首页 > 最新文献

arXiv - PHYS - Accelerator Physics最新文献

英文 中文
Next Generation LLRF Control Platform for Compact C-band Linear Accelerator 用于紧凑型 C 波段线性加速器的下一代 LLRF 控制平台
Pub Date : 2024-07-25 DOI: arxiv-2407.18198
Chao Liu, Ryan Herbst, Larry Ruckman, Emilio Nanni
The Low-Level RF (LLRF) control circuits of linear accelerators (LINACs) areconventionally realized with heterodyne based architectures, which have analogRF mixers for up and down conversion with discrete data converters. We havedeveloped a new LLRF platform for C-band linear accelerator based on theFrequency System-on-Chip (RFSoC) device from AMD Xilinx. The integrated dataconverters in the RFSoC can directly sample the RF signals in C-band andperform the up and down mixing digitally. The programmable logic and processorsrequired for signal processing for the LLRF control system are also included ina single RFSoC chip. With all the essential components integrated in a device,the RFSoC-based LLRF control platform can be implemented more cost-effectivelyand compactly, which can be applied to a broad range of acceleratorapplications. In this paper, the structure and configuration of the newlydeveloped LLRF platform will be described. The LLRF prototype has been testedwith high power test setup with a Cool Cooper Collider (C(^3)) acceleratingstructure. The LLRF and the solid state amplifier (SSA) loopback setupdemonstrated phase jitter in 1 s as low as 115 fs, which is lower than therequirement of C(^3). The rf signals from the klystron forward andaccelerating structure captured with peak power up to 16.45 MW will bepresented and discussed.
线性加速器(LINAC)的低电平射频(LLRF)控制电路传统上是通过基于外差的架构实现的,这种架构具有用于上下转换的模拟射频混频器和分立数据转换器。我们基于 AMD Xilinx 公司的频率片上系统 (RFSoC) 设备,为 C 波段线性加速器开发了一种新型 LLRF 平台。RFSoC 中集成的数据转换器可直接对 C 波段射频信号进行采样,并以数字方式执行上下混合。LLRF 控制系统信号处理所需的可编程逻辑和处理器也包含在单个 RFSoC 芯片中。由于所有重要组件都集成在一个器件中,基于 RFSoC 的 LLRF 控制平台可以更经济、更紧凑地实现,可广泛应用于加速器领域。本文将介绍新开发的 LLRF 平台的结构和配置。LLRF原型已经在冷库珀对撞机(Cool Cooper Collider)加速结构的高功率测试装置上进行了测试。LLRF和固态放大器(SSA)环回装置证明,1秒内的相位抖动低至115 fs,低于C(^3)的要求。将介绍和讨论从速调管正向和加速结构捕获的峰值功率高达 16.45 MW 的射频信号。
{"title":"Next Generation LLRF Control Platform for Compact C-band Linear Accelerator","authors":"Chao Liu, Ryan Herbst, Larry Ruckman, Emilio Nanni","doi":"arxiv-2407.18198","DOIUrl":"https://doi.org/arxiv-2407.18198","url":null,"abstract":"The Low-Level RF (LLRF) control circuits of linear accelerators (LINACs) are\u0000conventionally realized with heterodyne based architectures, which have analog\u0000RF mixers for up and down conversion with discrete data converters. We have\u0000developed a new LLRF platform for C-band linear accelerator based on the\u0000Frequency System-on-Chip (RFSoC) device from AMD Xilinx. The integrated data\u0000converters in the RFSoC can directly sample the RF signals in C-band and\u0000perform the up and down mixing digitally. The programmable logic and processors\u0000required for signal processing for the LLRF control system are also included in\u0000a single RFSoC chip. With all the essential components integrated in a device,\u0000the RFSoC-based LLRF control platform can be implemented more cost-effectively\u0000and compactly, which can be applied to a broad range of accelerator\u0000applications. In this paper, the structure and configuration of the newly\u0000developed LLRF platform will be described. The LLRF prototype has been tested\u0000with high power test setup with a Cool Cooper Collider (C(^3)) accelerating\u0000structure. The LLRF and the solid state amplifier (SSA) loopback setup\u0000demonstrated phase jitter in 1 s as low as 115 fs, which is lower than the\u0000requirement of C(^3). The rf signals from the klystron forward and\u0000accelerating structure captured with peak power up to 16.45 MW will be\u0000presented and discussed.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"123 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative description and correction of longitudinal drifts in the Fermilab linac 费米实验室直列加速器纵向漂移的定量描述和校正
Pub Date : 2024-07-24 DOI: arxiv-2407.17456
R. SharankovaFermi National Accelerator Laboratory, A. ShemyakinFermi National Accelerator Laboratory, S. RegoFermi National Accelerator LaboratoryEcole Polytechnique Palaiseau, France
The Fermi National Accelerator Laboratory (Fermilab) Linac accepts 750 keV H-ions from the front end and accelerates them to 400 MeV for injection into theBooster rapid cycling synchrotron. Day-to-day drifts in the beam longitudinaltrajectory during regular operation are of the order of several degrees. Theyare believed to cause additional losses in both the Linac and the Booster andare addressed by empirically adjusting cavity phases of front end and Linac RFcavities. This work explores a scheme for expressing these drifts in terms ofphase shifts in the low-energy part of the Linac. Such a description allows fora simplified visual representation of the drifts, suggests a clear algorithmfor their compensation, and provides a tool for estimating efficiency of suchcompensation.
费米国家加速器实验室(Fermilab)的直线加速器从前端接收 750 keV 的氢离子,并将其加速到 400 MeV,然后注入增压器快速循环同步加速器。在正常运行期间,光束纵向轨迹每天都会出现几度的漂移。这些漂移被认为会在直子加速器和增压器中造成额外的损耗,可以通过调整前端和直子加速器射频腔的腔相来解决。这项工作探索了一种用直子低能部分的相移来表示这些漂移的方法。这样的描述可以简化漂移的可视化表示,为其补偿提出了一个清晰的算法,并提供了一个估算这种补偿效率的工具。
{"title":"Quantitative description and correction of longitudinal drifts in the Fermilab linac","authors":"R. SharankovaFermi National Accelerator Laboratory, A. ShemyakinFermi National Accelerator Laboratory, S. RegoFermi National Accelerator LaboratoryEcole Polytechnique Palaiseau, France","doi":"arxiv-2407.17456","DOIUrl":"https://doi.org/arxiv-2407.17456","url":null,"abstract":"The Fermi National Accelerator Laboratory (Fermilab) Linac accepts 750 keV H-\u0000ions from the front end and accelerates them to 400 MeV for injection into the\u0000Booster rapid cycling synchrotron. Day-to-day drifts in the beam longitudinal\u0000trajectory during regular operation are of the order of several degrees. They\u0000are believed to cause additional losses in both the Linac and the Booster and\u0000are addressed by empirically adjusting cavity phases of front end and Linac RF\u0000cavities. This work explores a scheme for expressing these drifts in terms of\u0000phase shifts in the low-energy part of the Linac. Such a description allows for\u0000a simplified visual representation of the drifts, suggests a clear algorithm\u0000for their compensation, and provides a tool for estimating efficiency of such\u0000compensation.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beam Stacking Experiment at a Fixed Field Alternating Gradient Accelerator 固定场交变梯度加速器的光束叠加实验
Pub Date : 2024-07-19 DOI: arxiv-2407.13962
T. UesugiInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Y. IshiInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Y. KuriyamaInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Y. MoriInstitute for Integrated Radiation and Nuclear Science, Kyoto University, C. JollySTFC ISIS Department, D. J. KelliherSTFC ISIS Department, J. -B. LagrangeSTFC ISIS Department, A. P. LetchfordSTFC ISIS Department, S. MachidaSTFC ISIS Department, D. W. Poshuma de BoerSTFC ISIS Department, C. T. RogersSTFC ISIS Department, E. YamakawaSTFC ISIS Department, M. Topp-MugglestoneJohn Adams Institute, University of Oxford
A key challenge in particle accelerators is to achieve high peak intensity.Space charge is particularly strong at lower energy such as during injectionand typically limits achievable peak intensity. The beam stacking technique canovercome this limitation by accumulating a beam at high energy where spacecharge is weaker. In beam stacking, a bunch of particles is injected andaccelerated to high energy. This bunch continues to circulate, while a secondand subsequent bunches are accelerated to merge into the first. It also allowsthe user cycle and acceleration cycles to be separated which is often valuable.Beam stacking is not possible in a time varying magnetic field, but a fixedfield machine such as an Fixed Field Alternating Gradient Accelerator (FFA)does not sweep the magnetic field. In this paper, we describe experimentaldemonstration of beam stacking of two beams at KURNS FFA in Kyoto University.The momentum spread and intensity of the beam was analysed by study of theSchottky signal, demonstrating stacking with only a slight increase of momentumspread of the combined beams. The intensity of the first beam was, however,significantly reduced. RF knock-out is the suspected source of the beam loss.
