Pub Date : 2024-07-02eCollection Date: 2024-10-01DOI: 10.1093/jmammal/gyae070
Chelsea L Andreozzi, Adina M Merenlender
Bats are among the least well-known mammals, particularly in terms of their behavior and activity patterns during the winter. Here, we use passive acoustic monitoring to overcome some of the challenges inherent in surveying cryptic forest bats during the wet season to quantify overwintering behavior for 11 species in California coast redwood forests under varying microclimates. Because different species are active at different forest heights, we also examined the effect of acoustic detector placement (treetop or ground level). Generalized linear mixed models were used to relate acoustic detection probability for 8 species to daytime and nighttime temperature, relative humidity, water vapor pressure, and detector placement. The results indicate that daytime maximum temperature best explained variation in nightly probability of detection, and temperature threshold at which bats were predicted to be detected varied considerably across species. By using more precise species detection methods, we were able to resolve significant differences in activity patterns between Myotis yumanensis and M. californicus, 2 species with similar acoustic signatures that are often lumped together. Myotis californicus was predicted to have a 50% probability of detection at maximum daytime temperature as low as 12.5 °C, whereas M. yumanensis was not predicted to have 50% detection probability until maximum daytime temperature was at least 22 °C, suggesting that M. californicus spends less time in torpor. Also, monitoring at the top of the canopy revealed 4 migratory species to be present in the ecosystem on significantly more monitoring nights than could be observed using conventional ground-based monitoring methods. Improving winter bat survey methods provides evidence that diverse bat species are more active in redwood forests during the winter than previously documented. This finding suggests that coastal forests could provide important winter bat habitat for both resident and migratory species.
{"title":"Microclimatic drivers of winter bat activity in coast redwood forests.","authors":"Chelsea L Andreozzi, Adina M Merenlender","doi":"10.1093/jmammal/gyae070","DOIUrl":"https://doi.org/10.1093/jmammal/gyae070","url":null,"abstract":"<p><p>Bats are among the least well-known mammals, particularly in terms of their behavior and activity patterns during the winter. Here, we use passive acoustic monitoring to overcome some of the challenges inherent in surveying cryptic forest bats during the wet season to quantify overwintering behavior for 11 species in California coast redwood forests under varying microclimates. Because different species are active at different forest heights, we also examined the effect of acoustic detector placement (treetop or ground level). Generalized linear mixed models were used to relate acoustic detection probability for 8 species to daytime and nighttime temperature, relative humidity, water vapor pressure, and detector placement. The results indicate that daytime maximum temperature best explained variation in nightly probability of detection, and temperature threshold at which bats were predicted to be detected varied considerably across species. By using more precise species detection methods, we were able to resolve significant differences in activity patterns between <i>Myotis yumanensis</i> and <i>M. californicus</i>, 2 species with similar acoustic signatures that are often lumped together. <i>Myotis californicus</i> was predicted to have a 50% probability of detection at maximum daytime temperature as low as 12.5 °C, whereas <i>M. yumanensis</i> was not predicted to have 50% detection probability until maximum daytime temperature was at least 22 °C, suggesting that <i>M. californicus</i> spends less time in torpor. Also, monitoring at the top of the canopy revealed 4 migratory species to be present in the ecosystem on significantly more monitoring nights than could be observed using conventional ground-based monitoring methods. Improving winter bat survey methods provides evidence that diverse bat species are more active in redwood forests during the winter than previously documented. This finding suggests that coastal forests could provide important winter bat habitat for both resident and migratory species.</p>","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"105 5","pages":"988-1000"},"PeriodicalIF":1.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis S Proudman, Landon R Jones, Morgan O Watkins, Elizabeth A Flaherty
During a limited period in the summer of 2021, 17-year cicada species (Magicicada cassini, M. septendecula, M. septendecim) represented a large pulse of easily accessible food unique to forest ecosystems in the eastern United States. Using trail cameras and acoustic recorders, we tested whether the activity levels of 8 mammal species in northwestern Indiana shifted in response to spatial and temporal variation in cicada densities from 18 May to 20 June 2021. Cicada densities varied temporally and spatially across all study sites. Most mammal species with sufficient data showed no response to cicada emergence, including 2 tree squirrel species, Peromyscus mice, Eastern Chipmunks (Tamias striatus), and 2 species of bats. Raccoons (Procyon lotor), likely cicada predators, showed a quadratic or more complex activity response to cicada abundance, indicating a potential saturation point at densities near 1 cicada per m2. Surprisingly, White-tailed Deer (Odocoileus virginianus) activity decreased to almost 0 at the same cicada densities when we expected no change in activity. While size or accessibility may exclude cicadas as prey for small and volant mammals, our results suggest predation and satiation by Raccoons. In contrast, deer may be avoiding areas of cicada abundance due to other stimuli, such as high noise output, which may decrease their ability to detect predators.
