首页 > 最新文献

arXiv - PHYS - Computational Physics最新文献

英文 中文
A Generic and Automated Methodology to Simulate Melting Point 模拟熔点的通用自动方法
Pub Date : 2024-08-30 DOI: arxiv-2408.17270
Fu-Zhi Dai, Si-Hao Yuan, Yan-Bo Hao, Xin-Fu Gu, Shipeng Zhu, Jidong Hu, Yifen Xu
The melting point of a material constitutes a pivotal property with profoundimplications across various disciplines of science, engineering, andtechnology. Recent advancements in machine learning potentials haverevolutionized the field, enabling ab initio predictions of materials' meltingpoints through atomic-scale simulations. However, a universal simulationmethodology that can be universally applied to any material remains elusive. Inthis paper, we present a generic, fully automated workflow designed to predictthe melting points of materials utilizing molecular dynamics simulations. Thisworkflow incorporates two tailored simulation modalities, each addressingscenarios with and without elemental partitioning between solid and liquidphases. When the compositions of both phases remain unchanged upon melting orsolidification, signifying the absence of partitioning, the melting point isidentified as the temperature at which these phases coexist in equilibrium.Conversely, in cases where elemental partitioning occurs, our workflowestimates both the nominal melting point, marking the initial transition fromsolid to liquid, and the nominal solidification point, indicating the reverseprocess. To ensure precision in determining these critical temperatures, weemploy an innovative temperature-volume data fitting technique, suitable for adiverse range of materials exhibiting notable volume disparities between theirsolid and liquid states. This comprehensive approach offers a robust andversatile solution for predicting melting points, fostering advancements inmaterials science and technology.
材料的熔点是一个关键属性,对科学、工程和技术的各个学科都有深远影响。机器学习潜能的最新进展使这一领域发生了革命性的变化,通过原子尺度的模拟,可以对材料的熔点进行自始至终的预测。然而,一种可普遍应用于任何材料的通用模拟方法仍然遥不可及。在本文中,我们介绍了一种通用的全自动工作流程,旨在利用分子动力学模拟预测材料的熔点。该工作流程包含两种量身定制的模拟模式,分别针对固相和液相之间存在和不存在元素分区的情况。当熔化或凝固时,两相的成分保持不变,表明不存在分区,则熔点被确定为两相共存的平衡温度。相反,在发生元素分区的情况下,我们的工作流程既能估计标称熔点,标志着从固态到液态的初始转变,也能估计标称凝固点,表明相反的过程。为确保精确确定这些临界温度,我们采用了创新的温度-体积数据拟合技术,适用于固态和液态之间表现出显著体积差异的各种材料。这种综合方法为预测熔点提供了一种稳健、通用的解决方案,促进了材料科学与技术的进步。
{"title":"A Generic and Automated Methodology to Simulate Melting Point","authors":"Fu-Zhi Dai, Si-Hao Yuan, Yan-Bo Hao, Xin-Fu Gu, Shipeng Zhu, Jidong Hu, Yifen Xu","doi":"arxiv-2408.17270","DOIUrl":"https://doi.org/arxiv-2408.17270","url":null,"abstract":"The melting point of a material constitutes a pivotal property with profound\u0000implications across various disciplines of science, engineering, and\u0000technology. Recent advancements in machine learning potentials have\u0000revolutionized the field, enabling ab initio predictions of materials' melting\u0000points through atomic-scale simulations. However, a universal simulation\u0000methodology that can be universally applied to any material remains elusive. In\u0000this paper, we present a generic, fully automated workflow designed to predict\u0000the melting points of materials utilizing molecular dynamics simulations. This\u0000workflow incorporates two tailored simulation modalities, each addressing\u0000scenarios with and without elemental partitioning between solid and liquid\u0000phases. When the compositions of both phases remain unchanged upon melting or\u0000solidification, signifying the absence of partitioning, the melting point is\u0000identified as the temperature at which these phases coexist in equilibrium.\u0000Conversely, in cases where elemental partitioning occurs, our workflow\u0000estimates both the nominal melting point, marking the initial transition from\u0000solid to liquid, and the nominal solidification point, indicating the reverse\u0000process. To ensure precision in determining these critical temperatures, we\u0000employ an innovative temperature-volume data fitting technique, suitable for a\u0000diverse range of materials exhibiting notable volume disparities between their\u0000solid and liquid states. This comprehensive approach offers a robust and\u0000versatile solution for predicting melting points, fostering advancements in\u0000materials science and technology.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
tParton: an updated implementation of next-to-leading order transversity evolution tParton:下至导阶横向演化的最新实施方案
Pub Date : 2024-08-30 DOI: arxiv-2409.00221
Congzhou M Sha, Bailing Ma
We provide code to solve the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution equations for the nucleon transversity parton distributionfunctions (PDFs), which encode nucleon transverse spin structure. Though codesare widely available for the evolution of unpolarized and polarized PDFs, thereare no recent codes publicly available for the transversity PDF. Here, wepresent Python code which implements two methods of solving the leading order(LO) and next-to-leading order (NLO) approximations of the DGLAP equations forthe transversity PDF, and we highlight the theoretical differences between thetwo.
