Pub Date : 2024-10-09DOI: 10.1007/s00285-024-02145-1
Burton Simon, Yaroslav Ispolatov, Michael Doebeli
We study a model of group-structured populations featuring individual-level birth and death events, and group-level fission and extinction events. Individuals play games within their groups, while groups play games against other groups. Payoffs from individual-level games affect birth rates of individuals, and payoffs from group-level games affect group extinction rates. We focus on the evolutionary dynamics of continuous traits with particular emphasis on the phenomenon of evolutionary diversification. Specifically, we consider two-level processes in which individuals and groups play continuous snowdrift or prisoner's dilemma games. Individual game strategies evolve due to selection pressure from both the individual and group level interactions. The resulting evolutionary dynamics turns out to be very complex, including branching and type-diversification at one level or the other. We observe that a weaker selection pressure at the individual level results in more adaptable groups and sometimes group-level branching. Stronger individual-level selection leads to more effective adaptation within each group while preventing the groups from adapting according to the group-level games.
{"title":"Evolutionary branching in multi-level selection models.","authors":"Burton Simon, Yaroslav Ispolatov, Michael Doebeli","doi":"10.1007/s00285-024-02145-1","DOIUrl":"10.1007/s00285-024-02145-1","url":null,"abstract":"<p><p>We study a model of group-structured populations featuring individual-level birth and death events, and group-level fission and extinction events. Individuals play games within their groups, while groups play games against other groups. Payoffs from individual-level games affect birth rates of individuals, and payoffs from group-level games affect group extinction rates. We focus on the evolutionary dynamics of continuous traits with particular emphasis on the phenomenon of evolutionary diversification. Specifically, we consider two-level processes in which individuals and groups play continuous snowdrift or prisoner's dilemma games. Individual game strategies evolve due to selection pressure from both the individual and group level interactions. The resulting evolutionary dynamics turns out to be very complex, including branching and type-diversification at one level or the other. We observe that a weaker selection pressure at the individual level results in more adaptable groups and sometimes group-level branching. Stronger individual-level selection leads to more effective adaptation within each group while preventing the groups from adapting according to the group-level games.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1007/s00285-024-02149-x
Kevin Leder, Ruping Sun, Zicheng Wang, Xuanming Zhang
In this study, we develop consistent estimators for key parameters that govern the dynamics of tumor cell populations when subjected to pharmacological treatments. While these treatments often lead to an initial reduction in the abundance of drug-sensitive cells, a population of drug-resistant cells frequently emerges over time, resulting in cancer recurrence. Samples from recurrent tumors present as an invaluable data source that can offer crucial insights into the ability of cancer cells to adapt and withstand treatment interventions. To effectively utilize the data obtained from recurrent tumors, we derive several large number limit theorems, specifically focusing on the metrics that quantify the clonal diversity of cancer cell populations at the time of cancer recurrence. These theorems then serve as the foundation for constructing our estimators. A distinguishing feature of our approach is that our estimators only require a single time-point sequencing data from a single tumor, thereby enhancing the practicality of our approach and enabling the understanding of cancer recurrence at the individual level.
{"title":"Parameter estimation from single patient, single time-point sequencing data of recurrent tumors.","authors":"Kevin Leder, Ruping Sun, Zicheng Wang, Xuanming Zhang","doi":"10.1007/s00285-024-02149-x","DOIUrl":"10.1007/s00285-024-02149-x","url":null,"abstract":"<p><p>In this study, we develop consistent estimators for key parameters that govern the dynamics of tumor cell populations when subjected to pharmacological treatments. While these treatments often lead to an initial reduction in the abundance of drug-sensitive cells, a population of drug-resistant cells frequently emerges over time, resulting in cancer recurrence. Samples from recurrent tumors present as an invaluable data source that can offer crucial insights into the ability of cancer cells to adapt and withstand treatment interventions. To effectively utilize the data obtained from recurrent tumors, we derive several large number limit theorems, specifically focusing on the metrics that quantify the clonal diversity of cancer cell populations at the time of cancer recurrence. These theorems then serve as the foundation for constructing our estimators. A distinguishing feature of our approach is that our estimators only require a single time-point sequencing data from a single tumor, thereby enhancing the practicality of our approach and enabling the understanding of cancer recurrence at the individual level.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1007/s00285-024-02144-2
Tobias Duswald, Lukas Breitwieser, Thomas Thorne, Barbara Wohlmuth, Roman Bauer
Understanding how genetically encoded rules drive and guide complex neuronal growth processes is essential to comprehending the brain's architecture, and agent-based models (ABMs) offer a powerful simulation approach to further develop this understanding. However, accurately calibrating these models remains a challenge. Here, we present a novel application of Approximate Bayesian Computation (ABC) to address this issue. ABMs are based on parametrized stochastic rules that describe the time evolution of small components-the so-called agents-discretizing the system, leading to stochastic simulations that require appropriate treatment. Mathematically, the calibration defines a stochastic inverse problem. We propose to address it in a Bayesian setting using ABC. We facilitate the repeated comparison between data and simulations by quantifying the morphological information of single neurons with so-called morphometrics and resort to statistical distances to measure discrepancies between populations thereof. We conduct experiments on synthetic as well as experimental data. We find that ABC utilizing Sequential Monte Carlo sampling and the Wasserstein distance finds accurate posterior parameter distributions for representative ABMs. We further demonstrate that these ABMs capture specific features of pyramidal cells of the hippocampus (CA1). Overall, this work establishes a robust framework for calibrating agent-based neuronal growth models and opens the door for future investigations using Bayesian techniques for model building, verification, and adequacy assessment.
