The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from heavy ion data measured at AGS and GSI. At GSI, symmetry energy has also been investigated in nuclear collisions. These results of laboratory measurements are complemented by the analysis of recent astrophysical observations regarding the mass and radius of neutron stars and gravitational waves from neutron star merger events. The research programs of upcoming laboratory experiments include the study of the EOS at neutron star core densities and will also shed light on the elementary degrees of freedom of dense QCD matter. The status of the CBM experiment at FAIR and the perspective regarding the studies of the EOS of symmetric and asymmetric dense nuclear matter will be presented.
{"title":"Probing the Equation of State of Dense Nuclear Matter by Heavy Ion Collision Experiments","authors":"Peter Senger","doi":"10.3390/sym16091162","DOIUrl":"https://doi.org/10.3390/sym16091162","url":null,"abstract":"The investigation of the nuclear matter equation of state (EOS) beyond saturation density has been a fundamental goal of heavy ion collision experiments for more than 40 years. First constraints on the EOS of symmetric nuclear matter at high densities were extracted from heavy ion data measured at AGS and GSI. At GSI, symmetry energy has also been investigated in nuclear collisions. These results of laboratory measurements are complemented by the analysis of recent astrophysical observations regarding the mass and radius of neutron stars and gravitational waves from neutron star merger events. The research programs of upcoming laboratory experiments include the study of the EOS at neutron star core densities and will also shed light on the elementary degrees of freedom of dense QCD matter. The status of the CBM experiment at FAIR and the perspective regarding the studies of the EOS of symmetric and asymmetric dense nuclear matter will be presented.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yushu Zhang, Fangcheng Tang, Zeyuan Song, Jun Wang
It is widely known that symmetry does exist in management systems, such as economics, management, and even daily life. In addition, effective and qualified decision-making methods can enhance the performance and symmetry of management systems. Hence, this paper focuses on a decision-making method. Linguistic interval-valued q-rung orthopair fuzzy sets (LIVq-ROFSs) have recently been proposed as being effective in describing decision-makers’ evaluation values in complex situations. This paper proposes a novel multi-attribute group decision-making (MAGDM) method with LIVq-ROFSs to handle realistic decision-making problems. The main contributions of this study are three-fold. First, a new method for determining the weight information of attributes based on decision makers’ evaluation values is proposed. Second, the classical TODIM is extended into LIVq-ROFSs and a new decision-making method is proposed. Third, our proposed MAGDM method is applied to a real decision-making problem to reveal its effectiveness.
{"title":"Interval-Valued Linguistic q-Rung Orthopair Fuzzy TODIM with Unknown Attribute Weight Information","authors":"Yushu Zhang, Fangcheng Tang, Zeyuan Song, Jun Wang","doi":"10.3390/sym16091161","DOIUrl":"https://doi.org/10.3390/sym16091161","url":null,"abstract":"It is widely known that symmetry does exist in management systems, such as economics, management, and even daily life. In addition, effective and qualified decision-making methods can enhance the performance and symmetry of management systems. Hence, this paper focuses on a decision-making method. Linguistic interval-valued q-rung orthopair fuzzy sets (LIVq-ROFSs) have recently been proposed as being effective in describing decision-makers’ evaluation values in complex situations. This paper proposes a novel multi-attribute group decision-making (MAGDM) method with LIVq-ROFSs to handle realistic decision-making problems. The main contributions of this study are three-fold. First, a new method for determining the weight information of attributes based on decision makers’ evaluation values is proposed. Second, the classical TODIM is extended into LIVq-ROFSs and a new decision-making method is proposed. Third, our proposed MAGDM method is applied to a real decision-making problem to reveal its effectiveness.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"408 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Zhang, Yaxuan Zhang, Waichon Lio, Rui Kang
Brucellosis, as an infectious disease that affects both humans and livestock, poses a serious threat to human health and has a severe impact on economic development. Essentially, brucellosis transmission is a kind of study in biological systems, and the epistemic uncertainty existing in the data of confirmed brucellosis cases in China is realized as significant uncertainty that needs to be addressed. Therefore, this paper proposes an uncertain time series model to explore the confirmed brucellosis cases in China. Then, some methods based on uncertain statistics and symmetry of the biological system are applied, including order estimation, parameter estimation, residual analysis, uncertain hypothesis test, and forecast. The proposed model is practically applied to the data of confirmed brucellosis cases in China from January 2017 to December 2020, and the results show that the uncertain model fits the observed data better than the probabilistic model due to the frequency instability inherent in the data of confirmed brucellosis cases. Based on the proposed model and statistical method, this paper develops an approach to rapidly forecast the number of confirmed brucellosis cases in small sample scenarios, which can contribute to epidemic control in real application.