我们提供了求解核子横向部分子分布函数(PDF)的多克什策-格里波夫-利帕托夫-阿尔塔雷利-帕里斯(DGLAP)演化方程的代码,PDF编码核子横向自旋结构。虽然非极化和极化 PDF 的演化代码已广泛存在,但最近还没有公开的横向 PDF 代码。在这里,我们将介绍 Python 代码,它实现了两种方法来求解横向 PDF 的 DGLAP 方程的前导阶(LO)和次前导阶(NLO)近似,并强调了这两种方法的理论差异。
{"title":"tParton: an updated implementation of next-to-leading order transversity evolution","authors":"Congzhou M Sha, Bailing Ma","doi":"arxiv-2409.00221","DOIUrl":"https://doi.org/arxiv-2409.00221","url":null,"abstract":"We provide code to solve the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi\u0000(DGLAP) evolution equations for the nucleon transversity parton distribution\u0000functions (PDFs), which encode nucleon transverse spin structure. Though codes\u0000are widely available for the evolution of unpolarized and polarized PDFs, there\u0000are no recent codes publicly available for the transversity PDF. Here, we\u0000present Python code which implements two methods of solving the leading order\u0000(LO) and next-to-leading order (NLO) approximations of the DGLAP equations for\u0000the transversity PDF, and we highlight the theoretical differences between the\u0000two.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating event-by-event multiplicity by a Machine Learning Method for Hadronization Studies 用机器学习方法估算强子化研究中的逐个事件多重性
Pub Date : 2024-08-30 DOI: arxiv-2408.17130
Gábor Bíró, Gábor Papp, Gergely Gábor Barnaföldi
Hadronization is a non-perturbative process, which theoretical descriptioncan not be deduced from first principles. Modeling hadron formation requiresseveral assumptions and various phenomenological approaches. Utilizingstate-of-the-art Deep Learning algorithms, it is eventually possible to trainneural networks to learn non-linear and non-perturbative features of thephysical processes. In this study, the prediction results of three trainedResNet networks are presented, by investigating charged particle multiplicitiesat event-by-event level. The widely used Lund string fragmentation model isapplied as a training-baseline at $sqrt{s}= 7$ TeV proton-proton collisions.We found that neural-networks with $ gtrsimmathcal{O}(10^3)$ parameters canpredict the event-by-event charged hadron multiplicity values up to $N_mathrm{ch}lesssim 90 $.
强子化是一个非微扰过程,其理论描述无法从第一性原理中推导出来。建立强子形成模型需要多个假设和多种现象学方法。利用最先进的深度学习算法,最终可以训练神经网络来学习物理过程的非线性和非微扰特征。在本研究中,通过逐个事件研究带电粒子倍率,展示了三个训练有素的ResNet网络的预测结果。我们发现,具有 $gtrsimmathcal{O}(10^3)$ 参数的神经网络可以预测逐个事件的带电强子倍率值高达 $N_mathrm{ch}lesssim 90 $。
{"title":"Estimating event-by-event multiplicity by a Machine Learning Method for Hadronization Studies","authors":"Gábor Bíró, Gábor Papp, Gergely Gábor Barnaföldi","doi":"arxiv-2408.17130","DOIUrl":"https://doi.org/arxiv-2408.17130","url":null,"abstract":"Hadronization is a non-perturbative process, which theoretical description\u0000can not be deduced from first principles. Modeling hadron formation requires\u0000several assumptions and various phenomenological approaches. Utilizing\u0000state-of-the-art Deep Learning algorithms, it is eventually possible to train\u0000neural networks to learn non-linear and non-perturbative features of the\u0000physical processes. In this study, the prediction results of three trained\u0000ResNet networks are presented, by investigating charged particle multiplicities\u0000at event-by-event level. The widely used Lund string fragmentation model is\u0000applied as a training-baseline at $sqrt{s}= 7$ TeV proton-proton collisions.\u0000We found that neural-networks with $ gtrsimmathcal{O}(10^3)$ parameters can\u0000predict the event-by-event charged hadron multiplicity values up to $\u0000N_mathrm{ch}lesssim 90 $.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Broadband Multipole Method for Accelerated Mutual Coupling Analysis of Large Irregular Arrays Including Rotated Antennas 用于加速包括旋转天线在内的大型不规则阵列相互耦合分析的宽带多极子方法
Pub Date : 2024-08-30 DOI: arxiv-2409.00153
Quentin Gueuning, Eloy de Lera Acedo, Anthony Keith Brown, Christophe Craeye, Oscar O'Hara