粒子加速器的一个关键挑战是实现高峰值强度。空间电荷在较低能量(如注入期间)时特别强,通常会限制可实现的峰值强度。束流叠加技术可以通过在空间电荷较弱的高能量处聚集束流来克服这一限制。在光束叠加中,一束粒子被注入并加速到高能量。这束粒子继续循环,而第二束和随后的几束粒子则被加速并入第一束。在时变磁场中不可能进行束堆叠,但固定磁场机器(如固定场交变梯度加速器)不会扫描磁场。本文介绍了在京都大学 KURNS FFA 进行的双光束叠加实验。通过研究肖特基信号分析了光束的动量散布和强度,结果表明叠加时组合光束的动量散布仅略有增加。然而,第一束光束的强度明显降低。射频击穿被怀疑是光束损失的来源。
{"title":"Beam Stacking Experiment at a Fixed Field Alternating Gradient Accelerator","authors":"T. UesugiInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Y. IshiInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Y. KuriyamaInstitute for Integrated Radiation and Nuclear Science, Kyoto University, Y. MoriInstitute for Integrated Radiation and Nuclear Science, Kyoto University, C. JollySTFC ISIS Department, D. J. KelliherSTFC ISIS Department, J. -B. LagrangeSTFC ISIS Department, A. P. LetchfordSTFC ISIS Department, S. MachidaSTFC ISIS Department, D. W. Poshuma de BoerSTFC ISIS Department, C. T. RogersSTFC ISIS Department, E. YamakawaSTFC ISIS Department, M. Topp-MugglestoneJohn Adams Institute, University of Oxford","doi":"arxiv-2407.13962","DOIUrl":"https://doi.org/arxiv-2407.13962","url":null,"abstract":"A key challenge in particle accelerators is to achieve high peak intensity.\u0000Space charge is particularly strong at lower energy such as during injection\u0000and typically limits achievable peak intensity. The beam stacking technique can\u0000overcome this limitation by accumulating a beam at high energy where space\u0000charge is weaker. In beam stacking, a bunch of particles is injected and\u0000accelerated to high energy. This bunch continues to circulate, while a second\u0000and subsequent bunches are accelerated to merge into the first. It also allows\u0000the user cycle and acceleration cycles to be separated which is often valuable.\u0000Beam stacking is not possible in a time varying magnetic field, but a fixed\u0000field machine such as an Fixed Field Alternating Gradient Accelerator (FFA)\u0000does not sweep the magnetic field. In this paper, we describe experimental\u0000demonstration of beam stacking of two beams at KURNS FFA in Kyoto University.\u0000The momentum spread and intensity of the beam was analysed by study of the\u0000Schottky signal, demonstrating stacking with only a slight increase of momentum\u0000spread of the combined beams. The intensity of the first beam was, however,\u0000significantly reduced. RF knock-out is the suspected source of the beam loss.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interim report for the International Muon Collider Collaboration (IMCC) 国际 µ 子对撞机合作组织(IMCC)中期报告
Pub Date : 2024-07-17 DOI: arxiv-2407.12450
C. Accettura, S. Adrian, R. Agarwal, C. Ahdida, C. Aimé, A. Aksoy, G. L. Alberghi, S. Alden, N. Amapane, D. Amorim, P. Andreetto, F. Anulli, R. Appleby, A. Apresyan, P. Asadi, M. Attia Mahmoud, B. Auchmann, J. Back, A. Badea, K. J. Bae, E. J. Bahng, L. Balconi, F. Balli, L. Bandiera, C. Barbagallo, R. Barlow, C. Bartoli, N. Bartosik, E. Barzi, F. Batsch, M. Bauce, M. Begel, J. S. Berg, A. Bersani, A. Bertarelli, F. Bertinelli, A. Bertolin, P. Bhat, C. Bianchi, M. Bianco, W. Bishop, K. Black, F. Boattini, A. Bogacz, M. Bonesini, B. Bordini, P. Borges de Sousa, S. Bottaro, L. Bottura, S. Boyd, M. Breschi, F. Broggi, M. Brunoldi, X. Buffat, L. Buonincontri, P. N. Burrows, G. C. Burt, D. Buttazzo, B. Caiffi, S. Calatroni, M. Calviani, S. Calzaferri, D. Calzolari, C. Cantone, R. Capdevilla, C. Carli, C. Carrelli, F. Casaburo, M. Casarsa, L. Castelli, M. G. Catanesi, L. Cavallucci, G. Cavoto, F. G. Celiberto, L. Celona, A. Cemmi, S. Ceravolo, A. Cerri, F. Cerutti, G. Cesarini, C. Cesarotti, A. Chancé, N. Charitonidis, M. Chiesa, P. Chiggiato, V. L. Ciccarella, P. Cioli Puviani, A. Colaleo, F. Colao, F. Collamati, M. Costa, N. Craig, D. Curtin, L. D'Angelo, G. Da Molin, H. Damerau, S. Dasu, J. de Blas, S. De Curtis, H. De Gersem, T. Del Moro, J. -P. Delahaye, D. Denisov, H. Denizli, R. Dermisek, P. Desiré Valdor, C. Desponds, L. Di Luzio, E. Di Meco, K. F. Di Petrillo, I. Di Sarcina, E. Diociaiuti, T. Dorigo, K. Dreimanis, T. du Pree, T. Edgecock, S. Fabbri, M. Fabbrichesi, S. Farinon, G. Ferrand, J. A. Ferreira Somoza, M. Fieg, F. Filthaut, P. Fox, R. Franceschini, R. Franqueira