{"title":"Uncertain Time Series Analysis for the Confirmed Case of Brucellosis in China","authors":"Shanshan Zhang, Yaxuan Zhang, Waichon Lio, Rui Kang","doi":"10.3390/sym16091160","DOIUrl":"https://doi.org/10.3390/sym16091160","url":null,"abstract":"Brucellosis, as an infectious disease that affects both humans and livestock, poses a serious threat to human health and has a severe impact on economic development. Essentially, brucellosis transmission is a kind of study in biological systems, and the epistemic uncertainty existing in the data of confirmed brucellosis cases in China is realized as significant uncertainty that needs to be addressed. Therefore, this paper proposes an uncertain time series model to explore the confirmed brucellosis cases in China. Then, some methods based on uncertain statistics and symmetry of the biological system are applied, including order estimation, parameter estimation, residual analysis, uncertain hypothesis test, and forecast. The proposed model is practically applied to the data of confirmed brucellosis cases in China from January 2017 to December 2020, and the results show that the uncertain model fits the observed data better than the probabilistic model due to the frequency instability inherent in the data of confirmed brucellosis cases. Based on the proposed model and statistical method, this paper develops an approach to rapidly forecast the number of confirmed brucellosis cases in small sample scenarios, which can contribute to epidemic control in real application.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this paper is to derive formulae for the generating functions of the Bernstein type polynomials. We give a PDE equation for this generating function. By using this equation, we give recurrence relations for the Bernstein polynomials. Using generating functions, we also derive some identities including a symmetry property for the Bernstein type polynomials. We give some relations among the Bernstein type polynomials, Bernoulli numbers, Stirling numbers, Dahee numbers, the Legendre polynomials, and the coefficients of the classical superoscillatory function associated with the weak measurements. We introduce some integral formulae for these polynomials. By using these integral formulae, we derive some new combinatorial sums involving the Bernoulli numbers and the combinatorial numbers. Moreover, we define Bezier type curves in terms of these polynomials.
{"title":"The Formulae and Symmetry Property of Bernstein Type Polynomials Related to Special Numbers and Functions","authors":"Ayse Yilmaz Ceylan, Buket Simsek","doi":"10.3390/sym16091159","DOIUrl":"https://doi.org/10.3390/sym16091159","url":null,"abstract":"The aim of this paper is to derive formulae for the generating functions of the Bernstein type polynomials. We give a PDE equation for this generating function. By using this equation, we give recurrence relations for the Bernstein polynomials. Using generating functions, we also derive some identities including a symmetry property for the Bernstein type polynomials. We give some relations among the Bernstein type polynomials, Bernoulli numbers, Stirling numbers, Dahee numbers, the Legendre polynomials, and the coefficients of the classical superoscillatory function associated with the weak measurements. We introduce some integral formulae for these polynomials. By using these integral formulae, we derive some new combinatorial sums involving the Bernoulli numbers and the combinatorial numbers. Moreover, we define Bezier type curves in terms of these polynomials.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let us consider a two-sided multi-species stochastic particle model with finitely many particles on Z, defined as follows. Suppose that each particle is labelled by a positive integer l, and waits a random time exponentially distributed with rate 1. It then chooses the right direction to jump with probability p, or the left direction with probability q=1−p. If the particle chooses the right direction, it jumps to the nearest site occupied by a particle l′
让我们考虑一个在 Z 上有有限多个粒子的双面多物种随机粒子模型,其定义如下。假设每个粒子都用一个正整数 l 标记,并等待速率为 1 的指数分布的随机时间。然后,它以 p 的概率选择向右跳,或以 q=1-p 的概率选择向左跳。如果粒子选择向右跳,它就会跳到离它最近的、被粒子 l′
