Pub Date : 2024-10-08DOI: 10.1523/JNEUROSCI.0885-24.2024
Akihiro Yamada, Mayank Gautam, Ayaka I Yamada, Jennifer Ling, Saurav Gupta, Hidemasa Furue, Wenqin Luo, Jianguo G Gu
Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3-/-), we showed that the frequency of SA1 impulses was significantly lower in ASIC3-/- mice than in littermate wildtype ASIC3+/+ mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.Significance Statement Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Here, using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of rodents and applying the pressure-clamped single-fiber recordings, we have demonstrated that ASIC channels are essential for generating SA1 impulses at MNCs in the glabrous skin of rodent hindpaws. Thus, ASIC channels at MNCs may play a key role in the sense of touch to the skin of mammals.
{"title":"Acid-sensing ion channels drive the generation of tactile impulses in Merkel cell-neurite complexes of the glabrous skin of rodent hindpaws.","authors":"Akihiro Yamada, Mayank Gautam, Ayaka I Yamada, Jennifer Ling, Saurav Gupta, Hidemasa Furue, Wenqin Luo, Jianguo G Gu","doi":"10.1523/JNEUROSCI.0885-24.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.0885-24.2024","url":null,"abstract":"<p><p>Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3<sup>-/-</sup>), we showed that the frequency of SA1 impulses was significantly lower in ASIC3<sup>-/-</sup> mice than in littermate wildtype ASIC3<sup>+/+</sup> mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.<b>Significance Statement</b> Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Here, using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of rodents and applying the pressure-clamped single-fiber recordings, we have demonstrated that ASIC channels are essential for generating SA1 impulses at MNCs in the glabrous skin of rodent hindpaws. Thus, ASIC channels at MNCs may play a key role in the sense of touch to the skin of mammals.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1523/JNEUROSCI.1173-24.2024
Daniel S Kluger, Joachim Gross, Christian Keitel
Viewing brain function through the lense of other physiological processes has critically added to our understanding of human cognition. Further advances though may need a closer look at the interactions between these physiological processes themselves. Here we characterise the interplay of the highly periodic, and metabolically vital respiratory process and fluctuations in arousal neuromodulation, a process classically seen as non-periodic. In data of three experiments (N = 56 / 27 / 25 women and men) we tested for covariations in respiratory and pupil size (arousal) dynamics. After substantiating a robust coupling in the largest dataset, we further show that coupling strength decreases during task performance compared with rest, and that it mirrors a decreased respiratory rate when participants take deeper breaths. Taken together, these findings suggest a stronger link between respiratory and arousal processes than previously thought. Moreover, these links imply a stronger coupling during periods of rest, and the effect of respiratory rate on the coupling suggests a driving role. As a consequence, studying the role of neuromodulatory arousal on cortical function may also need to consider respiratory influences.Significance statement We characterise the interplay of the respiratory rhythm and pupil diameter dynamics as a well-known proxy for arousal. Although we consistently find respiratory modulation of pupillary changes, they were most pronounced during periods of rest (compared to during task performance) and dependent on respiratory rate (deep vs. normal breathing).
{"title":"A dynamic link between respiration and arousal.","authors":"Daniel S Kluger, Joachim Gross, Christian Keitel","doi":"10.1523/JNEUROSCI.1173-24.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1173-24.2024","url":null,"abstract":"<p><p>Viewing brain function through the lense of other physiological processes has critically added to our understanding of human cognition. Further advances though may need a closer look at the interactions between these physiological processes themselves. Here we characterise the interplay of the highly periodic, and metabolically vital respiratory process and fluctuations in arousal neuromodulation, a process classically seen as non-periodic. In data of three experiments (N = 56 / 27 / 25 women and men) we tested for covariations in respiratory and pupil size (arousal) dynamics. After substantiating a robust coupling in the largest dataset, we further show that coupling strength decreases during task performance compared with rest, and that it mirrors a decreased respiratory rate when participants take deeper breaths. Taken together, these findings suggest a stronger link between respiratory and arousal processes than previously thought. Moreover, these links imply a stronger coupling during periods of rest, and the effect of respiratory rate on the coupling suggests a driving role. As a consequence, studying the role of neuromodulatory arousal on cortical function may also need to consider respiratory influences.<b>Significance statement</b> We characterise the interplay of the respiratory rhythm and pupil diameter dynamics as a well-known proxy for arousal. Although we consistently find respiratory modulation of pupillary changes, they were most pronounced during periods of rest (compared to during task performance) and dependent on respiratory rate (deep vs. normal breathing).</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1523/JNEUROSCI.0794-24.2024
Anneloes M Hulsman, Felix H Klaassen, Lycia D de Voogd, Karin Roelofs, Floris Klumpers