Ximenes, M. Gallinaro, M. Garcia-Sciveres, L. Garcia-Tabares, R. Gargiulo, C. Garion, M. V. Garzelli, M. Gast, C. E. Gerber, L. Giambastiani, A. Gianelle, E. Gianfelice-Wendt, S. Gibson, S. Gilardoni, D. A. Giove, V. Giovinco, C. Giraldin, A. Glioti, A. Gorzawski, M. Greco, C. Grojean, A. Grudiev, E. Gschwendtner, E. Gueli, N. Guilhaudin, C. Han, T. Han, J. M. Hauptman, M. Herndon, A. D. Hillier, M. Hillman, T. R. Holmes, S. Homiller, S. Jana, S. Jindariani, S. Johannesson, B. Johnson, O. R. Jones, P. -B. Jurj, Y. Kahn, R. Kamath, A. Kario, I. Karpov, D. Kelliher, W. Kilian, R. Kitano, F. Kling, A. Kolehmainen, K. C. Kong, J. Kosse, G. Krintiras, K. Krizka, N. Kumar, E. Kvikne, R. Kyle, E. Laface, K. Lane, A. Latina, A. Lechner, J. Lee, L. Lee, S. W. Lee, T. Lefevre, E. Leonardi, G. Lerner, P. Li, Q. Li, T. Li, W. Li, R. Li Voti, M. Lindroos, R. Lipton, D. Liu, M. Liu, Z. Liu, A. Lombardi, S. Lomte, K. Long, L. Longo, J. Lorenzo, R. Losito, I. Low, X. Lu, D. Lucchesi, T. Luo, A. Lupato, E. Métral, K. Mękała, Y. Ma, J. M. Mańczak, S. Machida, T. Madlener, L. Magaletti, M. Maggi, H. Mainaud Durand, F. Maltoni, M. Mandurrino, C. Marchand, F. Mariani, S. Marin, S. Mariotto, S. Martin-Haugh, M. R. Masullo, G. S. Mauro, A. Mazzolari, B. Mele, F. Meloni, X. Meng, M. Mentink, R. Miceli, N. Milas, A. Mohammadi, D. Moll, A. Montella, M. Morandin, M. Morrone, T. Mulder, R. Musenich, M. Nardecchia, F. Nardi, D. Neuffer, D. Newbold, D. Novelli, M. Olvegård, Y. Onel, D. Orestano, J. Osborne, S. Otten, Y. M. Oviedo Torres, D. Paesani, S. Pagan Griso, D. Pagani, K. Pal, M. Palmer, A. Pampaloni, P. Panci, P. Pani, Y. Papaphilippou, R. Paparella, P. Paradisi, A. Passeri, N. Pastrone, A. Pellecchia, F. Piccinini, H. Piekarz, T. Pieloni, J. Plouin, A. Portone, K. Potamianos, J. Potdevin, S. Prestemon, T. Puig, J. Qiang, L. Quettier, T. R. Rabemananjara, E. Radicioni, R. Radogna, I. C. Rago, A. Ratkus, E. Resseguie, J. Reuter, P. L. Ribani, C. Riccardi, S. Ricciardi, T. Robens, Y. Robert, C. Roger, J. Rojo, M. Romagnoni, K. Ronald, B. Rosser, C. Rossi, L. Rossi, L. Rozanov, M. Ruhdorfer, R. Ruiz, F. S. Queiroz, S. Saini, F. Sala, C. Salierno, T. Salmi, P. Salvini, E. Salvioni, N. Sammut, C. Santini, A. Saputi, I. Sarra, G. Scarantino, H. Schneider-Muntau, D. Schulte, J. Scifo, T. Sen, C. Senatore, A. Senol, D. Sertore, L. Sestini, R. C. Silva Rêgo, F. M. Simone, K. Skoufaris, G. Sorbello, M. Sorbi, S. Sorti, L. Soubirou, D. Spataro, A. Stamerra, S. Stapnes, G. Stark, M. Statera, B. M. Stechauner, S. Su, W. Su, X. Sun, A. Sytov, J. Tang, J. Tang, R. Taylor, H. Ten Kate, P. Testoni, L. S. Thiele, R. Tomas Garcia, M. Topp- Mugglestone, T. Torims, R. Torre, L. T. Tortora, S. Trifinopoulos, S. -A. Udongwo, I. Vai, R. U. Valente, U. van Rienen, R. van Weelderen, M. Vanwelde, G. Velev, R. Venditti, A. Vendrasco, A. Verna, A. Verweij, P. Verwilligen, Y. Villamzar, L. Vittorio, P. Vitulo, I. Vojskovic, D. Wang, L. -T. Wang, X. Wang, M. Wendt, M. Widorski, M. Wozniak, Y. Wu, A. Wulzer, K. Xie, Y. Yang, Y. C. Yap, K. Yonehara, H. D. Yoo, Z. You, M. Zanetti, A. Zaza, L. Zhang, R. Zhu, A. Zlobin, D. Zuliani, J. F. Zurita
The International Muon Collider Collaboration (IMCC) [1] was established in2020 following the recommendations of the European Strategy for ParticlePhysics (ESPP) and the implementation of the European Strategy for ParticlePhysics-Accelerator R&D Roadmap by the Laboratory Directors Group [2],hereinafter referred to as the the European LDG roadmap. The Muon ColliderStudy (MuC) covers the accelerator complex, detectors and physics for a futuremuon collider. In 2023, European Commission support was obtained for a designstudy of a muon collider (MuCol) [3]. This project started on 1st March 2023,with work-packages aligned with the overall muon collider studies. Inpreparation of and during the 2021-22 U.S. Snowmass process, the muon colliderproject parameters, technical studies and physics performance studies wereperformed and presented in great detail. Recently, the P5 panel [4] in the U.S.recommended a muon collider R&D, proposed to join the IMCC and envisages thatthe U.S. should prepare to host a muon collider, calling this their "muonshot". In the past, the U.S. Muon Accelerator Programme (MAP) [5] has beeninstrumental in studies of concepts and technologies for a muon collider.