{"title":"Activity responses of a mammal community to a 17-year cicada emergence event","authors":"Alexis S Proudman, Landon R Jones, Morgan O Watkins, Elizabeth A Flaherty","doi":"10.1093/jmammal/gyae062","DOIUrl":"https://doi.org/10.1093/jmammal/gyae062","url":null,"abstract":"During a limited period in the summer of 2021, 17-year cicada species (Magicicada cassini, M. septendecula, M. septendecim) represented a large pulse of easily accessible food unique to forest ecosystems in the eastern United States. Using trail cameras and acoustic recorders, we tested whether the activity levels of 8 mammal species in northwestern Indiana shifted in response to spatial and temporal variation in cicada densities from 18 May to 20 June 2021. Cicada densities varied temporally and spatially across all study sites. Most mammal species with sufficient data showed no response to cicada emergence, including 2 tree squirrel species, Peromyscus mice, Eastern Chipmunks (Tamias striatus), and 2 species of bats. Raccoons (Procyon lotor), likely cicada predators, showed a quadratic or more complex activity response to cicada abundance, indicating a potential saturation point at densities near 1 cicada per m2. Surprisingly, White-tailed Deer (Odocoileus virginianus) activity decreased to almost 0 at the same cicada densities when we expected no change in activity. While size or accessibility may exclude cicadas as prey for small and volant mammals, our results suggest predation and satiation by Raccoons. In contrast, deer may be avoiding areas of cicada abundance due to other stimuli, such as high noise output, which may decrease their ability to detect predators.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"80 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebecca M Windell, Larissa L Bailey, Travis M Livieri, David A Eads, Dean E Biggins, Stewart W Breck
The consequences of intraguild predation on vulnerable subordinate species are an important consideration in the recovery of endangered species. In prairie ecosystems, coyotes (Canis latrans) are the primary predator of endangered black-footed ferrets (Mustela nigripes; hereafter, ferrets) and presumably compete for prairie dog (Cynomys spp.) prey. Coyote predation of ferrets is thought to occur at night when ferrets are active aboveground; however, the apparent source of competition, diurnal prairie dogs, are belowground and inaccessible to coyotes at this time, presenting a perplexing temporal mismatch between actual and expected times that coyotes and ferrets come into conflict. Our study used remote wildlife cameras, occupancy models, and overlap of circadian activity patterns to investigate how landscape features, prairie dog colony attributes, and attraction to sympatric species, i.e., American badgers (Taxidea taxus; hereafter, badgers) and lagomorphs (cottontail rabbits and jackrabbits) influence Coyote use of prairie dog colonies and potential Coyote–ferret interactions. We first evaluated Coyote use (i.e., occupancy) between prairie dog colonies and surrounding available grasslands, finding that coyotes whose home ranges include prairie dog colonies used colonies nearly twice as much as surrounding grasslands. Next, we investigated biotic and abiotic factors that may influence Coyote use and frequency of use (i.e., detection probability) on prairie dog colonies. We found high Coyote use across all areas on prairie dog colonies; however, their frequency of use increased in areas that were also used by badgers. High overlap between Coyote and badger activity patterns (81%) further supports the spatial use patterns revealed by our occupancy analysis, and badgers and coyotes are known to form hunting associations. Interspecific competition and overlapping patterns of resource use between badgers and ferrets have been documented in previous studies; our study supports these findings and suggests that Coyote attraction to badger activity may influence Coyote–ferret interactions.