{"title":"Calibration of stochastic, agent-based neuron growth models with approximate Bayesian computation.","authors":"Tobias Duswald, Lukas Breitwieser, Thomas Thorne, Barbara Wohlmuth, Roman Bauer","doi":"10.1007/s00285-024-02144-2","DOIUrl":"10.1007/s00285-024-02144-2","url":null,"abstract":"<p><p>Understanding how genetically encoded rules drive and guide complex neuronal growth processes is essential to comprehending the brain's architecture, and agent-based models (ABMs) offer a powerful simulation approach to further develop this understanding. However, accurately calibrating these models remains a challenge. Here, we present a novel application of Approximate Bayesian Computation (ABC) to address this issue. ABMs are based on parametrized stochastic rules that describe the time evolution of small components-the so-called agents-discretizing the system, leading to stochastic simulations that require appropriate treatment. Mathematically, the calibration defines a stochastic inverse problem. We propose to address it in a Bayesian setting using ABC. We facilitate the repeated comparison between data and simulations by quantifying the morphological information of single neurons with so-called morphometrics and resort to statistical distances to measure discrepancies between populations thereof. We conduct experiments on synthetic as well as experimental data. We find that ABC utilizing Sequential Monte Carlo sampling and the Wasserstein distance finds accurate posterior parameter distributions for representative ABMs. We further demonstrate that these ABMs capture specific features of pyramidal cells of the hippocampus (CA1). Overall, this work establishes a robust framework for calibrating agent-based neuronal growth models and opens the door for future investigations using Bayesian techniques for model building, verification, and adequacy assessment.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-06DOI: 10.1007/s00285-024-02148-y
Hasan Haq, Pedro H T Schimit, Mark Broom
Evolutionary graph theory has considerably advanced the process of modelling the evolution of structured populations, which models the interactions between individuals as pairwise contests. In recent years, these classical evolution models have been extended to incorporate more realistic features, e.g. multiplayer games. A recent series of papers have developed a new evolutionary framework including structure, multiplayer interactions, evolutionary dynamics, and movement. However, so far, the developed models have mainly considered independent movement without coordinated behaviour. Although the theory underlying the framework has been developed and explored in various directions, several movement mechanisms have been produced which characterise coordinated movement, for example, herding. By embedding these newly constructed movement distributions, within the evolutionary setting of the framework, we demonstrate that certain levels of aggregation and dispersal benefit specific types of individuals. Moreover, by extending existing parameters within the framework, we are not only able to develop a general process of embedding any of the considered movement distributions into the evolutionary setting on complete graphs but also analytically produce the probability of fixation of a mutant on a complete N-sized network, for the multiplayer Public Goods and Hawk-Dove games. Also, by applying weak selection methods, we extended existing previous analyses on the pairwise Hawk-Dove Game to encompass the multiplayer version considered in this paper. By producing neutrality and equilibrium conditions, we show that hawks generally do worse in our models due to the multiplayer nature of the interactions.
