Tumor-derived circulating small extracellular vesicles (sEVs) are a promising class of non-invasive biomarkers for disease diagnosis. However, their quantitative detection remains challenging due to their small size and the complexity of blood plasma. Therefore, sample preparation, such as purification and fluorescence labeling, is required. This study presents a purification-free approach using a microfluidic chip integrated with PlAsmonic NanO-apeRture lAbel-free iMAging (PANORAMA) for label-free single sEV characterization in plasma. CD63, CD9, and CD81 antibodies, specific for most sEVs surface antigens, are functionalized on arrayed gold nanodisks on invisible substrates (AGNIS) for selective capture. The automated microfluidic platform minimizes operational errors and biases and enables precise control of flow rates, directions, media volume, and composition for optimization. This platform requires only 20 µL of plasma, and the analysis is completed within 60 minutes. This platform shows great potential as a sensitive and effective tool for detecting and characterizing circulating sEVs without purification or labeling.
{"title":"Microfluidic nano-plasmonic imaging platform for purification- and label-free single small extracellular vesicle characterization.","authors":"Omid Mohsen Daraei, Avinash Kumar Singh, Saswat Mohapatra, Mohammad Sadman Mallick, Abhay Kotnala, Wei-Chuan Shih","doi":"10.1038/s44328-025-00047-w","DOIUrl":"10.1038/s44328-025-00047-w","url":null,"abstract":"<p><p>Tumor-derived circulating small extracellular vesicles (sEVs) are a promising class of non-invasive biomarkers for disease diagnosis. However, their quantitative detection remains challenging due to their small size and the complexity of blood plasma. Therefore, sample preparation, such as purification and fluorescence labeling, is required. This study presents a purification-free approach using a microfluidic chip integrated with PlAsmonic NanO-apeRture lAbel-free iMAging (PANORAMA) for label-free single sEV characterization in plasma. CD63, CD9, and CD81 antibodies, specific for most sEVs surface antigens, are functionalized on arrayed gold nanodisks on invisible substrates (AGNIS) for selective capture. The automated microfluidic platform minimizes operational errors and biases and enables precise control of flow rates, directions, media volume, and composition for optimization. This platform requires only 20 µL of plasma, and the analysis is completed within 60 minutes. This platform shows great potential as a sensitive and effective tool for detecting and characterizing circulating sEVs without purification or labeling.</p>","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":"2 1","pages":"26"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144777550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1038/s44328-024-00022-x
Vaibhav B. Yadav, Enosh Lim, Alison H. Skalet, Mohammad J. Moghimi
Uveal melanoma is the most common primary intraocular cancer in adults and is an aggressive malignancy with risk to vision and survival. Early detection and timely management of tumors may help preserve vision and reduce mortality rate but is challenging as many tumors are asymptomatic until they become large. Here, we studied the electrical properties of eyes to investigate a novel method for potentially detecting small intraocular tumors. We used finite element analysis to simulate the impact of uveal melanoma tumors on electrical impedance and current density in eye models. We also measured the impedance and current flow in the presence of inserted tissue simulating an intraocular tumor in enucleated bovine eyes and eyes in bovine head ex vivo. Our results showed that a 5 mm-diameter mass was detected inside a 32-mm diameter bovine eye by the impedance analyzer.
{"title":"Evaluation of electrical impedance spectroscopy of bovine eyes for early detection of uveal melanoma","authors":"Vaibhav B. Yadav, Enosh Lim, Alison H. Skalet, Mohammad J. Moghimi","doi":"10.1038/s44328-024-00022-x","DOIUrl":"10.1038/s44328-024-00022-x","url":null,"abstract":"Uveal melanoma is the most common primary intraocular cancer in adults and is an aggressive malignancy with risk to vision and survival. Early detection and timely management of tumors may help preserve vision and reduce mortality rate but is challenging as many tumors are asymptomatic until they become large. Here, we studied the electrical properties of eyes to investigate a novel method for potentially detecting small intraocular tumors. We used finite element analysis to simulate the impact of uveal melanoma tumors on electrical impedance and current density in eye models. We also measured the impedance and current flow in the presence of inserted tissue simulating an intraocular tumor in enucleated bovine eyes and eyes in bovine head ex vivo. Our results showed that a 5 mm-diameter mass was detected inside a 32-mm diameter bovine eye by the impedance analyzer.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00022-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1038/s44328-024-00019-6
Simão Monteiro Belo dos Santos, Celine Wegsteen, Dries Vloemans, Matthias Corion, Bart De Ketelaere, Dragana Spasic, Jeroen Lammertyn
Several European countries have implemented legislations to eliminate day-old male chicks killing. Although embryo sexing (in ovo sexing) is the most promising alternative, no current solution can handle all egg colors with >98% sexing accuracy, low cost and minimal embryo disturbance before day 13 of incubation and processing >20,000 eggs/hour. Recombinase polymerase amplification (RPA) presents a promising alternative to PCR that can be integrated into microfluidic platforms. In this work, we developed fully autonomous microfluidic cartridge (SIMPLE-RPA chip) for female chick-specific synthetic HINTW gene detection in 30 min at 37.7 °C inside an egg incubator. We first optimized off-chip RPA, allowing for highly sensitive DNA detection (1.6 × 10–5 ng/µL). The SIMPLE-RPA chip was developed to automate the RPA bioassay on-chip, reducing user errors, and contamination risks and maintaining the off-chip LOD while offering low price, small footprint, upscaling compatibility, and easy transfer to other point-of-care applications.