Healthy and successful living involves carefully navigating rewarding and threatening situations by balancing approach and avoidance behaviours. Excessive avoidance to evade potential threats often leads to forfeiting potential rewards. However, little is known about how reward and threat information is integrated neurally to inform approach or avoidance decisions. In this preregistered study, participants (Nbehaviour=31, 17F; NMRI=28, 15F) made approach-avoidance decisions under varying reward (monetary gains) and threat (electrical stimulations) prospects during functional MRI scanning. In contrast to theorized parallel subcortical processing of reward and threat information before cortical integration, Bayesian Multivariate Multilevel analyses revealed subcortical reward and threat integration prior to indicating approach-avoidance decisions. This integration occurred in the ventral striatum, thalamus, and bed nucleus of the stria terminalis (BNST). When reward was low, risk-diminishing avoidance decisions dominated, which was linked to more positive tracking of threat magnitude prior to indicating avoidance than approach decisions across these regions. In contrast, the amygdala exhibited dual sensitivity to reward and threat. While anticipating outcomes of risky approach decisions, we observed positive tracking of threat magnitude within the salience network (dorsal anterior cingulate cortex, thalamus, periaqueductal gray, BNST). Conversely, after risk-diminishing avoidance, characterized by reduced reward prospects, we observed more negative tracking of reward magnitude in the ventromedial prefrontal cortex and ventral striatum. These findings shed light on the temporal dynamics of approach-avoidance decision-making. Importantly, they demonstrate the role of subcortical integration of reward and threat information in balancing approach and avoidance, challenging theories positing predominantly separate subcortical processing prior to cortical integration.Significance statement When deciding whether to approach or avoid situations, our decision-making involves balancing potential rewards and threats. Widespread theories of decision-making in humans propose parallel processing of reward and threat information in subcortical regions, followed by cortical integration. Challenging these notions, we found evidence for dual and integrated processing of reward and threat in subcortical regions during decision-making. In contrast, after decision-making, we observed the expected parallel processing while anticipating decision outcomes. These findings advance our understanding of approach-avoidance decision-making processes, opposing traditional views that segregate brain regions as predominantly reward-sensitive or threat-sensitive, thereby paving the way for a more nuanced perspective that takes into account the stage of decision-making.
{"title":"How distributed subcortical integration of reward and threat may inform subsequent approach-avoidance decisions.","authors":"Anneloes M Hulsman, Felix H Klaassen, Lycia D de Voogd, Karin Roelofs, Floris Klumpers","doi":"10.1523/JNEUROSCI.0794-24.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.0794-24.2024","url":null,"abstract":"<p><p>Healthy and successful living involves carefully navigating rewarding and threatening situations by balancing approach and avoidance behaviours. Excessive avoidance to evade potential threats often leads to forfeiting potential rewards. However, little is known about how reward and threat information is integrated neurally to inform approach or avoidance decisions. In this preregistered study, participants (N<sub>behaviour</sub>=31, 17F; N<sub>MRI</sub>=28, 15F) made approach-avoidance decisions under varying reward (monetary gains) and threat (electrical stimulations) prospects during functional MRI scanning. In contrast to theorized <i>parallel subcortical</i> processing of reward and threat information before cortical integration, Bayesian Multivariate Multilevel analyses revealed subcortical reward and threat <i>integration</i> prior to indicating approach-avoidance decisions. This integration occurred in the ventral striatum, thalamus, and bed nucleus of the stria terminalis (BNST). When reward was low, risk-diminishing avoidance decisions dominated, which was linked to more positive tracking of threat magnitude prior to indicating avoidance than approach decisions across these regions. In contrast, the amygdala exhibited dual sensitivity to reward and threat. While anticipating outcomes of risky approach decisions, we observed positive tracking of threat magnitude within the salience network (dorsal anterior cingulate cortex, thalamus, periaqueductal gray, BNST). Conversely, after risk-diminishing avoidance, characterized by reduced reward prospects, we observed more negative tracking of reward magnitude in the ventromedial prefrontal cortex and ventral striatum. These findings shed light on the temporal dynamics of approach-avoidance decision-making. Importantly, they demonstrate the role of subcortical integration of reward and threat information in balancing approach and avoidance, challenging theories positing predominantly separate subcortical processing prior to cortical integration.<b>Significance statement</b> When deciding whether to approach or avoid situations, our decision-making involves balancing potential rewards and threats. Widespread theories of decision-making in humans propose parallel processing of reward and threat information in subcortical regions, followed by cortical integration. Challenging these notions, we found evidence for dual and integrated processing of reward and threat in subcortical regions during decision-making. In contrast, after decision-making, we observed the expected parallel processing while anticipating decision outcomes. These findings advance our understanding of approach-avoidance decision-making processes, opposing traditional views that segregate brain regions as predominantly reward-sensitive or threat-sensitive, thereby paving the way for a more nuanced perspective that takes into account the stage of decision-making.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1523/JNEUROSCI.1442-24.2024