国际缪子对撞机合作组织(IMCC)[1]是根据欧洲粒子物理学战略(ESPP)的建议和实验室主任小组(LDG)[2](以下简称 "欧洲LDG路线图")对欧洲粒子物理学战略-加速器研发路线图的实施,于2020年成立的。缪子对撞机研究(MuC)涉及未来缪子对撞机的加速器综合体、探测器和物理学。2023 年,μ介子对撞机(MuCol)的设计研究获得了欧盟委员会的支持[3]。该项目于 2023 年 3 月 1 日启动,其工作包与整个μ介子对撞机研究相一致。在2021-22年美国雪山会议筹备期间,μ介子对撞机项目的参数、技术研究和物理性能研究得到了详细的实施和介绍。最近,美国五常小组[4]建议进行μ介子对撞机研发,提议加入国际μ介子对撞机理事会(IMCC),并设想美国应准备主办μ介子对撞机,称之为 "μ介子射击"(muonshot)。过去,美国μ介子加速器计划(MAP)[5]在μ介子对撞机的概念和技术研究方面发挥了重要作用。
{"title":"Interim report for the International Muon Collider Collaboration (IMCC)","authors":"C. Accettura, S. Adrian, R. Agarwal, C. Ahdida, C. Aimé, A. Aksoy, G. L. Alberghi, S. Alden, N. Amapane, D. Amorim, P. Andreetto, F. Anulli, R. Appleby, A. Apresyan, P. Asadi, M. Attia Mahmoud, B. Auchmann, J. Back, A. Badea, K. J. Bae, E. J. Bahng, L. Balconi, F. Balli, L. Bandiera, C. Barbagallo, R. Barlow, C. Bartoli, N. Bartosik, E. Barzi, F. Batsch, M. Bauce, M. Begel, J. S. Berg, A. Bersani, A. Bertarelli, F. Bertinelli, A. Bertolin, P. Bhat, C. Bianchi, M. Bianco, W. Bishop, K. Black, F. Boattini, A. Bogacz, M. Bonesini, B. Bordini, P. Borges de Sousa, S. Bottaro, L. Bottura, S. Boyd, M. Breschi, F. Broggi, M. Brunoldi, X. Buffat, L. Buonincontri, P. N. Burrows, G. C. Burt, D. Buttazzo, B. Caiffi, S. Calatroni, M. Calviani, S. Calzaferri, D. Calzolari, C. Cantone, R. Capdevilla, C. Carli, C. Carrelli, F. Casaburo, M. Casarsa, L. Castelli, M. G. Catanesi, L. Cavallucci, G. Cavoto, F. G. Celiberto, L. Celona, A. Cemmi, S. Ceravolo, A. Cerri, F. Cerutti, G. Cesarini, C. Cesarotti, A. Chancé, N. Charitonidis, M. Chiesa, P. Chiggiato, V. L. Ciccarella, P. Cioli Puviani, A. Colaleo, F. Colao, F. Collamati, M. Costa, N. Craig, D. Curtin, L. D'Angelo, G. Da Molin, H. Damerau, S. Dasu, J. de Blas, S. De Curtis, H. De Gersem, T. Del Moro, J. -P. Delahaye, D. Denisov, H. Denizli, R. Dermisek, P. Desiré Valdor, C. Desponds, L. Di Luzio, E. Di Meco, K. F. Di Petrillo, I. Di Sarcina, E. Diociaiuti, T. Dorigo, K. Dreimanis, T. du Pree, T. Edgecock, S. Fabbri, M. Fabbrichesi, S. Farinon, G. Ferrand, J. A. Ferreira Somoza, M. Fieg, F. Filthaut, P. Fox, R. Franceschini, R. Franqueira Ximenes, M. Gallinaro, M. Garcia-Sciveres, L. Garcia-Tabares, R. Gargiulo, C. Garion, M. V. Garzelli, M. Gast, C. E. Gerber, L. Giambastiani, A. Gianelle, E. Gianfelice-Wendt, S. Gibson, S. Gilardoni, D. A. Giove, V. Giovinco, C. Giraldin, A. Glioti, A. Gorzawski, M. Greco, C. Grojean, A. Grudiev, E. Gschwendtner, E. Gueli, N. Guilhaudin, C. Han, T. Han, J. M. Hauptman, M. Herndon, A. D. Hillier, M. Hillman, T. R. Holmes, S. Homiller, S. Jana, S. Jindariani, S. Johannesson, B. Johnson, O. R. Jones, P. -B. Jurj, Y. Kahn, R. Kamath, A. Kario, I. Karpov, D. Kelliher, W. Kilian, R. Kitano, F. Kling, A. Kolehmainen, K. C. Kong, J. Kosse, G. Krintiras, K. Krizka, N. Kumar, E. Kvikne, R. Kyle, E. Laface, K. Lane, A. Latina, A. Lechner, J. Lee, L. Lee, S. W. Lee, T. Lefevre, E. Leonardi, G. Lerner, P. Li, Q. Li, T. Li, W. Li, R. Li Voti, M. Lindroos, R. Lipton, D. Liu, M. Liu, Z. Liu, A. Lombardi, S. Lomte, K. Long, L. Longo, J. Lorenzo, R. Losito, I. Low, X. Lu, D. Lucchesi, T. Luo, A. Lupato, E. Métral, K. Mękała, Y. Ma, J. M. Mańczak, S. Machida, T. Madlener, L. Magaletti, M. Maggi, H. Mainaud Durand, F. Maltoni, M. Mandurrino, C. Marchand, F. Mariani, S. Marin, S. Mariotto, S. Martin-Haugh, M. R. Masullo, G. S. Mauro, A. Mazzolari, B. Mele, F. Meloni, X. Meng, M. Mentink, R. Miceli, N. Milas, A. Mohammadi, D. Moll, A. Montella, M. Morandin, M. Morrone, T. Mulder, R. Musenich, M. Nardecchia, F. Nardi, D. Neuffer, D. Newbold, D. Novelli, M. Olvegård, Y. Onel, D. Orestano, J. Osborne, S. Otten, Y. M. Oviedo Torres, D. Paesani, S. Pagan Griso, D. Pagani, K. Pal, M. Palmer, A. Pampaloni, P. Panci, P. Pani, Y. Papaphilippou, R. Paparella, P. Paradisi, A. Passeri, N. Pastrone, A. Pellecchia, F. Piccinini, H. Piekarz, T. Pieloni, J. Plouin, A. Portone, K. Potamianos, J. Potdevin, S. Prestemon, T. Puig, J. Qiang, L. Quettier, T. R. Rabemananjara, E. Radicioni, R. Radogna, I. C. Rago, A. Ratkus, E. Resseguie, J. Reuter, P. L. Ribani, C. Riccardi, S. Ricciardi, T. Robens, Y. Robert, C. Roger, J. Rojo, M. Romagnoni, K. Ronald, B. Rosser, C. Rossi, L. Rossi, L. Rozanov, M. Ruhdorfer, R. Ruiz, F. S. Queiroz, S. Saini, F. Sala, C. Salierno, T. Salmi, P. Salvini, E. Salvioni, N. Sammut, C. Santini, A. Saputi, I. Sarra, G. Scarantino, H. Schneider-Muntau, D. Schulte, J. Scifo, T. Sen, C. Senatore, A. Senol, D. Sertore, L. Sestini, R. C. Silva Rêgo, F. M. Simone, K. Skoufaris, G. Sorbello, M. Sorbi, S. Sorti, L. Soubirou, D. Spataro, A. Stamerra, S. Stapnes, G. Stark, M. Statera, B. M. Stechauner, S. Su, W. Su, X. Sun, A. Sytov, J. Tang, J. Tang, R. Taylor, H. Ten Kate, P. Testoni, L. S. Thiele, R. Tomas Garcia, M. Topp- Mugglestone, T. Torims, R. Torre, L. T. Tortora, S. Trifinopoulos, S. -A. Udongwo, I. Vai, R. U. Valente, U. van Rienen, R. van Weelderen, M. Vanwelde, G. Velev, R. Venditti, A. Vendrasco, A. Verna, A. Verweij, P. Verwilligen, Y. Villamzar, L. Vittorio, P. Vitulo, I. Vojskovic, D. Wang, L. -T. Wang, X. Wang, M. Wendt, M. Widorski, M. Wozniak, Y. Wu, A. Wulzer, K. Xie, Y. Yang, Y. C. Yap, K. Yonehara, H. D. Yoo, Z. You, M. Zanetti, A. Zaza, L. Zhang, R. Zhu, A. Zlobin, D. Zuliani, J. F. Zurita","doi":"arxiv-2407.12450","DOIUrl":"https://doi.org/arxiv-2407.12450","url":null,"abstract":"The International Muon Collider Collaboration (IMCC) [1] was established in\u00002020 following the recommendations of the European Strategy for Particle\u0000Physics (ESPP) and the implementation of the European Strategy for Particle\u0000Physics-Accelerator R&D Roadmap by the Laboratory Directors Group [2],\u0000hereinafter referred to as the the European LDG roadmap. The Muon Collider\u0000Study (MuC) covers the accelerator complex, detectors and physics for a future\u0000muon collider. In 2023, European Commission support was obtained for a design\u0000study of a muon collider (MuCol) [3]. This project started on 1st March 2023,\u0000with work-packages aligned with the overall muon collider studies. In\u0000preparation of and during the 2021-22 U.S. Snowmass process, the muon collider\u0000project parameters, technical studies and physics performance studies were\u0000performed and presented in great detail. Recently, the P5 panel [4] in the U.S.\u0000recommended a muon collider R&D, proposed to join the IMCC and envisages that\u0000the U.S. should prepare to host a muon collider, calling this their \"muon\u0000shot\". In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been\u0000instrumental in studies of concepts and technologies for a muon collider.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further improvement of medium temperature heat treated SRF cavities for high gradients 进一步改进用于高梯度的中温热处理 SRF 型腔