{"title":"Fully automated sample to result SIMPLE RPA microfluidic chip towards in ovo sexing application","authors":"Simão Monteiro Belo dos Santos, Celine Wegsteen, Dries Vloemans, Matthias Corion, Bart De Ketelaere, Dragana Spasic, Jeroen Lammertyn","doi":"10.1038/s44328-024-00019-6","DOIUrl":"10.1038/s44328-024-00019-6","url":null,"abstract":"Several European countries have implemented legislations to eliminate day-old male chicks killing. Although embryo sexing (in ovo sexing) is the most promising alternative, no current solution can handle all egg colors with >98% sexing accuracy, low cost and minimal embryo disturbance before day 13 of incubation and processing >20,000 eggs/hour. Recombinase polymerase amplification (RPA) presents a promising alternative to PCR that can be integrated into microfluidic platforms. In this work, we developed fully autonomous microfluidic cartridge (SIMPLE-RPA chip) for female chick-specific synthetic HINTW gene detection in 30 min at 37.7 °C inside an egg incubator. We first optimized off-chip RPA, allowing for highly sensitive DNA detection (1.6 × 10–5 ng/µL). The SIMPLE-RPA chip was developed to automate the RPA bioassay on-chip, reducing user errors, and contamination risks and maintaining the off-chip LOD while offering low price, small footprint, upscaling compatibility, and easy transfer to other point-of-care applications.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00019-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1038/s44328-024-00016-9
Aayushi Laliwala, Ashruti Pant, Denis Svechkarev, Marat R. Sadykov, Aaron M. Mohs
Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.
{"title":"Advancements of paper-based sensors for antibiotic-resistant bacterial species identification","authors":"Aayushi Laliwala, Ashruti Pant, Denis Svechkarev, Marat R. Sadykov, Aaron M. Mohs","doi":"10.1038/s44328-024-00016-9","DOIUrl":"10.1038/s44328-024-00016-9","url":null,"abstract":"Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00016-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1038/s44328-024-00017-8
Ana Lopez-Campistrous, Hillary Sweet, Ciaran Terry, Craig Garen, Yu Wan, Robert E. Burrell, Kyle Moxham, Matthew Nickel, Michael Serpe, Michael Joyce, Lorne Tyrrell, Todd P. W. McMullen
The vast array of immunoassay technologies used to assess protein interactions is costly or platform-specific. We present a label-free visual interference colour assay (VICA) that quantifies peptide and protein interactions by creating an iridescent surface allowing direct visualisation without spectrophotometric optics or microfluidics. A nanoporous aluminium oxide surface is tuned to match the refractive indices of the overlying protein layers to generate visual interference colours. To functionalise the surface, we created an affinity-capture system using a protein A-carboxyglutamic (GLA) construct that orients antibodies to enhance the signal. Using off-the-shelf antibodies, the platform can isolate analytes in buffer, whole blood, or serum. This surface generates a discernible colour change at concentrations as low as 50 femtomoles/mm2 and can monitor oligomer formation in sequential steps on the same slide. VICA provides comparable kinetic parameters to biolayer interferometry and traditional immunoassays while also allowing characterisation of proteins in large macromolecular complexes.