Md Mamunul Haque, Panjamurthy Kuppusamy, Ohannes K Melemedjian
Chronic pain remains a significant health challenge with limited effective treatments. This study investigates the metabolic changes underlying pain progression and resolution, uncovering a novel compensatory mechanism in sensory neurons. Using the hyperalgesic priming model in male mice, we demonstrate that nerve growth factor (NGF) initially disrupted mitochondrial pyruvate oxidation, leading to acute allodynia. Surprisingly, this metabolic disruption persisted even after the apparent resolution of allodynia. We discovered that during the resolution phase, sensory neurons exhibit increased glutamine oxidation and upregulation of the major glutamine transporter ASCT2 in dorsal root ganglia (DRGs). This compensatory response plays a crucial role in pain resolution, as demonstrated by our experiments. Knockdown of ASCT2 prevents the resolution of NGF-induced allodynia and precipitates the transition to a chronic state. Furthermore, we show that the glutamine catabolite α-ketoglutarate attenuated glycolytic flux and alleviated allodynia in both acute and chronic phases of the hyperalgesic priming model. The importance of ASCT2 is further confirmed in a translational model, where its knockdown prevented the resolution of allodynia following plantar incision. These findings highlight the pivotal role of metabolic changes in pain resolution and identify ASCT2-mediated glutamine metabolism as a potential therapeutic target for chronic pain. Understanding these endogenous mechanisms that promote pain resolution can guide the development of novel interventions to prevent the transition pain from acute to chronic.Significance Statement Chronic pain is a widespread health issue with limited effective treatments. This study unveils a critical metabolic mechanism in sensory neurons that determines whether acute pain resolves or becomes chronic. We discovered that pain resolution depends on a compensatory increase in glutamine metabolism, mediated by the transporter ASCT2, rather than normalization of initial metabolic disruptions. This finding significantly advances our understanding of pain chronification and identifies a novel therapeutic target. By elucidating how the body naturally resolves pain, we open new avenues for developing treatments that could prevent acute pain from transitioning to chronic pain or treat existing chronic pain. This research has the potential to transform pain management strategies and improve quality of life for millions of pain sufferers.
{"title":"Glutamine Oxidation in Mouse Dorsal Root Ganglia Regulates Pain Resolution and Chronification.","authors":"Md Mamunul Haque, Panjamurthy Kuppusamy, Ohannes K Melemedjian","doi":"10.1523/JNEUROSCI.1442-24.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1442-24.2024","url":null,"abstract":"<p><p>Chronic pain remains a significant health challenge with limited effective treatments. This study investigates the metabolic changes underlying pain progression and resolution, uncovering a novel compensatory mechanism in sensory neurons. Using the hyperalgesic priming model in male mice, we demonstrate that nerve growth factor (NGF) initially disrupted mitochondrial pyruvate oxidation, leading to acute allodynia. Surprisingly, this metabolic disruption persisted even after the apparent resolution of allodynia. We discovered that during the resolution phase, sensory neurons exhibit increased glutamine oxidation and upregulation of the major glutamine transporter ASCT2 in dorsal root ganglia (DRGs). This compensatory response plays a crucial role in pain resolution, as demonstrated by our experiments. Knockdown of ASCT2 prevents the resolution of NGF-induced allodynia and precipitates the transition to a chronic state. Furthermore, we show that the glutamine catabolite α-ketoglutarate attenuated glycolytic flux and alleviated allodynia in both acute and chronic phases of the hyperalgesic priming model. The importance of ASCT2 is further confirmed in a translational model, where its knockdown prevented the resolution of allodynia following plantar incision. These findings highlight the pivotal role of metabolic changes in pain resolution and identify ASCT2-mediated glutamine metabolism as a potential therapeutic target for chronic pain. Understanding these endogenous mechanisms that promote pain resolution can guide the development of novel interventions to prevent the transition pain from acute to chronic.<b>Significance Statement</b> Chronic pain is a widespread health issue with limited effective treatments. This study unveils a critical metabolic mechanism in sensory neurons that determines whether acute pain resolves or becomes chronic. We discovered that pain resolution depends on a compensatory increase in glutamine metabolism, mediated by the transporter ASCT2, rather than normalization of initial metabolic disruptions. This finding significantly advances our understanding of pain chronification and identifies a novel therapeutic target. By elucidating how the body naturally resolves pain, we open new avenues for developing treatments that could prevent acute pain from transitioning to chronic pain or treat existing chronic pain. This research has the potential to transform pain management strategies and improve quality of life for millions of pain sufferers.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1523/JNEUROSCI.1353-24.2024