Pub Date : 2024-07-17 DOI: arxiv-2407.12570
L. Steder, C. Bate, K. Kasprzak, D. Reschke, L. Trelle, H. Weise, M. Wiencek
The application of heat treatments on 1.3 GHz TESLA type cavities inultra-high vacuum at 250{deg}C to 350{deg}C is called medium temperature ormid-T heat treatment. In various laboratories such treatments onsuperconducting radio frequency (SRF) cavities result reproducible in threemain characteristic features for the quality factor $Q_0$ in dependency of theaccelerating electric field strength $E_{acc}$. First, comparing mid-T heattreatment with a baseline treatment, a significant increase of $Q_0$ up to$5cdot10^{10}$ at 2K can be observed. Second, with increasing acceleratinggradient $E_{acc}$ the $Q_0$ increases up to a maximum around 16 to 20 MV/m.This effect is known as anti-Q-slope. The third observation for a mid-T heattreatment compared to a baseline treatment is an often reduced maximum gradient$E_{acc}$. The appearance of a high-field-Q-slope (HFQS) was reported after mid-T heattreatments of 3 hours at 350{deg}C or of 20 hours at 300{deg}C at DESY. Usingthe heating temperature and the heating time taken from the temperature profileof the furnace effective oxygen diffusion lengths $l$ were calculated. In thefollow-up study presented here, a set of three single-cell cavities withdiffusion lengths $l$ above 1700 nm, showing HFQS, were treated with anadditional so-called low-T bake of 24-48 hours at 120{deg}C to 130{deg}C. Thesubsequent reproducible Q(E) -performances results indicate that the low-T bakeprocedure cures the HFQS like for cavities treated with the EuXFEL recipe of EPand following low-T treatments. As presented in the following, Q values of morethan $3cdot10^{10}$ at 16 MV/m and accelerating gradients of 32 to 40 MV/m areachieved.
在250{/deg}C到350{/deg}C的超高真空环境下对1.3 GHz TESLA型空腔进行热处理被称为中温或中T热处理。在不同的实验室中,对超导射频(SRF)空腔进行这种处理的结果是,品质因数 Q_0$ 的三个主要特征与加速电场强度 E_{acc}$ 的关系是可重复的。首先,将中T热处理与基线处理相比较,可以观察到Q_0$在2K时显著增加,最高可达$5cdot10^{10}$。其次,随着加速梯度 $E_{acc}$ 的增加,Q_0$ 也会增加,最大值约为 16 至 20 MV/m。与基线处理相比,中 T 波处理的第三个观察结果是最大梯度 E_{acc}$ 通常会减小。据报道,在DESY,在350{/deg}C下进行3小时或在300{/deg}C下进行20小时的中T加热处理后,会出现高场Q斜率(HFQS)。利用加热炉的温度曲线计算出的加热温度和加热时间,计算出了有效氧扩散长度 $l$。在本文介绍的后续研究中,对一组扩散长度超过1700纳米的三个单细胞空穴进行了额外的所谓低温烘烤,在120{deg}C到130{deg}C的温度下烘烤24-48小时,结果显示出HFQS。随后的可重现 Q(E) - 性能结果表明,低温烘烤处理与使用 EP 的 EuXFEL 配方和低温处理后的空穴一样,可以固化 HFQS。如下文所述,在 16 MV/m 和 32 至 40 MV/m 的加速梯度条件下,Q 值超过了 $3cdot10^{10}$ 。
{"title":"Further improvement of medium temperature heat treated SRF cavities for high gradients","authors":"L. Steder, C. Bate, K. Kasprzak, D. Reschke, L. Trelle, H. Weise, M. Wiencek","doi":"arxiv-2407.12570","DOIUrl":"https://doi.org/arxiv-2407.12570","url":null,"abstract":"The application of heat treatments on 1.3 GHz TESLA type cavities in\u0000ultra-high vacuum at 250{deg}C to 350{deg}C is called medium temperature or\u0000mid-T heat treatment. In various laboratories such treatments on\u0000superconducting radio frequency (SRF) cavities result reproducible in three\u0000main characteristic features for the quality factor $Q_0$ in dependency of the\u0000accelerating electric field strength $E_{acc}$. First, comparing mid-T heat\u0000treatment with a baseline treatment, a significant increase of $Q_0$ up to\u0000$5cdot10^{10}$ at 2K can be observed. Second, with increasing accelerating\u0000gradient $E_{acc}$ the $Q_0$ increases up to a maximum around 16 to 20 MV/m.\u0000This effect is known as anti-Q-slope. The third observation for a mid-T heat\u0000treatment compared to a baseline treatment is an often reduced maximum gradient\u0000$E_{acc}$. The appearance of a high-field-Q-slope (HFQS) was reported after mid-T heat\u0000treatments of 3 hours at 350{deg}C or of 20 hours at 300{deg}C at DESY. Using\u0000the heating temperature and the heating time taken from the temperature profile\u0000of the furnace effective oxygen diffusion lengths $l$ were calculated. In the\u0000follow-up study presented here, a set of three single-cell cavities with\u0000diffusion lengths $l$ above 1700 nm, showing HFQS, were treated with an\u0000additional so-called low-T bake of 24-48 hours at 120{deg}C to 130{deg}C. The\u0000subsequent reproducible Q(E) -performances results indicate that the low-T bake\u0000procedure cures the HFQS like for cavities treated with the EuXFEL recipe of EP\u0000and following low-T treatments. As presented in the following, Q values of more\u0000than $3cdot10^{10}$ at 16 MV/m and accelerating gradients of 32 to 40 MV/m are\u0000achieved.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A structural analysis of ordered Cs$_{3}$Sb films grown on single crystal graphene and silicon carbide substrates 在单晶石墨烯和碳化硅衬底上生长的有序铯_{3}_锑薄膜的结构分析
Pub Date : 2024-07-17 DOI: arxiv-2407.12224
C. Pennington, M. Gaowei, E. M. Echeverria, K. Evans-Lutterodt, A. Galdi, T. Juffmann, S. Karkare, J. Maxson, S. J. van der Molen, P. Saha, J. Smedley, W. G. Stam, R. M. Tromp
Alkali antimonides are well established as high efficiency, low intrinsicemittance photocathodes for accelerators and photon detectors. However,conventionally grown alkali antimonide films are polycrystalline with surfacedisorder and roughness that can limit achievable beam brightness. Ordering thecrystalline structure of alkali antimonides has the potential to deliver higherbrightness electron beams by reducing surface disorder and enabling theengineering of material properties at the level of atomic layers. In thisreport, we demonstrate the growth of ordered Cs$_{3}$Sb films on single crystalsubstrates 3C-SiC and graphene-coated 4H-SiC using pulsed laser deposition andconventional thermal evaporation growth techniques. The crystalline structuresof the Cs$_{3}$Sb films were examined using reflection high energy electrondiffraction (RHEED) and X-ray diffraction (XRD) diagnostics, while filmthickness and roughness estimates were made using x-ray reflectivity (XRR).With these tools, we observed ordered domains in less than 10 nm thick filmswith quantum efficiencies greater than one percent at 530 nm. Moreover, weidentify structural features such as Laue oscillations indicative of highlyordered films. We found that Cs$_{3}$Sb films grew with flat, fiber-texturedsurfaces on 3C-SiC and with multiple ordered domains and sub-nanometer surfaceroughness on graphene-coated 4H-SiC under our growth conditions. We identifythe crystallographic orientations of Cs$_{3}$Sb grown on graphene-coated 4H-SiCsubstrates and discuss the significance of examining the crystal structure ofthese films for growing epitaxial heterostructures in future experiments.
