性中检测多巴胺合成能力([18F]氟- l -m-酪氨酸)和阿尔茨海默病(AD)相关病理(淀粉样蛋白-β: [11C]匹兹堡化合物B; tau: [18F]Flortaucipir)对奖励事件记忆的独立和联合影响,我们使用功能磁共振成像(n = 80名年轻人和老年人)对其进行了评估。我们特别研究了多巴胺合成能力,因为有证据表明,多巴胺合成能力在老年人中上调,并可能赋予与年龄相关的神经损失的弹性。在年轻人中,更高的多巴胺合成能力与更好的整体记忆和更大的颞叶激活有关。在老年人中,多巴胺和AD病理都不能独立预测记忆表现,尽管较高的多巴胺合成能力与奖励相关的刺激的记忆偏差有关,而不是损失。相反,我们观察到多巴胺合成和病理之间的相互作用,只有最小病理的老年人表现出积极的多巴胺-记忆关联的保存。与恢复力的说法相反,阿尔茨海默病的存在破坏甚至逆转了多巴胺合成、记忆和颞叶激活之间的关系。这些结果表明,阿尔茨海默病的病理过程急剧改变了多巴胺合成升高支持最佳记忆表现的机制。虽然有令人信服的证据表明,衰老与多巴胺功能和认知的伴随改变有关,但直接将内源性多巴胺的个体差异与老年人的记忆表现联系起来的研究显示,结果好坏参半。我们发现淀粉样蛋白-β和tau病理的存在显著改变了体内多巴胺合成能力、大脑活动和行为之间的关系,因此在临床前阿尔茨海默病的背景下,情景记忆表现似乎与多巴胺系统相对脱钩。这些发现表明,在考虑多巴胺影响认知功能的机制时,考虑病理疾病过程是至关重要的,并且对理解针对多巴胺系统的治疗干预的有效性具有重要意义。
{"title":"Alzheimer's disease pathologies affect dopaminergic neural mechanisms of memory.","authors":"Thomas M Morin,Jordyn L Cowan,Hsiang-Yu Chen,Jourdan H Parent,Jennifer L Crawford,Claire J Ciampa,Vyoma D Shah,Ming Hsu,William J Jagust,Anne S Berry","doi":"10.1523/jneurosci.1580-25.2026","DOIUrl":"https://doi.org/10.1523/jneurosci.1580-25.2026","url":null,"abstract":"Aging is accompanied by the disruption of multiple neural systems including alteration in dopamine neurotransmission as well as through the accumulation of neuropathology. Despite broad appreciation that complex mental function relies on integration across systems, there is a general lack of understanding of how multiple age and disease-related brain features interact to drive variation in performance. To address this gap, we used positron emission tomography in male and female humans to examine independent and combined impacts of dopamine synthesis capacity ([18F]Fluoro-L-m-tyrosine) and Alzheimer's disease (AD)-related pathology (amyloid-β: [11C]Pittsburgh Compound B; tau: [18F]Flortaucipir) on memory for rewarding events, which we assessed using functional magnetic resonance imaging (n = 80 young and older adults). We specifically probed dopamine synthesis capacity given evidence that it is upregulated in older age, and may impart resilience to age-related neural losses. In young adults, higher dopamine synthesis capacity was associated with superior overall memory and greater temporal lobe activation. In older adults, neither dopamine nor AD pathology independently predicted memory performance, though higher dopamine synthesis capacity was associated with memory biases for stimuli associated with rewards rather than losses. Instead, we observed interactions between dopamine synthesis and pathology whereby only older adults with minimal pathology showed preservation of positive dopamine-memory associations. In contrast to resilience accounts, the presence of AD pathology disrupted and even reversed relationships between dopamine synthesis, memory, and temporal lobe activation. These results suggest that AD pathological processes acutely alter the mechanisms by which elevated dopamine synthesis supports optimal memory performance.Significance Statement While there is compelling evidence that aging is associated with concomitant alterations in dopamine function and cognition, studies directly linking individual differences in endogenous dopamine with memory performance in older age have shown mixed results. We find that the presence of amyloid-β and tau pathology significantly alters relationships among in vivo measures of dopamine synthesis capacity, brain activity, and behavior such that episodic memory performance appears to be relatively decoupled from the dopamine system in the context of preclinical Alzheimer's disease. These findings suggest that it is critical to account for pathological disease processes when considering the mechanisms by which dopamine influences cognitive function, and have implications for understanding the efficacy of therapeutic interventions targeting the dopamine system.","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"1 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146033857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-23DOI: 10.1523/JNEUROSCI.0720-25.2026
Soukhin Das, Sreenivasan Meyyappan, Evelijne M Bekker, Sharon Corina, Mingzhou Ding, George R Mangun
Our daily interactions with the world are shaped by sensory expectations informed by context and prior experiences, which in turn influence how we allocate our attention. Prominent predictive coding models suggest that sensory expectancy and attention interact but disagree on the precise mechanisms. One possibility is that the Ventral Attention Network (VAN) may play a role by facilitating attentional reorienting when expectancy is violated. To test this in humans (23 males and 43 females), we employed an auditory-visual trial-by-trial cueing paradigm in three experiments integrating EEG and fMRI to investigate the VAN's role in violations of cross-modal expectancy. Behavioral results showed faster responses to expected targets, confirming the efficacy of cue-induced expectations in orienting attention to the expected target modality. EEG analyses revealed differences in early (∼100 ms latency) event-related potentials (ERPs) to both auditory and visual stimuli when expectations were violated. Unexpected stimuli elicited significantly larger early-latency negative ERPs, across both modalities. Source localization of these ERPs and subsequent fMRI evidence revealed activation in the right VAN. Functional connectivity analyses showed greater coupling between VAN regions and sensory cortices, with modality-specific pathways involving superior temporal gyrus (STG) for auditory and fusiform gyrus (FG) for visual targets. These findings demonstrate that expectancy violations recruit the VAN to reorient attention and resolve sensory conflict. By coordinating top-down control and bottom-up sensory input, the VAN supports adaptive responses to unexpected stimuli. This work advances our understanding of predictive