We present a numerical method for the analysis of mutual coupling effects inlarge, dense and irregular arrays with identical antennas. Building on theMethod of Moments (MoM), our technique employs a Macro Basis Function (MBF)approach for rapid direct inversion of the MoM impedance matrix. To expeditethe reduced matrix filling, we propose an extension of the Steepest-DescentMultipole expansion which remains numerically stable and efficient across awide bandwidth. This broadband multipole-based approach is well suited toquasi-planar problems and requires only the pre-computation of each MBF'scomplex patterns, resulting in low antenna-dependent pre-processing costs. Themethod also supports arrays with arbitrarily rotated antennas at low additionalcost. A simulation of all embedded element patterns of irregular arrays of 256complex log-periodic antennas completes in just 10 minutes per frequency pointon a current laptop, with an additional minute per new layout.
我们提出了一种数值方法,用于分析具有相同天线的大型、密集和不规则阵列中的相互耦合效应。我们的技术以矩法(MoM)为基础,采用宏基函数(MBF)方法快速直接反演矩法阻抗矩阵。为了加快减少矩阵填充,我们提出了陡坡-下降多极子扩展,该扩展在数值上保持稳定,并在宽带范围内保持高效。这种基于宽带多极的方法非常适合准平面问题,只需要对每个 MBF 的复杂模式进行预计算,从而降低了与天线相关的预处理成本。该方法还支持任意旋转天线的阵列,额外成本低。对 256 个复杂对数周期天线的不规则阵列的所有嵌入元素图案进行仿真,在当前笔记本电脑上每个频点只需 10 分钟即可完成,每个新布局还需额外一分钟。
{"title":"A Broadband Multipole Method for Accelerated Mutual Coupling Analysis of Large Irregular Arrays Including Rotated Antennas","authors":"Quentin Gueuning, Eloy de Lera Acedo, Anthony Keith Brown, Christophe Craeye, Oscar O'Hara","doi":"arxiv-2409.00153","DOIUrl":"https://doi.org/arxiv-2409.00153","url":null,"abstract":"We present a numerical method for the analysis of mutual coupling effects in\u0000large, dense and irregular arrays with identical antennas. Building on the\u0000Method of Moments (MoM), our technique employs a Macro Basis Function (MBF)\u0000approach for rapid direct inversion of the MoM impedance matrix. To expedite\u0000the reduced matrix filling, we propose an extension of the Steepest-Descent\u0000Multipole expansion which remains numerically stable and efficient across a\u0000wide bandwidth. This broadband multipole-based approach is well suited to\u0000quasi-planar problems and requires only the pre-computation of each MBF's\u0000complex patterns, resulting in low antenna-dependent pre-processing costs. The\u0000method also supports arrays with arbitrarily rotated antennas at low additional\u0000cost. A simulation of all embedded element patterns of irregular arrays of 256\u0000complex log-periodic antennas completes in just 10 minutes per frequency point\u0000on a current laptop, with an additional minute per new layout.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconciling Kubo and Keldysh Approaches to Fermi-Sea-Dependent Nonequilibrium Observables: Application to Spin Hall Current and Spin-Orbit Torque in Spintronics 调和库勃法和凯尔迪什法的费米海洋非平衡观测值:自旋电子学中自旋霍尔电流和自旋轨道转矩的应用
Pub Date : 2024-08-29 DOI: arxiv-2408.16611
Simao M. Joao, Marko D. Petrovic, J. M. Viana Parente Lopes, Aires Ferreira, Branislav K. Nikolic
Quantum transport studies of spin-dependent phenomena in solids commonlyemploy the Kubo or Keldysh formulas for the steady-state density matrix in thelinear-response regime. Its trace with operators of interest -- such as, spindensity, spin current density or spin torque -- gives expectation values ofexperimentally accessible observables. For such local quantities, theseformulas require summing over the manifolds of {em both} Fermi-surface andFermi-sea quantum states. However, debates have been raging in the literatureabout vastly different physics the two formulations can apparently produce,even when applied to the same system. Here, we revisit this problem using atestbed of infinite-size graphene with proximity-induced spin-orbit andmagnetic exchange effects. By splitting this system into semi-infinite leadsand central active region, in the spirit of Landauer two-terminal setup forquantum transport, we prove the {em numerically exact equivalence} of the Kuboand Keldysh approaches via the computation of spin Hall current density andspin-orbit torque in both clean and disordered limits. The key to reconcilingthe two approaches are the numerical frameworks we develop for: ({em i})evaluation of Kubo(-Bastin) formula for a system attached to semi-infiniteleads, which ensure continuous energy spectrum and evade the need forphenomenological broadening in prior calculations; and ({em ii}) properevaluation of Fermi-sea term in the Keldysh approach, which {em must} includethe voltage drop across the central active region even if it is disorder free.