碱锑化物作为加速器和光子探测器的高效率、低本征辐照度光电阴极已得到广泛认可。然而,传统生长的碱锑化合物薄膜是多晶体的,其表面的无序性和粗糙度会限制可实现的光束亮度。对碱锑化物的晶体结构进行有序化处理,可以减少表面无序状态,并在原子层水平上对材料特性进行工程设计,从而有可能产生更高亮度的电子束。在本报告中,我们利用脉冲激光沉积和传统热蒸发生长技术,在单晶基底 3C-SiC 和石墨烯涂层 4H-SiC 上生长出了有序的 Cs$_{3}$Sb 薄膜。我们使用反射高能电子衍射 (RHEED) 和 X 射线衍射 (XRD) 诊断技术对 Cs$_{3}$Sb 薄膜的晶体结构进行了检测,同时使用 X 射线反射率 (XRR) 对薄膜厚度和粗糙度进行了估计。此外,我们还发现了表明薄膜高度有序的 Laue 振荡等结构特征。我们发现,在 3C-SiC 上生长的铯_{3}$Sb 薄膜具有平整的纤维纹理表面,而在我们的生长条件下,在石墨烯涂层 4H-SiC 上生长的铯_{3}$Sb 薄膜具有多个有序畴和亚纳米级的表面粗糙度。我们确定了在石墨烯涂层 4H-SiC 基质上生长的 Cs$_{3}$Sb 的晶体取向,并讨论了在未来实验中研究这些薄膜的晶体结构对于生长外延异质结构的意义。
{"title":"A structural analysis of ordered Cs$_{3}$Sb films grown on single crystal graphene and silicon carbide substrates","authors":"C. Pennington, M. Gaowei, E. M. Echeverria, K. Evans-Lutterodt, A. Galdi, T. Juffmann, S. Karkare, J. Maxson, S. J. van der Molen, P. Saha, J. Smedley, W. G. Stam, R. M. Tromp","doi":"arxiv-2407.12224","DOIUrl":"https://doi.org/arxiv-2407.12224","url":null,"abstract":"Alkali antimonides are well established as high efficiency, low intrinsic\u0000emittance photocathodes for accelerators and photon detectors. However,\u0000conventionally grown alkali antimonide films are polycrystalline with surface\u0000disorder and roughness that can limit achievable beam brightness. Ordering the\u0000crystalline structure of alkali antimonides has the potential to deliver higher\u0000brightness electron beams by reducing surface disorder and enabling the\u0000engineering of material properties at the level of atomic layers. In this\u0000report, we demonstrate the growth of ordered Cs$_{3}$Sb films on single crystal\u0000substrates 3C-SiC and graphene-coated 4H-SiC using pulsed laser deposition and\u0000conventional thermal evaporation growth techniques. The crystalline structures\u0000of the Cs$_{3}$Sb films were examined using reflection high energy electron\u0000diffraction (RHEED) and X-ray diffraction (XRD) diagnostics, while film\u0000thickness and roughness estimates were made using x-ray reflectivity (XRR).\u0000With these tools, we observed ordered domains in less than 10 nm thick films\u0000with quantum efficiencies greater than one percent at 530 nm. Moreover, we\u0000identify structural features such as Laue oscillations indicative of highly\u0000ordered films. We found that Cs$_{3}$Sb films grew with flat, fiber-textured\u0000surfaces on 3C-SiC and with multiple ordered domains and sub-nanometer surface\u0000roughness on graphene-coated 4H-SiC under our growth conditions. We identify\u0000the crystallographic orientations of Cs$_{3}$Sb grown on graphene-coated 4H-SiC\u0000substrates and discuss the significance of examining the crystal structure of\u0000these films for growing epitaxial heterostructures in future experiments.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional Guided Generative Diffusion for Particle Accelerator Beam Diagnostics 用于粒子加速器光束诊断的条件引导生成扩散
Pub Date : 2024-07-15 DOI: arxiv-2407.10693
Alexander Scheinker
Advanced accelerator-based light sources such as free electron lasers (FEL)accelerate highly relativistic electron beams to generate incredibly short (10sof femtoseconds) coherent flashes of light for dynamic imaging, whosebrightness exceeds that of traditional synchrotron-based light sources byorders of magnitude. FEL operation requires precise control of the shape andenergy of the extremely short electron bunches whose characteristics directlytranslate into the properties of the produced light. Control of short intensebeams is difficult due to beam characteristics drifting with time and complexcollective effects such as space charge and coherent synchrotron radiation.Detailed diagnostics of beam properties are therefore essential for precisebeam control. Such measurements typically rely on a destructive approach basedon a combination of a transverse deflecting resonant cavity followed by adipole magnet in order to measure a beam's 2D time vs energy longitudinalphase-space distribution. In this paper, we develop a non-invasive virtualdiagnostic of an electron beam's longitudinal phase space at megapixelresolution (1024 x 1024) based on a generative conditional diffusion model. Wedemonstrate the model's generative ability on experimental data from theEuropean X-ray FEL.