Nadira Yusif Rodriguez, Aarit Ahuja, Debaleena Basu, Theresa H McKim, Theresa M Desrochers
Sequential information permeates daily activities, such as when watching for the correct series of buildings to determine when to get off the bus or train. These sequences include periodicity (the spacing of the buildings), the identity of the stimuli (the kind of house), and higher-order more abstract rules that may not depend on the exact stimulus (e.g. house, house, house, business). Previously, we found that the posterior fundus of area 46 in the monkey lateral prefrontal cortex (LPFC) responds to rule changes in such abstract visual sequences. However, it is unknown if this region responds to other components of the sequence, i.e., image periodicity and identity, in isolation. Further, it is unknown if this region dissociates from other, more ventral LPFC subregions that have been associated with sequences and their components. To address these questions, we used awake functional magnetic resonance imaging in three male macaque monkeys during two no-report visual tasks. One task contained abstract visual sequences, and the other contained no visual sequences but maintained the same image periodicity and identities. We found the fundus of area 46 responded only to abstract sequence rule violations. In contrast, the ventral bank of area 46 responded to changes in image periodicity and identity, but not changes in the abstract sequence. These results suggest a functional specialization within anatomical substructures of LPFC to signal different kinds of stimulus regularities. This specialization may provide key scaffolding to identify abstract patterns and construct complex models of the world for daily living.Significance Statement Daily tasks, such as a bus commute, require tracking or monitoring your place (same, same, same, different building) until your stop. Sequence components such as rule, periodicity (timing), and item identity are involved in this process. While prior work located responses to sequence rule changes to area 46 of monkey lateral prefrontal cortex (LPFC) using awake monkey fMRI, less was known about other components. We found that LPFC subregions differentiated between sequence components. Area 46 posterior fundus responded to abstract visual sequence rule changes, but not to changes in image periodicity or identity. The converse was true for the more ventral, adjacent shoulder region. These results suggest that interactions between adjacent LPFC subregions provide key scaffolding for complex daily behaviors.
{"title":"Different subregions of monkey lateral prefrontal cortex respond to abstract sequences and their components.","authors":"Nadira Yusif Rodriguez, Aarit Ahuja, Debaleena Basu, Theresa H McKim, Theresa M Desrochers","doi":"10.1523/JNEUROSCI.1353-24.2024","DOIUrl":"10.1523/JNEUROSCI.1353-24.2024","url":null,"abstract":"<p><p>Sequential information permeates daily activities, such as when watching for the correct series of buildings to determine when to get off the bus or train. These sequences include periodicity (the spacing of the buildings), the identity of the stimuli (the kind of house), and higher-order more abstract rules that may not depend on the exact stimulus (e.g. house, house, house, business). Previously, we found that the posterior fundus of area 46 in the monkey lateral prefrontal cortex (LPFC) responds to rule changes in such abstract visual sequences. However, it is unknown if this region responds to other components of the sequence, i.e., image periodicity and identity, in isolation. Further, it is unknown if this region dissociates from other, more ventral LPFC subregions that have been associated with sequences and their components. To address these questions, we used awake functional magnetic resonance imaging in three male macaque monkeys during two no-report visual tasks. One task contained abstract visual sequences, and the other contained no visual sequences but maintained the same image periodicity and identities. We found the fundus of area 46 responded only to abstract sequence rule violations. In contrast, the ventral bank of area 46 responded to changes in image periodicity and identity, but not changes in the abstract sequence. These results suggest a functional specialization within anatomical substructures of LPFC to signal different kinds of stimulus regularities. This specialization may provide key scaffolding to identify abstract patterns and construct complex models of the world for daily living.<b>Significance Statement</b> Daily tasks, such as a bus commute, require tracking or monitoring your place (same, same, same, different building) until your stop. Sequence components such as rule, periodicity (timing), and item identity are involved in this process. While prior work located responses to sequence rule changes to area 46 of monkey lateral prefrontal cortex (LPFC) using awake monkey fMRI, less was known about other components. We found that LPFC subregions differentiated between sequence components. Area 46 posterior fundus responded to abstract visual sequence rule changes, but not to changes in image periodicity or identity. The converse was true for the more ventral, adjacent shoulder region. These results suggest that interactions between adjacent LPFC subregions provide key scaffolding for complex daily behaviors.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1523/JNEUROSCI.0166-24.2024
Ieva Andrulyte, Christophe De Bezenac, Francesca Branzi, Stephanie J Forkel, Peter N Taylor, Simon S Keller