对固体中自旋依赖现象的量子输运研究通常采用 Kubo 或 Keldysh 公式来计算线性响应机制中的稳态密度矩阵。它与感兴趣的算子--如自旋密度、自旋电流密度或自旋转矩--的迹线给出了可通过实验获得的观测值的期望值。对于这些局部量,这些公式需要在{(或两者}的流形上求和。费米面量子态和费米海量子态。然而,关于这两种公式即使应用于同一系统也能产生截然不同的物理结果的争论一直在文献中激烈进行。在这里,我们使用具有近距离诱导的自旋轨道和磁交换效应的无限大石墨烯试验台重新探讨了这个问题。本着量子输运的兰道尔双端设置的精神,我们把这个系统分成半无限导线和中心活性区,通过计算清洁和无序极限的自旋霍尔电流密度和自旋轨道力矩,证明了库博和凯尔迪什方法的{数值精确等价}。调和这两种方法的关键是我们开发的数值框架:({em i})评估连接到半无限导线的系统的Kubo(-Bastin)公式,这确保了能谱的连续性,避免了先前计算中现象学展宽的需要;({em ii})对Keldysh方法中的费米海项进行预评估,这{em must}包括中心有源区的电压降,即使它是无序的。
{"title":"Reconciling Kubo and Keldysh Approaches to Fermi-Sea-Dependent Nonequilibrium Observables: Application to Spin Hall Current and Spin-Orbit Torque in Spintronics","authors":"Simao M. Joao, Marko D. Petrovic, J. M. Viana Parente Lopes, Aires Ferreira, Branislav K. Nikolic","doi":"arxiv-2408.16611","DOIUrl":"https://doi.org/arxiv-2408.16611","url":null,"abstract":"Quantum transport studies of spin-dependent phenomena in solids commonly\u0000employ the Kubo or Keldysh formulas for the steady-state density matrix in the\u0000linear-response regime. Its trace with operators of interest -- such as, spin\u0000density, spin current density or spin torque -- gives expectation values of\u0000experimentally accessible observables. For such local quantities, these\u0000formulas require summing over the manifolds of {em both} Fermi-surface and\u0000Fermi-sea quantum states. However, debates have been raging in the literature\u0000about vastly different physics the two formulations can apparently produce,\u0000even when applied to the same system. Here, we revisit this problem using a\u0000testbed of infinite-size graphene with proximity-induced spin-orbit and\u0000magnetic exchange effects. By splitting this system into semi-infinite leads\u0000and central active region, in the spirit of Landauer two-terminal setup for\u0000quantum transport, we prove the {em numerically exact equivalence} of the Kubo\u0000and Keldysh approaches via the computation of spin Hall current density and\u0000spin-orbit torque in both clean and disordered limits. The key to reconciling\u0000the two approaches are the numerical frameworks we develop for: ({em i})\u0000evaluation of Kubo(-Bastin) formula for a system attached to semi-infinite\u0000leads, which ensure continuous energy spectrum and evade the need for\u0000phenomenological broadening in prior calculations; and ({em ii}) proper\u0000evaluation of Fermi-sea term in the Keldysh approach, which {em must} include\u0000the voltage drop across the central active region even if it is disorder free.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PyFR v2.0.3: Towards Industrial Adoption of Scale-Resolving Simulations PyFR v2.0.3:实现规模解析模拟的工业应用
Pub Date : 2024-08-29 DOI: arxiv-2408.16509
Freddie D. Witherden, Peter E. Vincent, Will Trojak, Yoshiaki Abe, Amir Akbarzadeh, Semih Akkurt, Mohammad Alhawwary, Lidia Caros, Tarik Dzanic, Giorgio Giangaspero, Arvind S. Iyer, Antony Jameson, Marius Koch, Niki Loppi, Sambit Mishra, Rishit Modi, Gonzalo Sáez-Mischlich, Jin Seok Park, Brian C. Vermeire, Lai Wang
PyFR is an open-source cross-platform computational fluid dynamics frameworkbased on the high-order Flux Reconstruction approach, specifically designed forundertaking high-accuracy scale-resolving simulations in the vicinity ofcomplex engineering geometries. Since the initial release of PyFR v0.1.0 in2013, a range of new capabilities have been added to the framework, with a viewto enabling industrial adoption of the capability. This paper provides detailsof those enhancements as released in PyFR v2.0.3, explains efforts to grow anengaged developer and user community, and provides latest performance andscaling results on up to 1024 AMD Instinct MI250X accelerators of Frontier atORNL (each with two GCDs), and up to 2048 NVIDIA GH200 GPUs on Alps at CSCS.