{"title":"A quantitative, label-free visual interference colour assay platform for protein targeting and binding assays","authors":"Ana Lopez-Campistrous, Hillary Sweet, Ciaran Terry, Craig Garen, Yu Wan, Robert E. Burrell, Kyle Moxham, Matthew Nickel, Michael Serpe, Michael Joyce, Lorne Tyrrell, Todd P. W. McMullen","doi":"10.1038/s44328-024-00017-8","DOIUrl":"10.1038/s44328-024-00017-8","url":null,"abstract":"The vast array of immunoassay technologies used to assess protein interactions is costly or platform-specific. We present a label-free visual interference colour assay (VICA) that quantifies peptide and protein interactions by creating an iridescent surface allowing direct visualisation without spectrophotometric optics or microfluidics. A nanoporous aluminium oxide surface is tuned to match the refractive indices of the overlying protein layers to generate visual interference colours. To functionalise the surface, we created an affinity-capture system using a protein A-carboxyglutamic (GLA) construct that orients antibodies to enhance the signal. Using off-the-shelf antibodies, the platform can isolate analytes in buffer, whole blood, or serum. This surface generates a discernible colour change at concentrations as low as 50 femtomoles/mm2 and can monitor oligomer formation in sequential steps on the same slide. VICA provides comparable kinetic parameters to biolayer interferometry and traditional immunoassays while also allowing characterisation of proteins in large macromolecular complexes.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00017-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1038/s44328-024-00015-w
Ebin Joseph, Manuela Ciocca, Haodong Wu, Serena Marcozzi, Maria Assunta Ucci, Kavya Keremane, Luyao Zheng, Bed Poudel, Congcong Wu, Antonella Camaioni, Kai Wang, Shashank Priya, Thomas M. Brown
This review covers advancements in biosensing, biophotovoltaics, and photobiomodulation, focusing on the synergistic use of light, biomaterials, cells or tissues, interfaced with photosensitive dye-sensitized, perovskite, and conjugated polymer organic semiconductors or nanoparticles. Integration of semiconductor and biological systems, using non-invasive light-probes or -stimuli for both sensing and controlling biological behavior, has led to groundbreaking applications like artificial retinas. From fusion of photovoltaics and biology, a new research field emerges: photovoltaic bioelectronics.
{"title":"Photovoltaic bioelectronics merging biology with new generation semiconductors and light in biophotovoltaics photobiomodulation and biosensing","authors":"Ebin Joseph, Manuela Ciocca, Haodong Wu, Serena Marcozzi, Maria Assunta Ucci, Kavya Keremane, Luyao Zheng, Bed Poudel, Congcong Wu, Antonella Camaioni, Kai Wang, Shashank Priya, Thomas M. Brown","doi":"10.1038/s44328-024-00015-w","DOIUrl":"10.1038/s44328-024-00015-w","url":null,"abstract":"This review covers advancements in biosensing, biophotovoltaics, and photobiomodulation, focusing on the synergistic use of light, biomaterials, cells or tissues, interfaced with photosensitive dye-sensitized, perovskite, and conjugated polymer organic semiconductors or nanoparticles. Integration of semiconductor and biological systems, using non-invasive light-probes or -stimuli for both sensing and controlling biological behavior, has led to groundbreaking applications like artificial retinas. From fusion of photovoltaics and biology, a new research field emerges: photovoltaic bioelectronics.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-44"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00015-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s44328-024-00014-x
Matthew Peters, Tianyu Zhao, Sherin George, Viet Giang Truong, Síle Nic Chormaic, Cuifeng Ying, René A. Nome, Reuven Gordon
Resolving the free energy landscapes that govern protein biophysics has been obscured by ensemble averaging. While the folding dynamics of single proteins have been observed using fluorescent labels and/or tethers, a simpler and more direct measurement of the conformational changes would not require modifications to the protein. We use nanoaperture optical tweezers to resolve the energy landscape of a single unmodified protein, Bovine Serum Albumin (BSA), and quantify changes in the three-state conformation dynamics with temperature. A Markov model with Kramers’ theory transition rates is used to model the dynamics, showing good agreement with the observed state transitions. This first look at the intrinsic energy landscape of proteins provides a transformative tool for protein biophysics and may be applied broadly, including mapping out the energy landscape of particularly challenging intrinsically disordered proteins.
{"title":"Energy landscape of conformational changes for a single unmodified protein","authors":"Matthew Peters, Tianyu Zhao, Sherin George, Viet Giang Truong, Síle Nic Chormaic, Cuifeng Ying, René A. Nome, Reuven Gordon","doi":"10.1038/s44328-024-00014-x","DOIUrl":"10.1038/s44328-024-00014-x","url":null,"abstract":"Resolving the free energy landscapes that govern protein biophysics has been obscured by ensemble averaging. While the folding dynamics of single proteins have been observed using fluorescent labels and/or tethers, a simpler and more direct measurement of the conformational changes would not require modifications to the protein. We use nanoaperture optical tweezers to resolve the energy landscape of a single unmodified protein, Bovine Serum Albumin (BSA), and quantify changes in the three-state conformation dynamics with temperature. A Markov model with Kramers’ theory transition rates is used to model the dynamics, showing good agreement with the observed state transitions. This first look at the intrinsic energy landscape of proteins provides a transformative tool for protein biophysics and may be applied broadly, including mapping out the energy landscape of particularly challenging intrinsically disordered proteins.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00014-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1038/s44328-024-00011-0
Kuldeep Kaswan, Meenakshi Ray, Arshad Khan, Yu-Lin Wang, Zong-Hong Lin
Solid-liquid triboelectric nanogenerators (SL-TENGs) exhibit significant potential in energy harvesting and sensing. This review explores SL-TENG development, focusing on chemical sensing and biosensing applications. Initially, the working mechanisms of various SL-TENG modes are described. Subsequently, an analysis of surface modifications of contact surfaces and liquids to functionalize chemical sensing and biosensing is explored, including their impact on surface properties and the corresponding effect on device performance related to sensing applications.