processing in multisensory perception and highlights the VAN's central role in flexible cognitive control.Significance Statement This study shows how expectations regarding sensory modalities might cause the brain to reorient attention. The study shows that during cross-modal expectation violations, the right-lateralized Ventral Attention Network (VAN), which includes the temporoparietal junction and inferior frontal gyrus, is quickly engaged using EEG and fMRI. Early ERP differences and higher VAN activation were evoked by unexpected visual and auditory stimuli, which also boosted connection to sensory areas. These results demonstrate the VAN's critical function in adaptive attention across modalities and further our understanding of prediction processing. The findings have significant implications for sensory integration models, attention models, and disorders involving expectation and control deficiencies.
{"title":"The Ventral Attention Network Mediates Attentional Reorienting to Cross-Modal Expectancy Violations: Evidence from EEG and fMRI.","authors":"Soukhin Das, Sreenivasan Meyyappan, Evelijne M Bekker, Sharon Corina, Mingzhou Ding, George R Mangun","doi":"10.1523/JNEUROSCI.0720-25.2026","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.0720-25.2026","url":null,"abstract":"<p><p>Our daily interactions with the world are shaped by sensory expectations informed by context and prior experiences, which in turn influence how we allocate our attention. Prominent predictive coding models suggest that sensory expectancy and attention interact but disagree on the precise mechanisms. One possibility is that the Ventral Attention Network (VAN) may play a role by facilitating attentional reorienting when expectancy is violated. To test this in humans (23 males and 43 females), we employed an auditory-visual trial-by-trial cueing paradigm in three experiments integrating EEG and fMRI to investigate the VAN's role in violations of cross-modal expectancy. Behavioral results showed faster responses to expected targets, confirming the efficacy of cue-induced expectations in orienting attention to the expected target modality. EEG analyses revealed differences in early (∼100 ms latency) event-related potentials (ERPs) to both auditory and visual stimuli when expectations were violated. Unexpected stimuli elicited significantly larger early-latency negative ERPs, across both modalities. Source localization of these ERPs and subsequent fMRI evidence revealed activation in the right VAN. Functional connectivity analyses showed greater coupling between VAN regions and sensory cortices, with modality-specific pathways involving superior temporal gyrus (STG) for auditory and fusiform gyrus (FG) for visual targets. These findings demonstrate that expectancy violations recruit the VAN to reorient attention and resolve sensory conflict. By coordinating top-down control and bottom-up sensory input, the VAN supports adaptive responses to unexpected stimuli. This work advances our understanding of predictive processing in multisensory perception and highlights the VAN's central role in flexible cognitive control.<b>Significance Statement</b> This study shows how expectations regarding sensory modalities might cause the brain to reorient attention. The study shows that during cross-modal expectation violations, the right-lateralized Ventral Attention Network (VAN), which includes the temporoparietal junction and inferior frontal gyrus, is quickly engaged using EEG and fMRI. Early ERP differences and higher VAN activation were evoked by unexpected visual and auditory stimuli, which also boosted connection to sensory areas. These results demonstrate the VAN's critical function in adaptive attention across modalities and further our understanding of prediction processing. The findings have significant implications for sensory integration models, attention models, and disorders involving expectation and control deficiencies.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-21DOI: 10.1523/JNEUROSCI.0929-25.2025
James Bigelow, Toshiaki Suzuki, Yulang Wu, Ying Hu, Andrea R Hasenstaub
Recent studies suggest some hippocampal (HC) neurons respond to passively presented sounds in naive subjects, but the specificity and prevalence of these responses remain unclear. We used Neuropixels probes to record unit activity across layers in mid-ventral HC and auditory cortex (ACtx) of awake, untrained mice (male and female) while presenting diverse sounds at typical environmental levels (65-70 dB SPL). A subset of HC neurons exhibited reliable, short latency responses to passive sounds, including tones and broadband noise. HC units showed evidence of tuning for tone frequency but not spectrotemporal features in continuous dynamic moving ripples. Across sound types, HC responses overwhelmingly occurred at stimulus onset; they quickly adapted to continuous sounds and did not respond at sound offset. Among all sounds tested, broadband noise was most effective at driving HC activity. Spectral manipulations indicated response prevalence scaled with increasing spectral bandwidth and density. Similar responses were also observed for visual flash and contrast-modulated noise movies, although these were less common than for broadband noise. Sound-evoked face movements, quantified by total face motion energy (FME), correlated with population-level HC activity. However, many individual units responded regardless of FME strength, suggesting both auditory and motor-correlated inputs. Together, our results show that abrupt sound onsets are sufficient to activate many HC neurons in the absence of learning or behavioral engagement. This supports a role for HC in detecting salient environmental changes and supports the idea that auditory inputs contribute directly to HC function.