PyFR 是基于高阶通量重建方法的开源跨平台计算流体动力学框架,专门用于在复杂工程几何体附近进行高精度尺度解析模拟。自 2013 年 PyFR v0.1.0 版本发布以来,该框架已添加了一系列新功能,以期实现工业应用。本文详细介绍了 PyFR v2.0.3 中发布的这些增强功能,解释了为发展一个充满活力的开发者和用户社区所做的努力,并提供了在位于 ORNL 的 Frontier 公司的多达 1024 个 AMD Instinct MI250X 加速器(每个加速器有两个 GCD)和位于 CSCS 的 Alps 公司的多达 2048 个 NVIDIA GH200 GPU 上的最新性能和扩展结果。
{"title":"PyFR v2.0.3: Towards Industrial Adoption of Scale-Resolving Simulations","authors":"Freddie D. Witherden, Peter E. Vincent, Will Trojak, Yoshiaki Abe, Amir Akbarzadeh, Semih Akkurt, Mohammad Alhawwary, Lidia Caros, Tarik Dzanic, Giorgio Giangaspero, Arvind S. Iyer, Antony Jameson, Marius Koch, Niki Loppi, Sambit Mishra, Rishit Modi, Gonzalo Sáez-Mischlich, Jin Seok Park, Brian C. Vermeire, Lai Wang","doi":"arxiv-2408.16509","DOIUrl":"https://doi.org/arxiv-2408.16509","url":null,"abstract":"PyFR is an open-source cross-platform computational fluid dynamics framework\u0000based on the high-order Flux Reconstruction approach, specifically designed for\u0000undertaking high-accuracy scale-resolving simulations in the vicinity of\u0000complex engineering geometries. Since the initial release of PyFR v0.1.0 in\u00002013, a range of new capabilities have been added to the framework, with a view\u0000to enabling industrial adoption of the capability. This paper provides details\u0000of those enhancements as released in PyFR v2.0.3, explains efforts to grow an\u0000engaged developer and user community, and provides latest performance and\u0000scaling results on up to 1024 AMD Instinct MI250X accelerators of Frontier at\u0000ORNL (each with two GCDs), and up to 2048 NVIDIA GH200 GPUs on Alps at CSCS.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistence of the N = 50 shell closure over the isotopic chains of Sc, Ti, V and Cr nuclei using relativistic energy density functional 利用相对论能量密度函数分析 N = 50 壳封闭在 Sc、Ti、V 和 Cr 核同位素链上的持续性
Pub Date : 2024-08-29 DOI: arxiv-2408.16588
Praveen K. Yadav, Raj Kumar, M. Bhuyan
The analytical expression of the density-dependent binding energy per nucleonfor the relativistic mean field (RMF), also known as the relativistic energydensity functional (Relativistic-EDF), is used to obtain the isospin-dependentsymmetry energy and its components for the isotopic chain of Sc, Ti, V, and Crnuclei. The procedure of the coherent density fluctuation model is employed toformulate the Relativistic-EDF and Brueckner energy density functional(Brueckner-EDF) at local density. A few signatures of shell and/or sub-shellclosure are observed in the symmetry energy and its components, i.e., surfaceand volume symmetry energy, far from the beta-stable region for odd-A Sc and V,and even-even Ti and Cr nuclei with non-linear NL3 and G3 parameter sets. Acomparison is made with the results obtained from Relativistic-EDF andBrueckner-EDF with both NL3 and G3 for the considered isotopic chains. We findRelativistic-EDF outperforms the Brueckner-EDF in predicting the shell and/orsub-shell closure of neutron-rich isotopes at N = 50 for these atomic nuclei.Moreover, a relative comparison has been made for the results obtained with thenon-linear NL3 and G3 parameter sets.