进化图论极大地推动了结构化种群进化的建模进程,它将个体间的相互作用建模为成对竞赛。近年来,这些经典的进化模型得到了扩展,纳入了更现实的特征,如多人游戏。最近的一系列论文提出了一个新的进化框架,包括结构、多人互动、进化动力学和运动。然而,迄今为止,所开发的模型主要考虑的是独立运动而非协调行为。虽然该框架的基础理论已经在不同方向上得到了发展和探索,但已经产生了几种运动机制,这些机制具有协调运动的特点,例如群居。通过将这些新构建的运动分布嵌入该框架的进化环境中,我们证明了某些程度的聚集和分散有利于特定类型的个体。此外,通过扩展框架内的现有参数,我们不仅能开发出将任何考虑过的运动分布嵌入到完整图的进化环境中的一般过程,还能分析出在一个完整的 N 大小网络中,突变体在多人公共物品游戏和鹰鸽游戏中的固定概率。此外,通过应用弱选择方法,我们扩展了之前对成对鹰鸽博弈的分析,将本文考虑的多人版本也包括在内。通过得出中性和均衡条件,我们表明,在我们的模型中,由于互动的多人性质,鹰通常表现较差。
{"title":"The effects of herding and dispersal behaviour on the evolution of cooperation on complete networks.","authors":"Hasan Haq, Pedro H T Schimit, Mark Broom","doi":"10.1007/s00285-024-02148-y","DOIUrl":"10.1007/s00285-024-02148-y","url":null,"abstract":"<p><p>Evolutionary graph theory has considerably advanced the process of modelling the evolution of structured populations, which models the interactions between individuals as pairwise contests. In recent years, these classical evolution models have been extended to incorporate more realistic features, e.g. multiplayer games. A recent series of papers have developed a new evolutionary framework including structure, multiplayer interactions, evolutionary dynamics, and movement. However, so far, the developed models have mainly considered independent movement without coordinated behaviour. Although the theory underlying the framework has been developed and explored in various directions, several movement mechanisms have been produced which characterise coordinated movement, for example, herding. By embedding these newly constructed movement distributions, within the evolutionary setting of the framework, we demonstrate that certain levels of aggregation and dispersal benefit specific types of individuals. Moreover, by extending existing parameters within the framework, we are not only able to develop a general process of embedding any of the considered movement distributions into the evolutionary setting on complete graphs but also analytically produce the probability of fixation of a mutant on a complete N-sized network, for the multiplayer Public Goods and Hawk-Dove games. Also, by applying weak selection methods, we extended existing previous analyses on the pairwise Hawk-Dove Game to encompass the multiplayer version considered in this paper. By producing neutrality and equilibrium conditions, we show that hawks generally do worse in our models due to the multiplayer nature of the interactions.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1007/s00285-024-02142-4
Tomás M Coronado, Gabriel Riera, Francesc Rosselló
Faith's Phylogenetic Diversity (PD) on rooted phylogenetic trees satisfies the so-called strong exchange property that guarantees that, for every two sets of leaves of different cardinalities, a leaf can always be moved from the larger set to the smaller set in such a way that the sum of the PD values does not decrease. This strong exchange property entails a simple polynomial-time greedy solution to the PD optimization problem on rooted phylogenetic trees. In this paper we obtain an exchange property for the rooted Phylogenetic Subnet Diversity (rPSD) on rooted phylogenetic networks, which involves a more complicated exchange of leaves. We derive from it a polynomial-time greedy solution to the rPSD optimization problem on rooted semibinary level-2 phylogenetic networks.
{"title":"An interchange property for the rooted phylogenetic subnet diversity on phylogenetic networks.","authors":"Tomás M Coronado, Gabriel Riera, Francesc Rosselló","doi":"10.1007/s00285-024-02142-4","DOIUrl":"10.1007/s00285-024-02142-4","url":null,"abstract":"<p><p>Faith's Phylogenetic Diversity (PD) on rooted phylogenetic trees satisfies the so-called strong exchange property that guarantees that, for every two sets of leaves of different cardinalities, a leaf can always be moved from the larger set to the smaller set in such a way that the sum of the PD values does not decrease. This strong exchange property entails a simple polynomial-time greedy solution to the PD optimization problem on rooted phylogenetic trees. In this paper we obtain an exchange property for the rooted Phylogenetic Subnet Diversity (rPSD) on rooted phylogenetic networks, which involves a more complicated exchange of leaves. We derive from it a polynomial-time greedy solution to the rPSD optimization problem on rooted semibinary level-2 phylogenetic networks.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1007/s00285-024-02146-0
Mason Liang, Mikhail Shishkin, Vladimir Shchur, Rasmus Nielsen
Estimation of admixture proportions has become one of the most commonly used computational tools in population genomics. However, there is remarkably little population genetic theory on statistical properties of these variables. We develop theoretical results that can accurately predict means and variances of admixture proportions within a population using models with recombination and genetic drift. Based on established theory on measures of multilocus disequilibrium, we show that there is a set of recurrence relations that can be used to derive expectations for higher moments of the admixture proportions distribution. We obtain closed form solutions for some special cases. Using these results, we develop a method for estimating admixture parameters from estimated admixture proportions obtained from programs such as Structure or Admixture. We apply this method to HapMap 3 data and find that the population history of African Americans, as expected, is not best explained by a single admixture event between people of European and African ancestry. The model of constant gene flow starting at 8 generations and ending at 2 generations before present gives the best fit.