{"title":"Integrability of the Multi-Species Asymmetric Simple Exclusion Processes with Long-Range Jumps on ℤ","authors":"Eunghyun Lee","doi":"10.3390/sym16091164","DOIUrl":"https://doi.org/10.3390/sym16091164","url":null,"abstract":"Let us consider a two-sided multi-species stochastic particle model with finitely many particles on Z, defined as follows. Suppose that each particle is labelled by a positive integer l, and waits a random time exponentially distributed with rate 1. It then chooses the right direction to jump with probability p, or the left direction with probability q=1−p. If the particle chooses the right direction, it jumps to the nearest site occupied by a particle l′<l (with the convention that an empty site is considered as a particle with labelled 0). If the particle chooses the left direction, it jumps to the next site on the left only if that site is either empty or occupied by a particle l′<l, and in the latter case, particles l and l′ swap their positions. We show that this model is integrable, and provide the exact formula of the transition probability using the Bethe ansatz.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The two-dimensional (2D) hydrogen atom is a fundamental atomic model that is important for various technologies based on 2D materials. Here, the atomic model is revisited to enhance understanding of the hydrogen wavefunctions. Unlike in previous studies, we propose an alternative expression of azimuthal wavefunctions, which are the eigenstates of the square of angular momentum and exhibit rotational symmetry. Remarkably, our expression leads to the rotation and oscillation along the azimuthal direction of the probability densities, which do not appear in the conventional wavefunctions. These behaviors are validated by the numerical results obtained through the 2D finite difference approach. Variation in oscillator strengths due to the rotation of wavefunctions is observed in our proposed 2D hydrogen wavefunctions, whereas those due to the conventional wavefunctions remain constant. More importantly, the proposed wavefunctions’ advantage is illustrating the orbital shapes of the planar hydrogen states, whose orientation is labeled here using Cartesian representation for the first time. This study can be applied to visualize the orbital characteristics of the states in quantum confinement with a radial potential.
{"title":"Revisiting the Two-Dimensional Hydrogen Atom: Azimuthal Wavefunctions for Illustrating s, p, d, and f Orbitals","authors":"Phatlada Sathongpaen, Suphawich Jindanate, Attapon Amthong","doi":"10.3390/sym16091163","DOIUrl":"https://doi.org/10.3390/sym16091163","url":null,"abstract":"The two-dimensional (2D) hydrogen atom is a fundamental atomic model that is important for various technologies based on 2D materials. Here, the atomic model is revisited to enhance understanding of the hydrogen wavefunctions. Unlike in previous studies, we propose an alternative expression of azimuthal wavefunctions, which are the eigenstates of the square of angular momentum and exhibit rotational symmetry. Remarkably, our expression leads to the rotation and oscillation along the azimuthal direction of the probability densities, which do not appear in the conventional wavefunctions. These behaviors are validated by the numerical results obtained through the 2D finite difference approach. Variation in oscillator strengths due to the rotation of wavefunctions is observed in our proposed 2D hydrogen wavefunctions, whereas those due to the conventional wavefunctions remain constant. More importantly, the proposed wavefunctions’ advantage is illustrating the orbital shapes of the planar hydrogen states, whose orientation is labeled here using Cartesian representation for the first time. This study can be applied to visualize the orbital characteristics of the states in quantum confinement with a radial potential.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modjtaba Ghorbani, Razie Alidehi-Ravandi, Matthias Dehmer
The study delves into the relationship between symmetry groups and automorphism groups in polyhedral graphs, emphasizing their interconnected nature and their significance in understanding the symmetries and structural properties of fullerenes. It highlights the visual importance of symmetry and its applications in architecture, as well as the mathematical structure of the automorphism group, which captures all of the symmetries of a graph. The paper also discusses the significance of groups in Abstract Algebra and their relevance to understanding the behavior of mathematical systems. Overall, the findings offer an inclusive understanding of the relationship between symmetry groups and automorphism groups, paving the way for further research in this area.