{"title":"Coyote use of prairie dog colonies is most frequent in areas used by American badgers","authors":"Rebecca M Windell, Larissa L Bailey, Travis M Livieri, David A Eads, Dean E Biggins, Stewart W Breck","doi":"10.1093/jmammal/gyae066","DOIUrl":"https://doi.org/10.1093/jmammal/gyae066","url":null,"abstract":"The consequences of intraguild predation on vulnerable subordinate species are an important consideration in the recovery of endangered species. In prairie ecosystems, coyotes (Canis latrans) are the primary predator of endangered black-footed ferrets (Mustela nigripes; hereafter, ferrets) and presumably compete for prairie dog (Cynomys spp.) prey. Coyote predation of ferrets is thought to occur at night when ferrets are active aboveground; however, the apparent source of competition, diurnal prairie dogs, are belowground and inaccessible to coyotes at this time, presenting a perplexing temporal mismatch between actual and expected times that coyotes and ferrets come into conflict. Our study used remote wildlife cameras, occupancy models, and overlap of circadian activity patterns to investigate how landscape features, prairie dog colony attributes, and attraction to sympatric species, i.e., American badgers (Taxidea taxus; hereafter, badgers) and lagomorphs (cottontail rabbits and jackrabbits) influence Coyote use of prairie dog colonies and potential Coyote–ferret interactions. We first evaluated Coyote use (i.e., occupancy) between prairie dog colonies and surrounding available grasslands, finding that coyotes whose home ranges include prairie dog colonies used colonies nearly twice as much as surrounding grasslands. Next, we investigated biotic and abiotic factors that may influence Coyote use and frequency of use (i.e., detection probability) on prairie dog colonies. We found high Coyote use across all areas on prairie dog colonies; however, their frequency of use increased in areas that were also used by badgers. High overlap between Coyote and badger activity patterns (81%) further supports the spatial use patterns revealed by our occupancy analysis, and badgers and coyotes are known to form hunting associations. Interspecific competition and overlapping patterns of resource use between badgers and ferrets have been documented in previous studies; our study supports these findings and suggests that Coyote attraction to badger activity may influence Coyote–ferret interactions.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"6 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molting is an evolutionarily ancient trait in which the outermost layer of an organism is replenished, usually according to a regular circannual rhythm. It is a metabolically costly process and, in vertebrates, is generally timed around other energetically demanding events such as reproduction and migration. In mammals, molting involves replacement of the fur coat—one of the most distinct innovations of the mammalian lineage. Despite the obvious importance of hair to mammalian fitness, our knowledge of hair growth cycles, circannual molting patterns, and hair structure remains largely restricted to marine and domesticated mammals, and our ability to identify explicit adaptive advantages of molting strategies in any mammal is therefore limited. In this review, we summarize what is known of these topics in wild, terrestrial mammals with a particular emphasis on marmots (Marmota spp.). Marmots are the largest extant ground squirrels and are well adapted to seasonally cold environments. Molting may be particularly relevant to fitness in marmots given the presumed importance of a healthy, insulative coat for metabolic efficiency in cold environments. Moreover, marmots hibernate for 7 to 8 months each year, meaning the annual molt and all other energetically demanding life-history events (such as parturition, lactation, fat accumulation, and dispersal) are constrained to an active period of only 4 to 5 months. Because the energetics of hibernation, fat accumulation, reproduction, and social behavior are already well studied, examining how molt is timed with respect to other important events and how it is influenced by local conditions may inform how molting is prioritized and how molting strategies evolve under specific selective pressures.
{"title":"A review of molt in mammals, with an emphasis on marmots (Rodentia: Sciuridae: Marmota)","authors":"Kendall K Mills, Oleg V Brandler, Link E Olson","doi":"10.1093/jmammal/gyae054","DOIUrl":"https://doi.org/10.1093/jmammal/gyae054","url":null,"abstract":"Molting is an evolutionarily ancient trait in which the outermost layer of an organism is replenished, usually according to a regular circannual rhythm. It is a metabolically costly process and, in vertebrates, is generally timed around other energetically demanding events such as reproduction and migration. In mammals, molting involves replacement of the fur coat—one of the most distinct innovations of the mammalian lineage. Despite the obvious importance of hair to mammalian fitness, our knowledge of hair growth cycles, circannual molting patterns, and hair structure remains largely restricted to marine and domesticated mammals, and our ability to identify explicit adaptive advantages of molting strategies in any mammal is therefore limited. In this review, we summarize what is known of these topics in wild, terrestrial mammals with a particular emphasis on marmots (Marmota spp.). Marmots are the largest extant ground squirrels and are well adapted to seasonally cold environments. Molting may be particularly relevant to fitness in marmots given the presumed importance of a healthy, insulative coat for metabolic efficiency in cold environments. Moreover, marmots hibernate for 7 to 8 months each year, meaning the annual molt and all other energetically demanding life-history events (such as parturition, lactation, fat accumulation, and dispersal) are constrained to an active period of only 4 to 5 months. Because the energetics of hibernation, fat accumulation, reproduction, and social behavior are already well studied, examining how molt is timed with respect to other important events and how it is influenced by local conditions may inform how molting is prioritized and how molting strategies evolve under specific selective pressures.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"151 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda J Bevan Zientek, Alexandria B Colpitts, Rick A Adams