Interhemispheric anatomical differences have long been thought to be related to language lateralisation. Previous studies have explored whether asymmetries in the diffusion characteristics of white matter language tracts are consistent with language lateralisation. These studies, typically with smaller cohorts, yielded mixed results. This study investigated whether connectomic analysis of quantitative anisotropy (QA) and shape features of white matter tracts across the whole brain are associated with language lateralisation. We analysed 1040 healthy individuals (562 females) from the Human Connectome Project database. Hemispheric language dominance for each participant was quantified using a laterality quotient (LQ) derived from fMRI activation in regions of interest (ROIs) associated with a language comprehension task compared against a math task. A linear regression model was used to examine the relationship between structural asymmetry and functional lateralisation. Connectometry revealed a significant negative correlation between LQs and QA of corpus callosum tracts, indicating that higher QA in these regions is associated with bilateral and right-hemisphere language representation in frontal and temporal regions, respectively. Left language laterality in temporal lobe was significantly associated with longer right inferior fronto-occipital fasciculus (IFOF) and forceps minor tracts. These results suggest that diffusion measures of microstructural architecture as well as geometrical features of reconstructed white matter tracts play a role in language lateralisation. People with increased dependence on right or both frontal hemispheres for language processing may have more developed commissural fibres, which may support more efficient interhemispheric communication.Significance statement The left cerebral hemisphere is dominant for language functions in most people. In some healthy people, language functions are lateralised to the right hemisphere or distributed across both hemispheres. The anatomy underlying patterns of hemispheric language dominance are not well established. Emerging evidence suggests that white matter connectivity and architecture is an important feature of cortical functional organisation. In this work, we report that people who have language functions distributed across both hemispheres have greater inter-hemispheric connectivity compared to lateralised people. Our findings provide further insights into the anatomical basis of language function and may have wider clinical implications.
{"title":"The relationship between white matter architecture and language lateralisation in the healthy brain.","authors":"Ieva Andrulyte, Christophe De Bezenac, Francesca Branzi, Stephanie J Forkel, Peter N Taylor, Simon S Keller","doi":"10.1523/JNEUROSCI.0166-24.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.0166-24.2024","url":null,"abstract":"<p><p>Interhemispheric anatomical differences have long been thought to be related to language lateralisation. Previous studies have explored whether asymmetries in the diffusion characteristics of white matter language tracts are consistent with language lateralisation. These studies, typically with smaller cohorts, yielded mixed results. This study investigated whether connectomic analysis of quantitative anisotropy (QA) and shape features of white matter tracts across the whole brain are associated with language lateralisation. We analysed 1040 healthy individuals (562 females) from the Human Connectome Project database. Hemispheric language dominance for each participant was quantified using a laterality quotient (LQ) derived from fMRI activation in regions of interest (ROIs) associated with a language comprehension task compared against a math task. A linear regression model was used to examine the relationship between structural asymmetry and functional lateralisation. Connectometry revealed a significant negative correlation between LQs and QA of corpus callosum tracts, indicating that higher QA in these regions is associated with bilateral and right-hemisphere language representation in frontal and temporal regions, respectively. Left language laterality in temporal lobe was significantly associated with longer right inferior fronto-occipital fasciculus (IFOF) and forceps minor tracts. These results suggest that diffusion measures of microstructural architecture as well as geometrical features of reconstructed white matter tracts play a role in language lateralisation. People with increased dependence on right or both frontal hemispheres for language processing may have more developed commissural fibres, which may support more efficient interhemispheric communication.<b>Significance statement</b> The left cerebral hemisphere is dominant for language functions in most people. In some healthy people, language functions are lateralised to the right hemisphere or distributed across both hemispheres. The anatomy underlying patterns of hemispheric language dominance are not well established. Emerging evidence suggests that white matter connectivity and architecture is an important feature of cortical functional organisation. In this work, we report that people who have language functions distributed across both hemispheres have greater inter-hemispheric connectivity compared to lateralised people. Our findings provide further insights into the anatomical basis of language function and may have wider clinical implications.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1523/JNEUROSCI.1761-23.2024
Mariana R Tavares, Willian O Dos Santos, Isadora C Furigo, Edward O List, John J Kopchick, Jose Donato