{"title":"Recent advances in solid-liquid triboelectric nanogenerators for self-powered chemical and biological sensing","authors":"Kuldeep Kaswan, Meenakshi Ray, Arshad Khan, Yu-Lin Wang, Zong-Hong Lin","doi":"10.1038/s44328-024-00011-0","DOIUrl":"10.1038/s44328-024-00011-0","url":null,"abstract":"Solid-liquid triboelectric nanogenerators (SL-TENGs) exhibit significant potential in energy harvesting and sensing. This review explores SL-TENG development, focusing on chemical sensing and biosensing applications. Initially, the working mechanisms of various SL-TENG modes are described. Subsequently, an analysis of surface modifications of contact surfaces and liquids to functionalize chemical sensing and biosensing is explored, including their impact on surface properties and the corresponding effect on device performance related to sensing applications.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00011-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1038/s44328-024-00013-y
Karmen Markov, Mohamed Elgendi, Carlo Menon
The rise of wearable technology has led to EEG-based sleep monitoring devices that use electrodes placed on the forehead, ear, or neck. These devices offer promising applications in clinical and healthy populations by comparing sleep patterns, monitoring intervention responses, and examining the relationship between sleep and lifestyle factors. Despite their potential, challenges like validation against polysomnography, regulatory hurdles, data privacy, and usability hinder clinical adoption. This review explores these devices, their applications, and integration challenges in clinical practice.
{"title":"EEG-based headset sleep wearable devices","authors":"Karmen Markov, Mohamed Elgendi, Carlo Menon","doi":"10.1038/s44328-024-00013-y","DOIUrl":"10.1038/s44328-024-00013-y","url":null,"abstract":"The rise of wearable technology has led to EEG-based sleep monitoring devices that use electrodes placed on the forehead, ear, or neck. These devices offer promising applications in clinical and healthy populations by comparing sleep patterns, monitoring intervention responses, and examining the relationship between sleep and lifestyle factors. Despite their potential, challenges like validation against polysomnography, regulatory hurdles, data privacy, and usability hinder clinical adoption. This review explores these devices, their applications, and integration challenges in clinical practice.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00013-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1038/s44328-024-00012-z
Laura RoaFiore, Trevor Meyer, Thaissa Peixoto, Pedro Irazoqui
Vagus nerve stimulation (VNS) is an FDA-approved stimulation therapy to treat patients with refractory epilepsy. In this work, we use a coherent holographic imaging system to characterize vagus nerve-evoked potentials (VEPs) in the cortex in response to VNS stimulation paradigms without electrode placement or any genetic, structural, or functional labels. We analyze stimulation amplitude up to saturation, pulse width up to 800 μs, and frequency from 10 Hz to 30 Hz, finding that stimulation amplitude strongly modulates VEPs response magnitude (effect size 0.401), while pulse width has a moderate modulatory effect (effect size 0.127) and frequency has almost no modulatory effect (effect size 0.009) on the evoked potential magnitude. We find mild interactions between pulse width and frequency. This non-contact label-free functional imaging technique may serve as a non-invasive rapid-feedback tool to characterize VEPs and may increase the efficacy of VNS in patients with refractory epilepsy.
{"title":"Label-free functional imaging of vagus nerve stimulation-evoked potentials at the cortical surface","authors":"Laura RoaFiore, Trevor Meyer, Thaissa Peixoto, Pedro Irazoqui","doi":"10.1038/s44328-024-00012-z","DOIUrl":"10.1038/s44328-024-00012-z","url":null,"abstract":"Vagus nerve stimulation (VNS) is an FDA-approved stimulation therapy to treat patients with refractory epilepsy. In this work, we use a coherent holographic imaging system to characterize vagus nerve-evoked potentials (VEPs) in the cortex in response to VNS stimulation paradigms without electrode placement or any genetic, structural, or functional labels. We analyze stimulation amplitude up to saturation, pulse width up to 800 μs, and frequency from 10 Hz to 30 Hz, finding that stimulation amplitude strongly modulates VEPs response magnitude (effect size 0.401), while pulse width has a moderate modulatory effect (effect size 0.127) and frequency has almost no modulatory effect (effect size 0.009) on the evoked potential magnitude. We find mild interactions between pulse width and frequency. This non-contact label-free functional imaging technique may serve as a non-invasive rapid-feedback tool to characterize VEPs and may increase the efficacy of VNS in patients with refractory epilepsy.","PeriodicalId":501705,"journal":{"name":"npj Biosensing","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44328-024-00012-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}