Several studies have indicated that tri-colored bats (Perimyotis subflavus) are extending their distributional range westward in the United States. Montane and subalpine habitats consist of a mosaic of forest types including Lodgepole Pine woodlands and meadows, which provide an opportunity to study how a newly arriving species—typically associated with lowland riparian systems—is adapting to novel environmental conditions. The objectives of this study are to document Tri-colored Bat activity in these novel habitats and to quantify which factors are influencing activity patterns in habitats and at elevations not previously documented. We surveyed sites in various stages of secondary succession following beetle kill outbreaks using acoustic monitoring and nonparametric multiplicative regression to model habitat activity patterns. Results showed that activity was highest in meadows and early time-since-kill (TSK) forests in the beginning of the survey period and activity increased in late TSK forest habitats at the end of the survey in early August. Tri-colored bats are not restricting their activity to lower-elevational riparian areas in the Colorado foothills but appear to also be using these high-elevation habitats. Careful consideration of misidentification confirms the high likelihood of tri-colored bats at our sites. We hope that this study will support conservation efforts considering the expected US Fish and Wildlife Service Endangered listing for this species.
{"title":"Forest characteristics predict Tri-colored Bat (Perimyotis subflavus) activity within novel Colorado habitats","authors":"Amanda J Bevan Zientek, Alexandria B Colpitts, Rick A Adams","doi":"10.1093/jmammal/gyae052","DOIUrl":"https://doi.org/10.1093/jmammal/gyae052","url":null,"abstract":"Several studies have indicated that tri-colored bats (Perimyotis subflavus) are extending their distributional range westward in the United States. Montane and subalpine habitats consist of a mosaic of forest types including Lodgepole Pine woodlands and meadows, which provide an opportunity to study how a newly arriving species—typically associated with lowland riparian systems—is adapting to novel environmental conditions. The objectives of this study are to document Tri-colored Bat activity in these novel habitats and to quantify which factors are influencing activity patterns in habitats and at elevations not previously documented. We surveyed sites in various stages of secondary succession following beetle kill outbreaks using acoustic monitoring and nonparametric multiplicative regression to model habitat activity patterns. Results showed that activity was highest in meadows and early time-since-kill (TSK) forests in the beginning of the survey period and activity increased in late TSK forest habitats at the end of the survey in early August. Tri-colored bats are not restricting their activity to lower-elevational riparian areas in the Colorado foothills but appear to also be using these high-elevation habitats. Careful consideration of misidentification confirms the high likelihood of tri-colored bats at our sites. We hope that this study will support conservation efforts considering the expected US Fish and Wildlife Service Endangered listing for this species.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"28 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Both natural and anthropogenic forces can play a substantial role in the demographic history and current structure of a wildlife population. Species with strict habitat requirements are especially susceptible to these impacts. Mountain goats (Oreamnos americanus) in Alaska are of particular interest in this regard due to their influence on alpine ecosystems, importance to human cultures, and enigmatic history in some areas. Here, we used genetic tools to examine the population structure and demographic history of mountain goats in Alaska. We genotyped 816 mountain goats at 18 microsatellites, identified the number of genetically distinct subpopulations, and assessed their genetic diversity. We used Bayesian methods to investigate demographic history relative to the known geologic and human history of Alaska, and we simulated human-mediated translocation events onto islands to address the hypothesis that Baranof Island harbored an extant population prior to an early 20th-century introduction. We showed that Alaska has 4 genetically distinct subpopulations of mountain goats. The main demographic split between Southcentral and Southeast Alaska occurred following the retreat of ice after the Last Glacial Maximum. Simulations of translocation events largely aligned with expected genetic diversity patterns of current subpopulations except for Baranof Island which showed greater diversity than the simulation, consistent with the hypothesis of an endemic population prior to the translocation. This study highlights the value of considering both natural and anthropogenic forces when assessing the biogeographic history of a species and provides new insights about the complex demographic history and biogeography of mountain goats in Alaska.