先进的加速器光源,如自由电子激光器(FEL),可加速高度相对论电子束,产生用于动态成像的超短(10飞秒)相干闪光,其亮度超过传统同步加速器光源的数量级。FEL 的运行需要精确控制极短电子束的形状和能量,而电子束的特性会直接转化为所产生光的特性。由于光束特性随时间漂移以及空间电荷和相干同步辐射等综合反射效应,很难控制短强光束。此类测量通常依赖于一种破坏性方法,该方法基于横向偏转谐振腔与偶极子磁体的组合,以测量光束的二维时间与能量纵向相空间分布。在本文中,我们基于条件扩散生成模型,开发了一种百万像素分辨率(1024 x 1024)的电子束纵向相空间非侵入式虚拟诊断技术。我们在欧洲 X 射线 FEL 的实验数据上演示了该模型的生成能力。
{"title":"Conditional Guided Generative Diffusion for Particle Accelerator Beam Diagnostics","authors":"Alexander Scheinker","doi":"arxiv-2407.10693","DOIUrl":"https://doi.org/arxiv-2407.10693","url":null,"abstract":"Advanced accelerator-based light sources such as free electron lasers (FEL)\u0000accelerate highly relativistic electron beams to generate incredibly short (10s\u0000of femtoseconds) coherent flashes of light for dynamic imaging, whose\u0000brightness exceeds that of traditional synchrotron-based light sources by\u0000orders of magnitude. FEL operation requires precise control of the shape and\u0000energy of the extremely short electron bunches whose characteristics directly\u0000translate into the properties of the produced light. Control of short intense\u0000beams is difficult due to beam characteristics drifting with time and complex\u0000collective effects such as space charge and coherent synchrotron radiation.\u0000Detailed diagnostics of beam properties are therefore essential for precise\u0000beam control. Such measurements typically rely on a destructive approach based\u0000on a combination of a transverse deflecting resonant cavity followed by a\u0000dipole magnet in order to measure a beam's 2D time vs energy longitudinal\u0000phase-space distribution. In this paper, we develop a non-invasive virtual\u0000diagnostic of an electron beam's longitudinal phase space at megapixel\u0000resolution (1024 x 1024) based on a generative conditional diffusion model. We\u0000demonstrate the model's generative ability on experimental data from the\u0000European X-ray FEL.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of solenoid lens field on electron beam emittance 电磁透镜场对电子束发射率的影响
Pub Date : 2024-07-12 DOI: arxiv-2407.09081
Kazuaki Togawa
In an injector system of an X-ray free electron laser (XFEL), solenoid lensesare typically used to confine low-emittance electron beams to low-energy regionbelow a few MeV. Because non-thermionic emittance at such a low-energy regionis easily deteriorated by nonlinear electromagnetic fields, it is important todetermine the properties of a solenoid lens on electron beam emittance in thedesign of XFEL injectors. We derived an approximate solution to emittancegrowth due to lens aberration by a paraxial approximation. It was found thatthe derivative of the longitudinal magnetic field strongly affects beamemittance, and its growth is proportional to the fourth power of the beamradius. Various properties of the beam can be analyzed as long as thelongitudinal magnetic field distribution is prepared using a simulation ormeasurement. In this study, a theoretical procedure to obtain the emittancegrowth in the solenoid lens is introduced and the design considerations of thesolenoid lens of the SACLA injector are described.
在 X 射线自由电子激光器(XFEL)的注入器系统中,螺线管透镜通常用于将低惰性电子束限制在几 MeV 以下的低能区。由于这种低能区的非热释电态势很容易受到非线性电磁场的影响而恶化,因此在设计 XFEL 注入器时,确定电磁透镜对电子束态势的影响是非常重要的。我们通过准轴近似法推导出了透镜像差引起的发射率增长的近似解。研究发现,纵向磁场的导数对光束辐照度有很大影响,其增长与光束半径的四次方成正比。只要利用模拟或测量方法准备好纵向磁场分布,就可以分析光束的各种特性。本研究介绍了获得电磁透镜中幅射增长的理论过程,并描述了 SACLA 注入器电磁透镜的设计考虑因素。
{"title":"Effect of solenoid lens field on electron beam emittance","authors":"Kazuaki Togawa","doi":"arxiv-2407.09081","DOIUrl":"https://doi.org/arxiv-2407.09081","url":null,"abstract":"In an injector system of an X-ray free electron laser (XFEL), solenoid lenses\u0000are typically used to confine low-emittance electron beams to low-energy region\u0000below a few MeV. Because non-thermionic emittance at such a low-energy region\u0000is easily deteriorated by nonlinear electromagnetic fields, it is important to\u0000determine the properties of a solenoid lens on electron beam emittance in the\u0000design of XFEL injectors. We derived an approximate solution to emittance\u0000growth due to lens aberration by a paraxial approximation. It was found that\u0000the derivative of the longitudinal magnetic field strongly affects beam\u0000emittance, and its growth is proportional to the fourth power of the beam\u0000radius. Various properties of the beam can be analyzed as long as the\u0000longitudinal magnetic field distribution is prepared using a simulation or\u0000measurement. In this study, a theoretical procedure to obtain the emittance\u0000growth in the solenoid lens is introduced and the design considerations of the\u0000solenoid lens of the SACLA injector are described.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"2012 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commissioning of a compact multibend achromat lattice: A new 3 GeV synchrotron radiation facility 调试紧凑型多弯消色差晶格:新的 3 GeV 同步辐射设施
Pub Date : 2024-07-12 DOI: arxiv-2407.08925
Shuhei Obara, Kota Ueshima, Takao Asaka, Yuji Hosaka, Koichi Kan, Nobuyuki Nishimori, Toshitaka Aoki, Hiroyuki Asano, Koichi Haga, Yuto Iba, Akira Ihara, Katsumasa Ito, Taiki Iwashita, Masaya Kadowaki, Rento Kanahama, Hajime Kobayashi, Hideki Kobayashi, Hideo Nishihara, Masaaki Nishikawa, Haruhiko Oikawa, Ryota Saida, Keisuke Sakuraba, Kento Sugimoto, Masahiro Suzuki, Kouki Takahashi, Shunya Takahashi, Tatsuki Tanaka, Tsubasa Tsuchiyama, Risa Yoshioka, Tsuyoshi Aoki, Hideki Dewa, Takahiro Fujita, Morihiro Kawase, Akio Kiyomich, Takashi Hamano, Mitsuhiro Masaki, Takemasa Masuda, Shinichi Matsubara, Kensuke Okada, Choji Saji, Tsutomu Taniuchi, Yukiko Taniuchi, Yosuke Ueda, Hiroshi Yamaguchi, Kenichi Yanagida, Kenji Fukami, Naoyasu Hosoda, Miho Ishii, Toshiro Itoga, Eito Iwai, Tamotsu Magome, Masaya Oishi, Takashi Ohshima, Chikara Kondo, Tatsuyuki Sakurai, Masazumi Shoji, Takashi Sugimoto, Shiro Takano, Kazuhiro Tamura, Takahiro Watanabe, Takato Tomai, Noriyoshi Azumi, Takahiro Inagaki, Hirokazu Maesaka, Sunao Takahashi, Takashi Tanaka, Shinobu Inoue, Hirosuke Kumazawa, Kazuki Moriya, Kohei Sakai, Toshio Seno, Hiroshi Sumitomo, Ryoichi Takesako, Shinichiro Tanaka, Ryo Yamamoto, Kazutoshi Yokomachi, Masamichi Yoshioka, Toru Hara, Sakuo Matsui, Toshihiko Hiraiwa, Hitoshi Tanaka, Hiroyasu Ego
NanoTerasu, a new 3 GeV synchrotron light source in Japan, began useroperation in April 2024. It provides high-brilliance soft to tender X-rays andcovers a wide spectral range from ultraviolet to tender X-rays. Its compactstorage ring with a circumference of 349 m is based on a four-bend achromatlattice to provide two straight sections in each cell for insertion deviceswith a natural horizontal emittance of 1.14 nm rad, which is small enough forsoft X-rays users. The NanoTerasu accelerator incorporates several innovativetechnologies, including a full-energy injector C-band linear accelerator with alength of 110 m, an in-vacuum off-axis injection system, a four-bend achromatwith B-Q combined bending magnets, and a TM020 mode accelerating cavity withbuilt-in higher-order-mode dampers in the storage ring. This paper presents theaccelerator machine commissioning over a half-year period and ourmodel-consistent ring optics correction. The first user operation with a storedbeam current of 160 mA is also reported. We summarize the storage ringparameters obtained from the commissioning. This is helpful for estimating theeffective optical properties of synchrotron radiation at NanoTerasu.