Growth hormone (GH) action in the brain regulates neuroendocrine axes, energy and glucose homeostasis, and several neurological functions. The lateral hypothalamic area (LHA) contains numerous neurons that respond to a systemic GH injection by expressing the phosphorylated STAT5, a GH receptor (GHR) signaling marker. However, the potential role of GHR signaling in the LHA is unknown. In this study, we demonstrated that approximately 70% of orexin- and leptin receptor (LepR)-expressing neurons in the LHA are responsive to GH. Male mice carrying inactivation of the Ghr gene in the LHA were generated via bilateral injections of an adeno-associated virus. In ad libitum-fed mice, GHR ablation in LHA neurons did not significantly change energy and glucose homeostasis. Subsequently, mice were subjected to 5 days of 40% food restriction. Food restriction decreased body weight, energy expenditure, and carbohydrate oxidation. These effects were similarly observed in control and LHAΔGHR mice. While food-deprived control mice progressively increased ambulatory/exploratory activity and food-seeking behavior, LHAΔGHR mice did not show hyperactivity induced by food restriction. GHR ablation in the LHA reduced the percentage of orexin neurons expressing c-Fos during food restriction. Additionally, an acute GH injection increased the expression of c-Fos in LHAORX neurons. Inactivation of Ghr in LepR-expressing cells did not prevent hyperactivity in food-deprived mice, whereas whole-brain Ghr knockout mice showed reduced ambulatory activity during food restriction. Our findings indicate that GHR signaling in the LHA regulates the activity of orexin neurons and is necessary to increase food-seeking behavior in food-deprived male mice.Significance Statement Growth hormone (GH)-deficient patients frequently present problems in appetite, memory, mood, well-being, metabolism, and sleep. The mechanisms behind these alterations are unknown, but neurons in the lateral hypothalamic area (LHA) are involved in the regulation of all these functions. Here, we showed in male mice that orexin neurons in the LHA express GH receptors, and GH increases the activity of these cells. Unlike control animals, mice carrying inactivation of GH receptors in LHA neurons are unable to increase their ambulatory/exploratory activity when subjected to food restriction, which increases food-seeking behavior. Thus, our study revealed a new neuronal population affected by GH action that can regulate several neurological aspects, including feeding, arousal, reward, and motivated behaviors.
{"title":"Growth hormone receptor in lateral hypothalamic neurons is required for increased food-seeking behavior during food restriction in male mice.","authors":"Mariana R Tavares, Willian O Dos Santos, Isadora C Furigo, Edward O List, John J Kopchick, Jose Donato","doi":"10.1523/JNEUROSCI.1761-23.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1761-23.2024","url":null,"abstract":"<p><p>Growth hormone (GH) action in the brain regulates neuroendocrine axes, energy and glucose homeostasis, and several neurological functions. The lateral hypothalamic area (LHA) contains numerous neurons that respond to a systemic GH injection by expressing the phosphorylated STAT5, a GH receptor (GHR) signaling marker. However, the potential role of GHR signaling in the LHA is unknown. In this study, we demonstrated that approximately 70% of orexin- and leptin receptor (LepR)-expressing neurons in the LHA are responsive to GH. Male mice carrying inactivation of the <i>Ghr</i> gene in the LHA were generated via bilateral injections of an adeno-associated virus. In ad libitum-fed mice, GHR ablation in LHA neurons did not significantly change energy and glucose homeostasis. Subsequently, mice were subjected to 5 days of 40% food restriction. Food restriction decreased body weight, energy expenditure, and carbohydrate oxidation. These effects were similarly observed in control and LHA<sup>ΔGHR</sup> mice. While food-deprived control mice progressively increased ambulatory/exploratory activity and food-seeking behavior, LHA<sup>ΔGHR</sup> mice did not show hyperactivity induced by food restriction. GHR ablation in the LHA reduced the percentage of orexin neurons expressing c-Fos during food restriction. Additionally, an acute GH injection increased the expression of c-Fos in LHA<sup>ORX</sup> neurons. Inactivation of <i>Ghr</i> in LepR-expressing cells did not prevent hyperactivity in food-deprived mice, whereas whole-brain <i>Ghr</i> knockout mice showed reduced ambulatory activity during food restriction. Our findings indicate that GHR signaling in the LHA regulates the activity of orexin neurons and is necessary to increase food-seeking behavior in food-deprived male mice.<b>Significance Statement</b> Growth hormone (GH)-deficient patients frequently present problems in appetite, memory, mood, well-being, metabolism, and sleep. The mechanisms behind these alterations are unknown, but neurons in the lateral hypothalamic area (LHA) are involved in the regulation of all these functions. Here, we showed in male mice that orexin neurons in the LHA express GH receptors, and GH increases the activity of these cells. Unlike control animals, mice carrying inactivation of GH receptors in LHA neurons are unable to increase their ambulatory/exploratory activity when subjected to food restriction, which increases food-seeking behavior. Thus, our study revealed a new neuronal population affected by GH action that can regulate several neurological aspects, including feeding, arousal, reward, and motivated behaviors.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1523/JNEUROSCI.1264-23.2024
Laura M Haetzel, Jillian Iafrati, Katherine R Cording, Mahmoud Farhan, Sasan D Noveir, Gavin Rumbaugh, Helen S Bateup