{"title":"Unraveling the complex biogeographic and anthropogenic history of mountain goats (Oreamnos americanus) in Alaska","authors":"Kiana B Young, Kevin S White, Aaron B A Shafer","doi":"10.1093/jmammal/gyae065","DOIUrl":"https://doi.org/10.1093/jmammal/gyae065","url":null,"abstract":"Both natural and anthropogenic forces can play a substantial role in the demographic history and current structure of a wildlife population. Species with strict habitat requirements are especially susceptible to these impacts. Mountain goats (Oreamnos americanus) in Alaska are of particular interest in this regard due to their influence on alpine ecosystems, importance to human cultures, and enigmatic history in some areas. Here, we used genetic tools to examine the population structure and demographic history of mountain goats in Alaska. We genotyped 816 mountain goats at 18 microsatellites, identified the number of genetically distinct subpopulations, and assessed their genetic diversity. We used Bayesian methods to investigate demographic history relative to the known geologic and human history of Alaska, and we simulated human-mediated translocation events onto islands to address the hypothesis that Baranof Island harbored an extant population prior to an early 20th-century introduction. We showed that Alaska has 4 genetically distinct subpopulations of mountain goats. The main demographic split between Southcentral and Southeast Alaska occurred following the retreat of ice after the Last Glacial Maximum. Simulations of translocation events largely aligned with expected genetic diversity patterns of current subpopulations except for Baranof Island which showed greater diversity than the simulation, consistent with the hypothesis of an endemic population prior to the translocation. This study highlights the value of considering both natural and anthropogenic forces when assessing the biogeographic history of a species and provides new insights about the complex demographic history and biogeography of mountain goats in Alaska.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"28 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanessa R Hensley, Ek Han Tan, Emily Gagne, Danielle L Levesque
Over the last few decades North American flying squirrels (Glaucomys spp.) have experienced dramatic northward range shifts. Previous studies have focused on the potential effects of warming winter temperatures, yet the hypothesis that rising summer temperature had a role in these range shifts remained unexplored. We therefore sought to determine the effect of high environmental temperatures on the thermoregulation and energetics of flying squirrels in an area of the Northeast of North America with a recent species turnover. Unable to find a logistically feasible population of the northern species (Glaucomys sabrinus), we focused on Southern Flying Squirrels (G. volans). Using flow-through respirometry, we measured the relationship between metabolic rate, evaporative water loss, and body temperature at high ambient temperatures. We also measured core body temperature in free-ranging flying squirrels using temperature-sensitive data loggers. We detected no significant increase in metabolic rate up to ambient temperatures as high as 40 °C. However, evaporative water loss increased at temperatures above 36.2 °C. Free-ranging body temperature of flying squirrels followed a circadian pattern with a ~2 °C difference between active and resting phase modal body temperatures. Rest-phase body temperatures were influenced by environmental temperatures with higher resting temperatures observed on days with higher daily maximum ambient temperatures but not to an extent that energy or water costs were significantly increased during rest. We found that, due to a relatively high level of thermal tolerance, high ambient temperatures are unlikely to cause an energetic strain on Southern Flying Squirrels. However, these findings do not preclude negative impacts of high ambient temperatures on the northern species, and these may still play a role in the changing distributions of Glaucomys in North America.