日本新的 3 GeV 同步辐射光源 NanoTerasu 于 2024 年 4 月开始运行。它提供高亮度的软X射线到嫩X射线,覆盖从紫外线到嫩X射线的宽光谱范围。其周长为 349 米的紧凑型存储环以四弯曲消色差晶格为基础,在每个单元中为插入装置提供两个直线部分,其自然水平发射率为 1.14 nm rad,对于软 X 射线用户来说已经足够小了。NanoTerasu 加速器采用了多项创新技术,包括长度为 110 米的全能量注入 C 波段直线加速器、真空离轴注入系统、带有 B-Q 组合弯曲磁铁的四弯消色差装置,以及在存储环中内置高阶模式阻尼器的 TM020 模式加速腔。本文介绍了历时半年的加速器机器调试情况,以及我们根据模型进行的环形光学校正。此外,还报告了存储束流为 160 mA 的首次用户运行情况。我们总结了调试过程中获得的储能环参数。这有助于估算同步辐射在 NanoTerasu 的有效光学特性。
{"title":"Commissioning of a compact multibend achromat lattice: A new 3 GeV synchrotron radiation facility","authors":"Shuhei Obara, Kota Ueshima, Takao Asaka, Yuji Hosaka, Koichi Kan, Nobuyuki Nishimori, Toshitaka Aoki, Hiroyuki Asano, Koichi Haga, Yuto Iba, Akira Ihara, Katsumasa Ito, Taiki Iwashita, Masaya Kadowaki, Rento Kanahama, Hajime Kobayashi, Hideki Kobayashi, Hideo Nishihara, Masaaki Nishikawa, Haruhiko Oikawa, Ryota Saida, Keisuke Sakuraba, Kento Sugimoto, Masahiro Suzuki, Kouki Takahashi, Shunya Takahashi, Tatsuki Tanaka, Tsubasa Tsuchiyama, Risa Yoshioka, Tsuyoshi Aoki, Hideki Dewa, Takahiro Fujita, Morihiro Kawase, Akio Kiyomich, Takashi Hamano, Mitsuhiro Masaki, Takemasa Masuda, Shinichi Matsubara, Kensuke Okada, Choji Saji, Tsutomu Taniuchi, Yukiko Taniuchi, Yosuke Ueda, Hiroshi Yamaguchi, Kenichi Yanagida, Kenji Fukami, Naoyasu Hosoda, Miho Ishii, Toshiro Itoga, Eito Iwai, Tamotsu Magome, Masaya Oishi, Takashi Ohshima, Chikara Kondo, Tatsuyuki Sakurai, Masazumi Shoji, Takashi Sugimoto, Shiro Takano, Kazuhiro Tamura, Takahiro Watanabe, Takato Tomai, Noriyoshi Azumi, Takahiro Inagaki, Hirokazu Maesaka, Sunao Takahashi, Takashi Tanaka, Shinobu Inoue, Hirosuke Kumazawa, Kazuki Moriya, Kohei Sakai, Toshio Seno, Hiroshi Sumitomo, Ryoichi Takesako, Shinichiro Tanaka, Ryo Yamamoto, Kazutoshi Yokomachi, Masamichi Yoshioka, Toru Hara, Sakuo Matsui, Toshihiko Hiraiwa, Hitoshi Tanaka, Hiroyasu Ego","doi":"arxiv-2407.08925","DOIUrl":"https://doi.org/arxiv-2407.08925","url":null,"abstract":"NanoTerasu, a new 3 GeV synchrotron light source in Japan, began user\u0000operation in April 2024. It provides high-brilliance soft to tender X-rays and\u0000covers a wide spectral range from ultraviolet to tender X-rays. Its compact\u0000storage ring with a circumference of 349 m is based on a four-bend achromat\u0000lattice to provide two straight sections in each cell for insertion devices\u0000with a natural horizontal emittance of 1.14 nm rad, which is small enough for\u0000soft X-rays users. The NanoTerasu accelerator incorporates several innovative\u0000technologies, including a full-energy injector C-band linear accelerator with a\u0000length of 110 m, an in-vacuum off-axis injection system, a four-bend achromat\u0000with B-Q combined bending magnets, and a TM020 mode accelerating cavity with\u0000built-in higher-order-mode dampers in the storage ring. This paper presents the\u0000accelerator machine commissioning over a half-year period and our\u0000model-consistent ring optics correction. The first user operation with a stored\u0000beam current of 160 mA is also reported. We summarize the storage ring\u0000parameters obtained from the commissioning. This is helpful for estimating the\u0000effective optical properties of synchrotron radiation at NanoTerasu.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instantaneous and Retarded Interactions in Coherent Radiation 相干辐射中的瞬时和滞后相互作用
Pub Date : 2024-07-11 DOI: arxiv-2407.08579
Zhuoyuan Liu, Xiujie Deng, Tong Li, Lixin Yan
In coherent radiation of an ensemble of electrons, radiation field fromelectrons resonantly drives the other electrons inside to produce stimulatedemission. The radiation reaction force on the electrons accounting for thisstimulated radiation loss is classically described by the Lienard-Wiechertpotential. Despite its being the foundation of beam physics for decades, weshow that using the "acceleration field'' in Lienard-Wiechert potential todescribe radiative interactions leads to divergences due to its implicitdependence on instantaneous interactions. Here, we propose an alternativetheory for electromagnetic radiation by decomposing the interactions intoinstantaneous part and retarded part. It is shown that only the retarded partcontributes to the irreversible radiation loss and the instantaneous partdescribes the space charge related effects. We further apply this theory tostudy the coherent synchrotron radiation wake, which hopefully will reshape ourunderstanding of coherent radiation and collective interactions.
在电子集合体的相干辐射中,来自电子的辐射场会共振驱动内部的其他电子产生受激辐射。电子上的辐射反作用力导致了这种受刺激的辐射损耗,这种反作用力通常用李纳德-维切特电势(Lienard-Wiechertpotential)来描述。尽管几十年来它一直是光束物理学的基础,但我们发现,使用连纳-维切特电势中的 "加速场 "来描述辐射相互作用会导致偏差,因为它隐含了对瞬时相互作用的依赖。在此,我们提出了另一种电磁辐射理论,将相互作用分解为瞬时部分和迟滞部分。结果表明,只有迟滞部分对不可逆辐射损耗做出了贡献,而瞬时部分则描述了与空间电荷相关的效应。我们进一步将这一理论应用于研究相干同步辐射唤醒,希望它能重塑我们对相干辐射和集体相互作用的理解。
{"title":"Instantaneous and Retarded Interactions in Coherent Radiation","authors":"Zhuoyuan Liu, Xiujie Deng, Tong Li, Lixin Yan","doi":"arxiv-2407.08579","DOIUrl":"https://doi.org/arxiv-2407.08579","url":null,"abstract":"In coherent radiation of an ensemble of electrons, radiation field from\u0000electrons resonantly drives the other electrons inside to produce stimulated\u0000emission. The radiation reaction force on the electrons accounting for this\u0000stimulated radiation loss is classically described by the Lienard-Wiechert\u0000potential. Despite its being the foundation of beam physics for decades, we\u0000show that using the \"acceleration field'' in Lienard-Wiechert potential to\u0000describe radiative interactions leads to divergences due to its implicit\u0000dependence on instantaneous interactions. Here, we propose an alternative\u0000theory for electromagnetic radiation by decomposing the interactions into\u0000instantaneous part and retarded part. It is shown that only the retarded part\u0000contributes to the irreversible radiation loss and the instantaneous part\u0000describes the space charge related effects. We further apply this theory to\u0000study the coherent synchrotron radiation wake, which hopefully will reshape our\u0000understanding of coherent radiation and collective interactions.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Accelerator Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1