SYNGAP1 is a high-confidence autism spectrum disorder (ASD) risk gene and mutations in SYNGAP1 lead to a neurodevelopmental disorder (NDD) that presents with epilepsy, ASD, motor developmental delay, and intellectual disability. SYNGAP1 codes for Ras/Rap GTP-ase activating protein SynGAP (SynGAP). In mice, SynGAP is located in the postsynaptic density of glutamatergic synapses and regulates glutamate receptor trafficking in an activity-dependent manner. In addition to forebrain glutamatergic neurons, Syngap1 is highly expressed in the striatum, although the functions of SynGAP in the striatum have not been extensively studied. Here we show that Syngap1 is expressed in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs) in mice of both sexes. In a mouse model of Syngap1 haploinsufficiency, dendritic spine density, morphology, and intrinsic excitability are altered primarily in iSPNs, but not dSPNs. At the behavioral level, SynGAP reduction alters striatal-dependent motor learning and goal-directed behavior. Several behavioral phenotypes are reproduced by iSPN-specific Syngap1 reduction and, in turn, prevented by iSPN-specific Syngap1 rescue. These results establish the importance of SynGAP to striatal neuron function and pinpoint the indirect pathway as a key circuit in the neurobiology of SYNGAP1-related NDD.Significance statementSYNGAP1 mutations cause a neurodevelopmental disorder presenting with intellectual disability, motor problems, epilepsy, autism spectrum disorder, and a constellation of other behavioral and psychiatric conditions. SynGAP protein is highly expressed in the striatum but its functions in this brain region have not yet been explored. This study shows that loss of one copy of the Syngap1 gene from striatal indirect, but not direct, pathway neurons alters synaptic properties, cellular excitability, motor behaviors, and goal-directed responding in mice. This work provides a new perspective on the functions of SynGAP and suggests that altered activity in striatal circuits may be an important driver of the motor and learning alterations in people with SYNGAP1 disorder.
{"title":"Haploinsufficiency of <i>Syngap1</i> in striatal indirect pathway neurons alters motor and goal-directed behaviors in mice.","authors":"Laura M Haetzel, Jillian Iafrati, Katherine R Cording, Mahmoud Farhan, Sasan D Noveir, Gavin Rumbaugh, Helen S Bateup","doi":"10.1523/JNEUROSCI.1264-23.2024","DOIUrl":"https://doi.org/10.1523/JNEUROSCI.1264-23.2024","url":null,"abstract":"<p><p><i>SYNGAP1</i> is a high-confidence autism spectrum disorder (ASD) risk gene and mutations in <i>SYNGAP1</i> lead to a neurodevelopmental disorder (NDD) that presents with epilepsy, ASD, motor developmental delay, and intellectual disability. <i>SYNGAP1</i> codes for Ras/Rap GTP-ase activating protein SynGAP (SynGAP). In mice, SynGAP is located in the postsynaptic density of glutamatergic synapses and regulates glutamate receptor trafficking in an activity-dependent manner. In addition to forebrain glutamatergic neurons, <i>Syngap1</i> is highly expressed in the striatum, although the functions of SynGAP in the striatum have not been extensively studied. Here we show that <i>Syngap1</i> is expressed in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs) in mice of both sexes. In a mouse model of <i>Syngap1</i> haploinsufficiency, dendritic spine density, morphology, and intrinsic excitability are altered primarily in iSPNs, but not dSPNs. At the behavioral level, SynGAP reduction alters striatal-dependent motor learning and goal-directed behavior. Several behavioral phenotypes are reproduced by iSPN-specific <i>Syngap1</i> reduction and, in turn, prevented by iSPN-specific <i>Syngap1</i> rescue. These results establish the importance of SynGAP to striatal neuron function and pinpoint the indirect pathway as a key circuit in the neurobiology of <i>SYNGAP1</i>-related NDD.<b>Significance statement</b> <i>SYNGAP1</i> mutations cause a neurodevelopmental disorder presenting with intellectual disability, motor problems, epilepsy, autism spectrum disorder, and a constellation of other behavioral and psychiatric conditions. SynGAP protein is highly expressed in the striatum but its functions in this brain region have not yet been explored. This study shows that loss of one copy of the <i>Syngap1</i> gene from striatal indirect, but not direct, pathway neurons alters synaptic properties, cellular excitability, motor behaviors, and goal-directed responding in mice. This work provides a new perspective on the functions of SynGAP and suggests that altered activity in striatal circuits may be an important driver of the motor and learning alterations in people with <i>SYNGAP1</i> disorder.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1523/JNEUROSCI.1208-24.2024
Travis E Faust, Benjamin A Devlin, Isabella Farhy-Tselnicker, Austin Ferro, Maggie Postolache, Wendy Xin
The brain is a highly adaptable organ that is molded by experience throughout life. Although the field of neuroscience has historically focused on intrinsic neuronal mechanisms of plasticity, there is growing evidence that multiple glial populations regulate the timing and extent of neuronal plasticity, particularly over the course of development. This review highlights recent discoveries on the role of glial cells in the establishment of cortical circuits and the regulation of experience-dependent neuronal plasticity during critical periods of neurodevelopment. These studies provide strong evidence that neuronal circuit maturation and plasticity are non-cell autonomous processes that require both glial-neuronal and glial-glial cross talk to proceed. We conclude by discussing open questions that will continue to guide research in this nascent field.