最近的研究表明,在naïve受试者中,一些海马(HC)神经元对被动呈现的声音有反应,但这些反应的特异性和普遍性尚不清楚。在典型环境水平(65-70 dB SPL)下呈现不同声音时,我们使用神经像素探针记录醒着的未训练小鼠(雄性和雌性)中腹侧HC和听觉皮层(ACtx)各层的单位活动。HC神经元的一个子集对被动声音(包括音调和宽带噪声)表现出可靠的、短延迟的反应。HC单元在连续动态移动的波纹中显示音调频率调谐的证据,而不是光谱时间特征。在各种声音类型中,HC反应绝大多数发生在刺激开始时;它们很快适应了连续的声音,对声音偏移没有反应。在所有被测试的声音中,宽带噪声对驱动HC活动最有效。光谱操作表明,响应率随光谱带宽和密度的增加而增加。类似的反应也被观察到视觉闪光和对比度调制噪声电影,尽管这些不像宽带噪声那么常见。声音诱发的面部运动,通过总面部运动能量(FME)量化,与人群水平的HC活动相关。然而,无论FME强度如何,许多个体单位都做出了反应,这表明听觉和运动相关的输入都存在。总之,我们的研究结果表明,在没有学习或行为参与的情况下,突然的声音发作足以激活许多HC神经元。这支持了HC在检测显著环境变化中的作用,并支持了听觉输入直接促进HC功能的观点。海马体对学习和记忆至关重要,但其在感觉加工中的作用尚不清楚。在这里,我们展示了清醒的、未经训练的老鼠的许多海马神经元对被动声音,尤其是宽带噪声有反应。声音启动-从沉默到声音的过渡-对这些反应至关重要,这表明它在检测突然的,显著的环境变化方面起作用。与这种可能性相一致的是,一些单位也对视觉事件做出反应,尽管对噪音的反应较少。与听觉皮层相比,海马体单元不可靠地调谐光谱时间调制特征,表明独立的功能角色。海马体中被动听觉加工的普遍存在建立在先前的研究基础上,该研究表明听力可能与一般认知健康相互作用。
{"title":"Survey of Hippocampal Responses to Sound in Naive Mice Reveals Widespread Activation by Broadband Noise Onsets.","authors":"James Bigelow, Toshiaki Suzuki, Yulang Wu, Ying Hu, Andrea R Hasenstaub","doi":"10.1523/JNEUROSCI.0929-25.2025","DOIUrl":"10.1523/JNEUROSCI.0929-25.2025","url":null,"abstract":"<p><p>Recent studies suggest some hippocampal (HC) neurons respond to passively presented sounds in naive subjects, but the specificity and prevalence of these responses remain unclear. We used Neuropixels probes to record unit activity across layers in mid-ventral HC and auditory cortex (ACtx) of awake, untrained mice (male and female) while presenting diverse sounds at typical environmental levels (65-70 dB SPL). A subset of HC neurons exhibited reliable, short latency responses to passive sounds, including tones and broadband noise. HC units showed evidence of tuning for tone frequency but not spectrotemporal features in continuous dynamic moving ripples. Across sound types, HC responses overwhelmingly occurred at stimulus onset; they quickly adapted to continuous sounds and did not respond at sound offset. Among all sounds tested, broadband noise was most effective at driving HC activity. Spectral manipulations indicated response prevalence scaled with increasing spectral bandwidth and density. Similar responses were also observed for visual flash and contrast-modulated noise movies, although these were less common than for broadband noise. Sound-evoked face movements, quantified by total face motion energy (FME), correlated with population-level HC activity. However, many individual units responded regardless of FME strength, suggesting both auditory and motor-correlated inputs. Together, our results show that abrupt sound onsets are sufficient to activate many HC neurons in the absence of learning or behavioral engagement. This supports a role for HC in detecting salient environmental changes and supports the idea that auditory inputs contribute directly to HC function.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12828890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145726765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}