利用相对论平均场(RMF)(也称为相对论能量密度函数(Relativistic-EDF))中与密度相关的每个核子结合能的解析表达式,获得了Sc、Ti、V和Cr核同位素链的等空间素相关不对称能及其分量。利用相干密度波动模型的程序来计算局部密度下的相对论-EDF 和布鲁克纳能量密度函数(Brueckner-EDF)。对于具有非线性 NL3 和 G3 参数集的奇-A Sc 核和 V 核,以及偶-偶 Ti 核和 Cr 核,在对称能及其分量(即表面对称能和体积对称能)中观察到一些远离β稳定区的壳和/或亚壳封闭特征。对于所考虑的同位素链,我们对相对论-EDF 和布鲁克纳-EDF(同时具有 NL3 和 G3 参数集)得出的结果进行了比较。我们发现相对论-EDF 在预测 N = 50 时这些原子核的富中子同位素的壳和/或亚壳闭合方面优于 Brueckner-EDF。
{"title":"Persistence of the N = 50 shell closure over the isotopic chains of Sc, Ti, V and Cr nuclei using relativistic energy density functional","authors":"Praveen K. Yadav, Raj Kumar, M. Bhuyan","doi":"arxiv-2408.16588","DOIUrl":"https://doi.org/arxiv-2408.16588","url":null,"abstract":"The analytical expression of the density-dependent binding energy per nucleon\u0000for the relativistic mean field (RMF), also known as the relativistic energy\u0000density functional (Relativistic-EDF), is used to obtain the isospin-dependent\u0000symmetry energy and its components for the isotopic chain of Sc, Ti, V, and Cr\u0000nuclei. The procedure of the coherent density fluctuation model is employed to\u0000formulate the Relativistic-EDF and Brueckner energy density functional\u0000(Brueckner-EDF) at local density. A few signatures of shell and/or sub-shell\u0000closure are observed in the symmetry energy and its components, i.e., surface\u0000and volume symmetry energy, far from the beta-stable region for odd-A Sc and V,\u0000and even-even Ti and Cr nuclei with non-linear NL3 and G3 parameter sets. A\u0000comparison is made with the results obtained from Relativistic-EDF and\u0000Brueckner-EDF with both NL3 and G3 for the considered isotopic chains. We find\u0000Relativistic-EDF outperforms the Brueckner-EDF in predicting the shell and/or\u0000sub-shell closure of neutron-rich isotopes at N = 50 for these atomic nuclei.\u0000Moreover, a relative comparison has been made for the results obtained with the\u0000non-linear NL3 and G3 parameter sets.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated computational workflows for muon spin spectroscopy μ介子自旋光谱学的自动化计算工作流程
Pub Date : 2024-08-29 DOI: arxiv-2408.16722
Ifeanyi J. Onuorah, Miki Bonacci, Muhammad M. Isah, Marcello Mazzani, Roberto De Renzi, Giovanni Pizzi, Pietro Bonfa`
Positive muon spin rotation and relaxation spectroscopy is a well establishedexperimental technique for studying materials. It provides a local probe thatgenerally complements scattering techniques in the study of magnetic systemsand represents a valuable alternative for materials that display strongincoherent scattering or neutron absorption. Computational methods caneffectively quantify the microscopic interactions underlying the experimentallyobserved signal, thus substantially boosting the predictive power of thistechnique. Here, we present an efficient set of algorithms and workflowsdevoted to the automation of this task. In particular, we adopt the so-calledDFT+{mu} procedure, where the system is characterised in the densityfunctional theory (DFT) framework with the muon modeled as a hydrogen impurity.We devise an automated strategy to obtain candidate muon stopping sites, theirdipolar interaction with the nuclei, and hyperfine interactions with theelectronic ground state. We validate the implementation on well-studiedcompounds, showing the effectiveness of our protocol in terms of accuracy andsimplicity of use