{"title":"Glial Control of Cortical Neuronal Circuit Maturation and Plasticity.","authors":"Travis E Faust, Benjamin A Devlin, Isabella Farhy-Tselnicker, Austin Ferro, Maggie Postolache, Wendy Xin","doi":"10.1523/JNEUROSCI.1208-24.2024","DOIUrl":"10.1523/JNEUROSCI.1208-24.2024","url":null,"abstract":"<p><p>The brain is a highly adaptable organ that is molded by experience throughout life. Although the field of neuroscience has historically focused on intrinsic neuronal mechanisms of plasticity, there is growing evidence that multiple glial populations regulate the timing and extent of neuronal plasticity, particularly over the course of development. This review highlights recent discoveries on the role of glial cells in the establishment of cortical circuits and the regulation of experience-dependent neuronal plasticity during critical periods of neurodevelopment. These studies provide strong evidence that neuronal circuit maturation and plasticity are non-cell autonomous processes that require both glial-neuronal and glial-glial cross talk to proceed. We conclude by discussing open questions that will continue to guide research in this nascent field.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1523/JNEUROSCI.1221-24.2024
Etienne Abassi, Anna Bognár, Bea de Gelder, Martin Giese, Leyla Isik, Alexander Lappe, Albert Mukovskiy, Marta Poyo Solanas, Jessica Taubert, Rufin Vogels
Primates, as social beings, have evolved complex brain mechanisms to navigate intricate social environments. This review explores the neural bases of body perception in both human and nonhuman primates, emphasizing the processing of social signals conveyed by body postures, movements, and interactions. Early studies identified selective neural responses to body stimuli in macaques, particularly within and ventral to the superior temporal sulcus (STS). These regions, known as body patches, represent visual features that are present in bodies but do not appear to be semantic body detectors. They provide information about posture and viewpoint of the body. Recent research using dynamic stimuli has expanded the understanding of the body-selective network, highlighting its complexity and the interplay between static and dynamic processing. In humans, body-selective areas such as the extrastriate body area (EBA) and fusiform body area (FBA) have been implicated in the perception of bodies and their interactions. Moreover, studies on social interactions reveal that regions in the human STS are also tuned to the perception of dyadic interactions, suggesting a specialized social lateral pathway. Computational work developed models of body recognition and social interaction, providing insights into the underlying neural mechanisms. Despite advances, significant gaps remain in understanding the neural mechanisms of body perception and social interaction. Overall, this review underscores the importance of integrating findings across species to comprehensively understand the neural foundations of body perception and the interaction between computational modeling and neural recording.
{"title":"Neural Encoding of Bodies for Primate Social Perception.","authors":"Etienne Abassi, Anna Bognár, Bea de Gelder, Martin Giese, Leyla Isik, Alexander Lappe, Albert Mukovskiy, Marta Poyo Solanas, Jessica Taubert, Rufin Vogels","doi":"10.1523/JNEUROSCI.1221-24.2024","DOIUrl":"10.1523/JNEUROSCI.1221-24.2024","url":null,"abstract":"<p><p>Primates, as social beings, have evolved complex brain mechanisms to navigate intricate social environments. This review explores the neural bases of body perception in both human and nonhuman primates, emphasizing the processing of social signals conveyed by body postures, movements, and interactions. Early studies identified selective neural responses to body stimuli in macaques, particularly within and ventral to the superior temporal sulcus (STS). These regions, known as body patches, represent visual features that are present in bodies but do not appear to be semantic body detectors. They provide information about posture and viewpoint of the body. Recent research using dynamic stimuli has expanded the understanding of the body-selective network, highlighting its complexity and the interplay between static and dynamic processing. In humans, body-selective areas such as the extrastriate body area (EBA) and fusiform body area (FBA) have been implicated in the perception of bodies and their interactions. Moreover, studies on social interactions reveal that regions in the human STS are also tuned to the perception of dyadic interactions, suggesting a specialized social lateral pathway. Computational work developed models of body recognition and social interaction, providing insights into the underlying neural mechanisms. Despite advances, significant gaps remain in understanding the neural mechanisms of body perception and social interaction. Overall, this review underscores the importance of integrating findings across species to comprehensively understand the neural foundations of body perception and the interaction between computational modeling and neural recording.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}