{"title":"Understanding admixture fractions: theory and estimation of gene-flow.","authors":"Mason Liang, Mikhail Shishkin, Vladimir Shchur, Rasmus Nielsen","doi":"10.1007/s00285-024-02146-0","DOIUrl":"10.1007/s00285-024-02146-0","url":null,"abstract":"<p><p>Estimation of admixture proportions has become one of the most commonly used computational tools in population genomics. However, there is remarkably little population genetic theory on statistical properties of these variables. We develop theoretical results that can accurately predict means and variances of admixture proportions within a population using models with recombination and genetic drift. Based on established theory on measures of multilocus disequilibrium, we show that there is a set of recurrence relations that can be used to derive expectations for higher moments of the admixture proportions distribution. We obtain closed form solutions for some special cases. Using these results, we develop a method for estimating admixture parameters from estimated admixture proportions obtained from programs such as Structure or Admixture. We apply this method to HapMap 3 data and find that the population history of African Americans, as expected, is not best explained by a single admixture event between people of European and African ancestry. The model of constant gene flow starting at 8 generations and ending at 2 generations before present gives the best fit.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1007/s00285-024-02143-3
Manuel Esser, Anna Kraut
We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph . The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541-358, 2019) and Coquille et al. (Electron J Probab 26:1-37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.
我们考虑了一个基于随机个体的有限特征图 G = ( V , E ) 上的适应动态模型。演化由线性出生率、依赖密度的对数死亡率以及 E 中有向边的突变可能性驱动。我们研究了同时发散的种群规模下的小突变率极限。为了缩小 Bovier 等人(Ann Appl Probab 29(6):3541-358, 2019)和 Coquille 等人(Electron J Probab 26:1-37, 2021)之间的差距,我们给出了进化稳定条件(ESC)之间过渡的精确描述,在ESC条件下,需要多次突变才能越过适应性景观中的山谷。该系统在几个不同的时间尺度上表现出一种易变行为,这些时间尺度与这些适应度谷的宽度相对应。我们建立了一个元图框架,它由 ESC 和它们之间可能的蜕变构成。这样就可以简明扼要地描述由多个跃迁串联而成的多尺度跃迁链。最后,对于每种不同的时间尺度,我们都证明了种群过程收敛于一个马尔可夫跳跃过程,该过程只访问具有足够高稳定性的ESC。
{"title":"A general multi-scale description of metastable adaptive motion across fitness valleys.","authors":"Manuel Esser, Anna Kraut","doi":"10.1007/s00285-024-02143-3","DOIUrl":"10.1007/s00285-024-02143-3","url":null,"abstract":"<p><p>We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph <math><mrow><mi>G</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo>)</mo></mrow> </math> . The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541-358, 2019) and Coquille et al. (Electron J Probab 26:1-37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1007/s00285-024-02147-z
Vincent Bansaye, François Deslandes, Madeleine Kubasch, Elisabeta Vergu
Models with several levels of mixing (households, workplaces), as well as various corresponding formulations for , have been proposed in the literature. However, little attention has been paid to the impact of the distribution of the population size within social structures, effect that can help plan effective interventions. We focus on the influence on the model outcomes of teleworking strategies, consisting in reshaping the distribution of workplace sizes. We consider a stochastic SIR model with two levels of mixing, accounting for a uniformly mixing general population, each individual belonging also to a household and a workplace. The variance of the workplace size distribution appears to be a good proxy for the impact of this distribution on key outcomes of the epidemic, such as epidemic size and peak. In particular, our findings suggest that strategies where the proportion of individuals teleworking depends sublinearly on the size of the workplace outperform the strategy with linear dependence. Besides, one drawback of the model with multiple levels of mixing is its complexity, raising interest in a reduced model. We propose a homogeneously mixing SIR ODE-based model, whose infection rate is chosen as to observe the growth rate of the initial model. This reduced model yields a generally satisfying approximation of the epidemic. These results, robust to various changes in model structure, are very promising from the perspective of implementing effective strategies based on social distancing of specific contacts. Furthermore, they contribute to the effort of building relevant approximations of individual based models at intermediate scales.