正μ介子自旋旋转和弛豫光谱学是一种成熟的材料研究实验技术。它提供了一种局部探针,在磁性系统的研究中通常与散射技术相辅相成,对于显示出强相干散射或中子吸收的材料来说是一种有价值的替代方法。计算方法可以有效地量化实验观察到的信号背后的微观相互作用,从而大大提高这种技术的预测能力。在这里,我们提出了一套高效的算法和工作流程,专门用于实现这项任务的自动化。特别是,我们采用了所谓的DFT+{mu}程序,即在密度泛函理论(DFT)框架内对系统进行表征,并将μ介子建模为氢杂质。我们设计了一种自动化策略来获取候选的μ介子停滞点、它们与原子核的双极相互作用以及与电子基态的超频相互作用。我们在经过充分研究的化合物上验证了这一方法的实施,结果表明我们的方法在准确性和使用简便性方面都非常有效。
{"title":"Automated computational workflows for muon spin spectroscopy","authors":"Ifeanyi J. Onuorah, Miki Bonacci, Muhammad M. Isah, Marcello Mazzani, Roberto De Renzi, Giovanni Pizzi, Pietro Bonfa`","doi":"arxiv-2408.16722","DOIUrl":"https://doi.org/arxiv-2408.16722","url":null,"abstract":"Positive muon spin rotation and relaxation spectroscopy is a well established\u0000experimental technique for studying materials. It provides a local probe that\u0000generally complements scattering techniques in the study of magnetic systems\u0000and represents a valuable alternative for materials that display strong\u0000incoherent scattering or neutron absorption. Computational methods can\u0000effectively quantify the microscopic interactions underlying the experimentally\u0000observed signal, thus substantially boosting the predictive power of this\u0000technique. Here, we present an efficient set of algorithms and workflows\u0000devoted to the automation of this task. In particular, we adopt the so-called\u0000DFT+{mu} procedure, where the system is characterised in the density\u0000functional theory (DFT) framework with the muon modeled as a hydrogen impurity.\u0000We devise an automated strategy to obtain candidate muon stopping sites, their\u0000dipolar interaction with the nuclei, and hyperfine interactions with the\u0000electronic ground state. We validate the implementation on well-studied\u0000compounds, showing the effectiveness of our protocol in terms of accuracy and\u0000simplicity of use","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOLAX: A Python solver for fermionic quantum systems with neural network support SOLAX:神经网络支持的费米子量子系统 Python 求解器
Pub Date : 2024-08-29 DOI: arxiv-2408.16915
Louis Thirion, Philipp Hansmann, Pavlo Bilous
Numerical modeling of fermionic many-body quantum systems presents similarchallenges across various research domains, necessitating universal tools,including state-of-the-art machine learning techniques. Here, we introduceSOLAX, a Python library designed to compute and analyze fermionic quantumsystems using the formalism of second quantization. SOLAX provides a modularframework for constructing and manipulating basis sets, quantum states, andoperators, facilitating the simulation of electronic structures and determiningmany-body quantum states in finite-size Hilbert spaces. The library integratesmachine learning capabilities to mitigate the exponential growth of Hilbertspace dimensions in large quantum clusters. The core low-level functionalitiesare implemented using the recently developed Python library JAX. Demonstratedthrough its application to the Single Impurity Anderson Model, SOLAX offers aflexible and powerful tool for researchers addressing the challenges ofmany-body quantum systems across a broad spectrum of fields, including atomicphysics, quantum chemistry, and condensed matter physics.