{"title":"Automorphism Groups in Polyhedral Graphs","authors":"Modjtaba Ghorbani, Razie Alidehi-Ravandi, Matthias Dehmer","doi":"10.3390/sym16091157","DOIUrl":"https://doi.org/10.3390/sym16091157","url":null,"abstract":"The study delves into the relationship between symmetry groups and automorphism groups in polyhedral graphs, emphasizing their interconnected nature and their significance in understanding the symmetries and structural properties of fullerenes. It highlights the visual importance of symmetry and its applications in architecture, as well as the mathematical structure of the automorphism group, which captures all of the symmetries of a graph. The paper also discusses the significance of groups in Abstract Algebra and their relevance to understanding the behavior of mathematical systems. Overall, the findings offer an inclusive understanding of the relationship between symmetry groups and automorphism groups, paving the way for further research in this area.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Przemysław Snopiński, Marek Barlak, Katarzyna Nowakowska-Langier
In recent years, revolutionary improvements in the properties of certain FCC metals have been achieved by increasing the proportion of twin-related, highly symmetric grain boundaries. Various thermomechanical routes of grain boundary engineering (GBE) processing have been employed to enhance the fraction of low ΣCSL grain boundaries, thereby improving the radiation tolerance of many polycrystalline materials. This improvement is due to symmetric twin boundaries acting as effective sinks for defects caused by radiation, thus enhancing the material’s performance. In this study, the LPBF AlSi10Mg alloy was post-processed via the KOBO extrusion method. Subsequently, the samples were subjected to irradiation with Ar+ ions at an ion fluence of 5 × 1017 cm−2. The microstructures of the samples were thoroughly investigated using electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The results showed that KOBO processing led to the formation of an ultrafine-grained microstructure with a mean grain size of 0.8 µm. Moreover, it was revealed that the microstructure of the KOBO-processed sample exhibited an increased fraction of low-ΣCSL boundaries. Specifically, the fraction of Σ11 boundaries increased from approximately 2% to 8%. Post-irradiation microstructural analysis revealed improved radiation tolerance in the KOBO-processed sample, indicating a beneficial influence of the increased grain boundary fraction and low-ΣCSL boundary fraction on the irradiation resistance of the AlSi10Mg alloy. This research provides valuable insights for the development of customized microstructures with enhanced radiation tolerance, which has significant implications for the advancement of materials in nuclear and aerospace applications.
{"title":"Ar+ Ion Irradiation Response of LPBF AlSi10Mg Alloy in As-Built and KOBO-Processed Conditions","authors":"Przemysław Snopiński, Marek Barlak, Katarzyna Nowakowska-Langier","doi":"10.3390/sym16091158","DOIUrl":"https://doi.org/10.3390/sym16091158","url":null,"abstract":"In recent years, revolutionary improvements in the properties of certain FCC metals have been achieved by increasing the proportion of twin-related, highly symmetric grain boundaries. Various thermomechanical routes of grain boundary engineering (GBE) processing have been employed to enhance the fraction of low ΣCSL grain boundaries, thereby improving the radiation tolerance of many polycrystalline materials. This improvement is due to symmetric twin boundaries acting as effective sinks for defects caused by radiation, thus enhancing the material’s performance. In this study, the LPBF AlSi10Mg alloy was post-processed via the KOBO extrusion method. Subsequently, the samples were subjected to irradiation with Ar+ ions at an ion fluence of 5 × 1017 cm−2. The microstructures of the samples were thoroughly investigated using electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The results showed that KOBO processing led to the formation of an ultrafine-grained microstructure with a mean grain size of 0.8 µm. Moreover, it was revealed that the microstructure of the KOBO-processed sample exhibited an increased fraction of low-ΣCSL boundaries. Specifically, the fraction of Σ11 boundaries increased from approximately 2% to 8%. Post-irradiation microstructural analysis revealed improved radiation tolerance in the KOBO-processed sample, indicating a beneficial influence of the increased grain boundary fraction and low-ΣCSL boundary fraction on the irradiation resistance of the AlSi10Mg alloy. This research provides valuable insights for the development of customized microstructures with enhanced radiation tolerance, which has significant implications for the advancement of materials in nuclear and aerospace applications.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the last few years, the use of convolutional neural networks (CNNs) in intrusion detection domains has attracted more and more attention. However, their results in this domain have not lived up to expectations compared to the results obtained in other domains, such as image classification and video analysis. This is mainly due to the datasets used, which contain preprocessed features that are not compatible with convolutional neural networks, as they do not allow a full exploit of all the information embedded in the original network traffic. With the aim of overcoming these issues, we propose in this paper a new efficient convolutional neural network model for network intrusion detection based on raw traffic data (pcap files) rather than preprocessed data stored in CSV files. The novelty of this paper lies in the proposal of a new method for adapting the raw network traffic data to the most suitable format for CNN models, which allows us to fully exploit the strengths of CNNs in terms of pattern recognition and spatial analysis, leading to more accurate and effective results. Additionally, to further improve its detection performance, the structure and hyperparameters of our proposed CNN-based model are automatically adjusted using the self-adaptive differential evolution (SADE) metaheuristic, in which symmetry plays an essential role in balancing the different phases of the algorithm, so that each phase can contribute in an equal and efficient way to finding optimal solutions. This helps to make the overall performance more robust and efficient when solving optimization problems. The experimental results on three datasets, KDD-99, UNSW-NB15, and CIC-IDS2017, show a strong symmetry between the frequency values implemented in the images built for each network traffic and the different attack classes. This was confirmed by a good predictive accuracy that goes well beyond similar competing models in the literature.