文献中提出了多个混合层次(家庭、工作场所)的模型以及 R 0 的各种相应公式。然而,人们很少关注社会结构中人口规模分布的影响,而这种影响有助于规划有效的干预措施。我们将重点放在远程工作策略对模型结果的影响上,包括重塑工作场所规模的分布。我们考虑的是一个具有两级混合的随机 SIR 模型,即一个均匀混合的普通人群,每个人同时属于一个家庭和一个工作场所。工作场所规模分布的方差似乎可以很好地反映该分布对流行病主要结果(如流行病规模和高峰)的影响。特别是,我们的研究结果表明,远程工作的个人比例与工作场所规模呈亚线性关系的策略优于线性关系的策略。此外,多级混合模型的一个缺点是其复杂性,这引起了人们对简化模型的兴趣。我们提出了一种基于 SIR ODE 的同质混合模型,其感染率的选择是为了观察初始模型的增长率。这种简化模型可以得到一个基本令人满意的流行病近似值。这些结果对模型结构的各种变化都很稳健,从实施基于特定接触者社会距离的有效策略的角度来看,这些结果是非常有前景的。此外,它们还有助于在中间尺度上建立基于个体的相关近似模型。
{"title":"The epidemiological footprint of contact structures in models with two levels of mixing.","authors":"Vincent Bansaye, François Deslandes, Madeleine Kubasch, Elisabeta Vergu","doi":"10.1007/s00285-024-02147-z","DOIUrl":"10.1007/s00285-024-02147-z","url":null,"abstract":"<p><p>Models with several levels of mixing (households, workplaces), as well as various corresponding formulations for <math><msub><mi>R</mi> <mn>0</mn></msub> </math> , have been proposed in the literature. However, little attention has been paid to the impact of the distribution of the population size within social structures, effect that can help plan effective interventions. We focus on the influence on the model outcomes of teleworking strategies, consisting in reshaping the distribution of workplace sizes. We consider a stochastic SIR model with two levels of mixing, accounting for a uniformly mixing general population, each individual belonging also to a household and a workplace. The variance of the workplace size distribution appears to be a good proxy for the impact of this distribution on key outcomes of the epidemic, such as epidemic size and peak. In particular, our findings suggest that strategies where the proportion of individuals teleworking depends sublinearly on the size of the workplace outperform the strategy with linear dependence. Besides, one drawback of the model with multiple levels of mixing is its complexity, raising interest in a reduced model. We propose a homogeneously mixing SIR ODE-based model, whose infection rate is chosen as to observe the growth rate of the initial model. This reduced model yields a generally satisfying approximation of the epidemic. These results, robust to various changes in model structure, are very promising from the perspective of implementing effective strategies based on social distancing of specific contacts. Furthermore, they contribute to the effort of building relevant approximations of individual based models at intermediate scales.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1007/s00285-024-02140-6
Jie Wang, Chuanhui Zhu, Jian Wang, Liang Zhang
Based on the patchy habitats of mistletoes and the mutualistic relationship between mistletoes and birds, we propose a mistletoe-bird model on a weighted network that is described by discrete Laplacian operators. Without considering mistletoes, the dynamics of a model of birds is investigated by a threshold parameter. Under the premise of the persistence of birds, the existence and uniqueness of solutions of a mistletoe-bird model are established, and the stability of solutions of the model is discussed by the ecological reproduction index , specifically, mistletoes go extinct when , and mistletoes coexist with birds when . Moreover, we show that network weights can induce changes of instantaneous dynamics of birds or mistletoes by the matrix perturbation method. By assuming that the weighted network is a river network and a star network, we simulate the extinction of mistletoes and the coexistence of mistletoes with birds, respectively.