{"title":"Assessing responses to heat in a range-shifting, nocturnal, flying squirrel","authors":"Vanessa R Hensley, Ek Han Tan, Emily Gagne, Danielle L Levesque","doi":"10.1093/jmammal/gyae041","DOIUrl":"https://doi.org/10.1093/jmammal/gyae041","url":null,"abstract":"Over the last few decades North American flying squirrels (Glaucomys spp.) have experienced dramatic northward range shifts. Previous studies have focused on the potential effects of warming winter temperatures, yet the hypothesis that rising summer temperature had a role in these range shifts remained unexplored. We therefore sought to determine the effect of high environmental temperatures on the thermoregulation and energetics of flying squirrels in an area of the Northeast of North America with a recent species turnover. Unable to find a logistically feasible population of the northern species (Glaucomys sabrinus), we focused on Southern Flying Squirrels (G. volans). Using flow-through respirometry, we measured the relationship between metabolic rate, evaporative water loss, and body temperature at high ambient temperatures. We also measured core body temperature in free-ranging flying squirrels using temperature-sensitive data loggers. We detected no significant increase in metabolic rate up to ambient temperatures as high as 40 °C. However, evaporative water loss increased at temperatures above 36.2 °C. Free-ranging body temperature of flying squirrels followed a circadian pattern with a ~2 °C difference between active and resting phase modal body temperatures. Rest-phase body temperatures were influenced by environmental temperatures with higher resting temperatures observed on days with higher daily maximum ambient temperatures but not to an extent that energy or water costs were significantly increased during rest. We found that, due to a relatively high level of thermal tolerance, high ambient temperatures are unlikely to cause an energetic strain on Southern Flying Squirrels. However, these findings do not preclude negative impacts of high ambient temperatures on the northern species, and these may still play a role in the changing distributions of Glaucomys in North America.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"2016 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles J Marsh, Yanina V Sica, Nathan S Upham, Walter Jetz
We welcome feedback on the range maps published in Marsh et al. (2022) where it constructively improves our knowledge on species distributions. Unfortunately, we are concerned that criticisms raised by Arbogast and Kerhoulas are steps backward, not forward, particularly as they did not access the original range map data of Marsh et al. (2022). We stress that evaluating range maps using Global Biodiversity Information Facility data without the necessary quality control and filtering will lead to flawed interpretations—using the same approach, an even greater proportion, >99.5%, of IUCN mammal range maps would fail to meet their expectations. We take this opportunity to highlight the fine-scale inaccuracies, scale limitations, and range map variance that are expected across all expert range map sources and that any researcher should consider during any analysis. Finally, we again announce the availability of an online tool for providing annotations and proposing adjustments to range maps, and suggest this as a more appropriate forum for constructively and transparently improving range maps.
{"title":"Response to Arbogast and Kerhoulas","authors":"Charles J Marsh, Yanina V Sica, Nathan S Upham, Walter Jetz","doi":"10.1093/jmammal/gyae019","DOIUrl":"https://doi.org/10.1093/jmammal/gyae019","url":null,"abstract":"We welcome feedback on the range maps published in Marsh et al. (2022) where it constructively improves our knowledge on species distributions. Unfortunately, we are concerned that criticisms raised by Arbogast and Kerhoulas are steps backward, not forward, particularly as they did not access the original range map data of Marsh et al. (2022). We stress that evaluating range maps using Global Biodiversity Information Facility data without the necessary quality control and filtering will lead to flawed interpretations—using the same approach, an even greater proportion, &gt;99.5%, of IUCN mammal range maps would fail to meet their expectations. We take this opportunity to highlight the fine-scale inaccuracies, scale limitations, and range map variance that are expected across all expert range map sources and that any researcher should consider during any analysis. Finally, we again announce the availability of an online tool for providing annotations and proposing adjustments to range maps, and suggest this as a more appropriate forum for constructively and transparently improving range maps.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"6 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a recent paper titled Expert range maps of global mammal distributions harmonised to three taxonomic authorities, Marsh et al. (2022) introduced a series of new geographic range maps for all extant species of mammals and made these maps available on the Map of Life (MoL) website (www.mol.org). The title of the paper and inclusion of over 140 prominent mammalogists and biogeographers as coauthors strongly suggested that these new range maps were carefully vetted. However, when examining the maps of Marsh et al. (2022) on the MoL web platform, we found a variety of serious problems, including, but not limited to: range exaggerations (inclusion of substantial geographic areas not represented by specimen records or verified observations); range maps that are geographically shifted so that species are shown as occurring in areas in which they do not, and not occurring in areas in which they do (and in some cases, these new maps do not even encompass the type locality of a species); range maps that simply omit peripheral populations of conservation concern; and range maps for fully marine mammals (i.e., those that do not spend any time on land) that include large swaths of both insular and continental landmasses. Overall, we evaluated the new “expert” mammal range maps on the MoL platform for 78 species (retrieved between 31 March 2022 and 1 April 2023) and show that there are serious, systemic problems with these maps, and that these problems are both geographically and taxonomically widespread. As such, we caution researchers to carefully review and evaluate the range maps of Marsh et al. (2022) on the MoL before using them for any research purpose—including conservation, biogeographical, and macroecological analyses of mammals.