{"title":"A Convolutional Neural Network with Hyperparameter Tuning for Packet Payload-Based Network Intrusion Detection","authors":"Ammar Boulaiche, Sofiane Haddad, Ali Lemouari","doi":"10.3390/sym16091151","DOIUrl":"https://doi.org/10.3390/sym16091151","url":null,"abstract":"In the last few years, the use of convolutional neural networks (CNNs) in intrusion detection domains has attracted more and more attention. However, their results in this domain have not lived up to expectations compared to the results obtained in other domains, such as image classification and video analysis. This is mainly due to the datasets used, which contain preprocessed features that are not compatible with convolutional neural networks, as they do not allow a full exploit of all the information embedded in the original network traffic. With the aim of overcoming these issues, we propose in this paper a new efficient convolutional neural network model for network intrusion detection based on raw traffic data (pcap files) rather than preprocessed data stored in CSV files. The novelty of this paper lies in the proposal of a new method for adapting the raw network traffic data to the most suitable format for CNN models, which allows us to fully exploit the strengths of CNNs in terms of pattern recognition and spatial analysis, leading to more accurate and effective results. Additionally, to further improve its detection performance, the structure and hyperparameters of our proposed CNN-based model are automatically adjusted using the self-adaptive differential evolution (SADE) metaheuristic, in which symmetry plays an essential role in balancing the different phases of the algorithm, so that each phase can contribute in an equal and efficient way to finding optimal solutions. This helps to make the overall performance more robust and efficient when solving optimization problems. The experimental results on three datasets, KDD-99, UNSW-NB15, and CIC-IDS2017, show a strong symmetry between the frequency values implemented in the images built for each network traffic and the different attack classes. This was confirmed by a good predictive accuracy that goes well beyond similar competing models in the literature.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oleg I. Kolodiazhnyi, Anastasiia O. Kolodiazhna, Oleh Faiziiev, Yuliia Gurova
The hydrolase-catalyzed kinetic resolution of fluorinated racemates of 3-arylcarboxylic acids is described. Hydrolysis of ethyl esters of fluorinated acids by esterases and hydrolases in all cases resulted in the formation of hydrolyzed (S)-carboxylic acids and unreacted (R)-esters in high yields and high enantiomeric purity. The influence of separation conditions on the efficiency and enantioselectivity of biocatalytic conversion was also studied. The reactions were carried out under normal conditions (stirring with a magnetic stirrer at room temperature) and microwave irradiation in the presence of hydrolases. Amano PS showed excellent selectivity and good yields in the hydrolysis of fluorinated aromatic compounds. The absolute configuration of the resulting compounds was based on biokinetic studies and the use of chiral HPLC. A molecular modeling of the kinetic resolution of carboxylic acid esters was carried out.
{"title":"Enzymatic Deracemization of Fluorinated Arylcarboxylic Acids: Chiral Enzymatic Analysis and Absolute Stereochemistry Using Chiral HPLC","authors":"Oleg I. Kolodiazhnyi, Anastasiia O. Kolodiazhna, Oleh Faiziiev, Yuliia Gurova","doi":"10.3390/sym16091150","DOIUrl":"https://doi.org/10.3390/sym16091150","url":null,"abstract":"The hydrolase-catalyzed kinetic resolution of fluorinated racemates of 3-arylcarboxylic acids is described. Hydrolysis of ethyl esters of fluorinated acids by esterases and hydrolases in all cases resulted in the formation of hydrolyzed (S)-carboxylic acids and unreacted (R)-esters in high yields and high enantiomeric purity. The influence of separation conditions on the efficiency and enantioselectivity of biocatalytic conversion was also studied. The reactions were carried out under normal conditions (stirring with a magnetic stirrer at room temperature) and microwave irradiation in the presence of hydrolases. Amano PS showed excellent selectivity and good yields in the hydrolysis of fluorinated aromatic compounds. The absolute configuration of the resulting compounds was based on biokinetic studies and the use of chiral HPLC. A molecular modeling of the kinetic resolution of carboxylic acid esters was carried out.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}