基于槲寄生栖息地的斑块性以及槲寄生与鸟类之间的互惠关系,我们提出了一个加权网络上的槲寄生-鸟类模型,该模型由离散拉普拉斯算子描述。在不考虑槲寄生的情况下,通过一个阈值参数来研究鸟类模型的动态。在鸟类持续存在的前提下,建立了槲寄生-鸟类模型解的存在性和唯一性,并通过生态繁殖指数 R 0 m 讨论了模型解的稳定性,具体来说,当 R 0 m 1 时,槲寄生灭绝;当 R 0 m > 1 时,槲寄生与鸟类共存。此外,我们还通过矩阵扰动法证明了网络权重可以引起鸟类或槲寄生的瞬时动态变化。通过假设加权网络为河网和星网,我们分别模拟了槲寄生的灭绝和槲寄生与鸟类的共存。
{"title":"Dynamics of a mistletoe-bird model on a weighted network.","authors":"Jie Wang, Chuanhui Zhu, Jian Wang, Liang Zhang","doi":"10.1007/s00285-024-02140-6","DOIUrl":"10.1007/s00285-024-02140-6","url":null,"abstract":"<p><p>Based on the patchy habitats of mistletoes and the mutualistic relationship between mistletoes and birds, we propose a mistletoe-bird model on a weighted network that is described by discrete Laplacian operators. Without considering mistletoes, the dynamics of a model of birds is investigated by a threshold parameter. Under the premise of the persistence of birds, the existence and uniqueness of solutions of a mistletoe-bird model are established, and the stability of solutions of the model is discussed by the ecological reproduction index <math><msubsup><mi>R</mi> <mn>0</mn> <mi>m</mi></msubsup> </math> , specifically, mistletoes go extinct when <math> <mrow><msubsup><mi>R</mi> <mn>0</mn> <mi>m</mi></msubsup> <mo><</mo> <mn>1</mn></mrow> </math> , and mistletoes coexist with birds when <math> <mrow><msubsup><mi>R</mi> <mn>0</mn> <mi>m</mi></msubsup> <mo>></mo> <mn>1</mn></mrow> </math> . Moreover, we show that network weights can induce changes of instantaneous dynamics of birds or mistletoes by the matrix perturbation method. By assuming that the weighted network is a river network and a star network, we simulate the extinction of mistletoes and the coexistence of mistletoes with birds, respectively.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s00285-024-02141-5
Aili Wang, Duo Bai, Jingming He, Stacey R Smith
Hand, foot and mouth disease (HFMD) is a Class C infectious disease that carries particularly high risk for preschool children and is a leading cause of childhood death in some countries. We mimic the periodic outbreak of HFMD over a 2-year period-with differing amplitudes-and propose a dynamic HFMD model that differentiates transmission between mature and immature individuals and uses two possible optimal-control strategies to minimize case numbers, total costs and deaths. We parameterized the model by fitting it to HFMD data in mainland China from January 2011 to December 2018, and the basic reproduction number was estimated as 0.9599. Sensitivity analysis demonstrates that transmission between immature and mature individuals contributes substantially to new infections. Increasing the isolation rates of infectious individuals-particularly mature infectious individuals-could greatly reduce the outbreak risk and potentially eradicate the disease in a relatively short time period. It follows that we have a reasonable chance of controlling HFMD if we can reduce transmission in children under 7 and isolate older infectious individuals.
{"title":"Optimal control of bi-seasonal hand, foot and mouth disease in mainland China suggests transmission from children and isolating older infected individuals are critical.","authors":"Aili Wang, Duo Bai, Jingming He, Stacey R Smith","doi":"10.1007/s00285-024-02141-5","DOIUrl":"10.1007/s00285-024-02141-5","url":null,"abstract":"<p><p>Hand, foot and mouth disease (HFMD) is a Class C infectious disease that carries particularly high risk for preschool children and is a leading cause of childhood death in some countries. We mimic the periodic outbreak of HFMD over a 2-year period-with differing amplitudes-and propose a dynamic HFMD model that differentiates transmission between mature and immature individuals and uses two possible optimal-control strategies to minimize case numbers, total costs and deaths. We parameterized the model by fitting it to HFMD data in mainland China from January 2011 to December 2018, and the basic reproduction number was estimated as 0.9599. Sensitivity analysis demonstrates that transmission between immature and mature individuals contributes substantially to new infections. Increasing the isolation rates of infectious individuals-particularly mature infectious individuals-could greatly reduce the outbreak risk and potentially eradicate the disease in a relatively short time period. It follows that we have a reasonable chance of controlling HFMD if we can reduce transmission in children under 7 and isolate older infectious individuals.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}