{"title":"RE: Expert range maps of global mammal distributions harmonised to three taxonomic authorities","authors":"Brian S Arbogast, Nicholas J Kerhoulas","doi":"10.1093/jmammal/gyae018","DOIUrl":"https://doi.org/10.1093/jmammal/gyae018","url":null,"abstract":"In a recent paper titled Expert range maps of global mammal distributions harmonised to three taxonomic authorities, Marsh et al. (2022) introduced a series of new geographic range maps for all extant species of mammals and made these maps available on the Map of Life (MoL) website (www.mol.org). The title of the paper and inclusion of over 140 prominent mammalogists and biogeographers as coauthors strongly suggested that these new range maps were carefully vetted. However, when examining the maps of Marsh et al. (2022) on the MoL web platform, we found a variety of serious problems, including, but not limited to: range exaggerations (inclusion of substantial geographic areas not represented by specimen records or verified observations); range maps that are geographically shifted so that species are shown as occurring in areas in which they do not, and not occurring in areas in which they do (and in some cases, these new maps do not even encompass the type locality of a species); range maps that simply omit peripheral populations of conservation concern; and range maps for fully marine mammals (i.e., those that do not spend any time on land) that include large swaths of both insular and continental landmasses. Overall, we evaluated the new “expert” mammal range maps on the MoL platform for 78 species (retrieved between 31 March 2022 and 1 April 2023) and show that there are serious, systemic problems with these maps, and that these problems are both geographically and taxonomically widespread. As such, we caution researchers to carefully review and evaluate the range maps of Marsh et al. (2022) on the MoL before using them for any research purpose—including conservation, biogeographical, and macroecological analyses of mammals.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"47 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is commonly recognized that predation and the risk of predation can have profound effects on behaviors and population ecology of prey. Comparatively, little attention has been paid to the trade-offs hosts make to manage the risk of parasitism, but there is evidence that hosts make behavioral trade-offs to avoid parasitism in ways that resemble those made by prey animals under the risk of predation. Mosquitoes are common hematophagous ectoparasites which parasitize a wide range of vertebrates, resulting in blood loss, distraction, and disease transmission. Many hosts engage in defensive behaviors to repel or kill mosquitoes and these behaviors likely come at the expense of activities such as foraging and vigilance for predators. We placed a mosquito attractant (BG-Sweetscent) and repellant (allethrin) near artificial foraging patches in areas where mosquitoes were common and measured the amount of grain left after a night of foraging (giving-up density) to investigate whether mosquitoes influenced Cotton Mouse (Peromyscus gossypinus) foraging. We predicted that in patches with mosquito attractants, mosquito harassment would cause mice to engage in defensive behaviors which would distract or deter them from foraging, resulting in less grain consumption relative to control patches. Conversely, we predicted that in mosquito-repellent patches, mice would experience less harassment, resulting in more grain consumption. Indoor arena trials found no evidence that the mosquito treatments influenced cotton mouse behavior in the absence of mosquitoes. However, we found no evidence that mosquito treatments affected giving-up densities.
{"title":"Mosquitoes do not influence Cotton Mouse (Peromyscus gossypinus) giving-up densities","authors":"Gail Morris, L Mike Conner","doi":"10.1093/jmammal/gyae047","DOIUrl":"https://doi.org/10.1093/jmammal/gyae047","url":null,"abstract":"It is commonly recognized that predation and the risk of predation can have profound effects on behaviors and population ecology of prey. Comparatively, little attention has been paid to the trade-offs hosts make to manage the risk of parasitism, but there is evidence that hosts make behavioral trade-offs to avoid parasitism in ways that resemble those made by prey animals under the risk of predation. Mosquitoes are common hematophagous ectoparasites which parasitize a wide range of vertebrates, resulting in blood loss, distraction, and disease transmission. Many hosts engage in defensive behaviors to repel or kill mosquitoes and these behaviors likely come at the expense of activities such as foraging and vigilance for predators. We placed a mosquito attractant (BG-Sweetscent) and repellant (allethrin) near artificial foraging patches in areas where mosquitoes were common and measured the amount of grain left after a night of foraging (giving-up density) to investigate whether mosquitoes influenced Cotton Mouse (Peromyscus gossypinus) foraging. We predicted that in patches with mosquito attractants, mosquito harassment would cause mice to engage in defensive behaviors which would distract or deter them from foraging, resulting in less grain consumption relative to control patches. Conversely, we predicted that in mosquito-repellent patches, mice would experience less harassment, resulting in more grain consumption. Indoor arena trials found no evidence that the mosquito treatments influenced cotton mouse behavior in the absence of mosquitoes. However, we found no evidence that mosquito treatments affected giving-up densities.","PeriodicalId":50157,"journal":{"name":"Journal of Mammalogy","volume":"38 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}