费米子多体量子系统的数值建模在各个研究领域都面临着类似的挑战,因此需要通用的工具,包括最先进的机器学习技术。在此,我们介绍 SOLAX,这是一个 Python 库,旨在使用二次量子化形式计算和分析费米子量子系统。SOLAX 提供了一个模块化框架,用于构建和操作基集、量子态和运算器,便于模拟电子结构和确定有限大小希尔伯特空间中的多体量子态。该库集成了机器学习功能,以缓解大型量子集群中希尔伯特空间维度的指数级增长。其核心底层功能是通过最近开发的 Python 库 JAX 实现的。通过在单杂质安德森模型(Single Impurity Anderson Model)中的应用,SOLAX 为研究人员提供了灵活而强大的工具,帮助他们应对原子物理、量子化学和凝聚态物理等广泛领域的多体量子系统挑战。
{"title":"SOLAX: A Python solver for fermionic quantum systems with neural network support","authors":"Louis Thirion, Philipp Hansmann, Pavlo Bilous","doi":"arxiv-2408.16915","DOIUrl":"https://doi.org/arxiv-2408.16915","url":null,"abstract":"Numerical modeling of fermionic many-body quantum systems presents similar\u0000challenges across various research domains, necessitating universal tools,\u0000including state-of-the-art machine learning techniques. Here, we introduce\u0000SOLAX, a Python library designed to compute and analyze fermionic quantum\u0000systems using the formalism of second quantization. SOLAX provides a modular\u0000framework for constructing and manipulating basis sets, quantum states, and\u0000operators, facilitating the simulation of electronic structures and determining\u0000many-body quantum states in finite-size Hilbert spaces. The library integrates\u0000machine learning capabilities to mitigate the exponential growth of Hilbert\u0000space dimensions in large quantum clusters. The core low-level functionalities\u0000are implemented using the recently developed Python library JAX. Demonstrated\u0000through its application to the Single Impurity Anderson Model, SOLAX offers a\u0000flexible and powerful tool for researchers addressing the challenges of\u0000many-body quantum systems across a broad spectrum of fields, including atomic\u0000physics, quantum chemistry, and condensed matter physics.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification SympGNNs:用于识别高维哈密顿系统和节点分类的交映图神经网络
Pub Date : 2024-08-29 DOI: arxiv-2408.16698
Alan John Varghese, Zhen Zhang, George Em Karniadakis
Existing neural network models to learn Hamiltonian systems, such asSympNets, although accurate in low-dimensions, struggle to learn the correctdynamics for high-dimensional many-body systems. Herein, we introduceSymplectic Graph Neural Networks (SympGNNs) that can effectively handle systemidentification in high-dimensional Hamiltonian systems, as well as nodeclassification. SympGNNs combines symplectic maps with permutationequivariance, a property of graph neural networks. Specifically, we propose twovariants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from differentparameterizations of the kinetic and potential energy. We demonstrate thecapabilities of SympGNN on two physical examples: a 40-particle coupledHarmonic oscillator, and a 2000-particle molecular dynamics simulation in atwo-dimensional Lennard-Jones potential. Furthermore, we demonstrate theperformance of SympGNN in the node classification task, achieving accuracycomparable to the state-of-the-art. We also empirically show that SympGNN canovercome the oversmoothing and heterophily problems, two key challenges in thefield of graph neural networks.
现有的学习哈密顿系统的神经网络模型,如对称图神经网络(SympNets),虽然在低维度上很精确,但在学习高维度多体系统的正确动力学方面却举步维艰。在此,我们引入了折衷图神经网络(SympGNNs),它能有效处理高维哈密顿系统中的系统识别以及节点分类。SympGNNs 将交折射图与图神经网络的特性--置换方差结合起来。具体来说,我们提出了 SympGNNs 的两个变体:i)G-SympGNN 和 ii)LA-SympGNN,它们产生于动能和势能的不同参数化。我们在两个物理例子中演示了 SympGNN 的能力:一个 40 粒子耦合谐振子和一个 2000 粒子分子动力学模拟的二维伦纳德-琼斯势。此外,我们还证明了 SympGNN 在节点分类任务中的性能,其准确性可与最先进的技术相媲美。我们还通过实证证明,SympGNN 可以克服图神经网络领域的两大关键难题--过度平滑和异性问题。
{"title":"SympGNNs: Symplectic Graph Neural Networks for identifiying high-dimensional Hamiltonian systems and node classification","authors":"Alan John Varghese, Zhen Zhang, George Em Karniadakis","doi":"arxiv-2408.16698","DOIUrl":"https://doi.org/arxiv-2408.16698","url":null,"abstract":"Existing neural network models to learn Hamiltonian systems, such as\u0000SympNets, although accurate in low-dimensions, struggle to learn the correct\u0000dynamics for high-dimensional many-body systems. Herein, we introduce\u0000Symplectic Graph Neural Networks (SympGNNs) that can effectively handle system\u0000identification in high-dimensional Hamiltonian systems, as well as node\u0000classification. SympGNNs combines symplectic maps with permutation\u0000equivariance, a property of graph neural networks. Specifically, we propose two\u0000variants of SympGNNs: i) G-SympGNN and ii) LA-SympGNN, arising from different\u0000parameterizations of the kinetic and potential energy. We demonstrate the\u0000capabilities of SympGNN on two physical examples: a 40-particle coupled\u0000Harmonic oscillator, and a 2000-particle molecular dynamics simulation in a\u0000two-dimensional Lennard-Jones potential. Furthermore, we demonstrate the\u0000performance of SympGNN in the node classification task, achieving accuracy\u0000comparable to the state-of-the-art. We also empirically show that SympGNN can\u0000overcome the oversmoothing and heterophily problems, two key challenges in the\u0000field of graph neural networks.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Computational Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1