Pub Date : 2024-11-06DOI: 10.1038/s44303-024-00047-x
Denzel Fusco, Emmanouil Xypakis, Ylenia Gigante, Lorenza Mautone, Silvia Di Angelantonio, Giorgia Ponsi, Giancarlo Ruocco, Marco Leonetti
In super-resolution, a varying illumination image stack is required. This enriched dataset typically necessitates precise mechanical control and micron-scale optical alignment and repeatability. Here, we introduce a novel methodology for super-resolution microscopy called stochastically structured illumination microscopy (S2IM), which bypasses the need for illumination control exploiting instead the random, uncontrolled movement of the target object. We tested our methodology within the clinically relevant ophthalmoscopic setting, harnessing the inherent saccadic motion of the eye to induce stochastic displacement of the illumination pattern on the retina. We opted to avoid human subjects by utilizing a phantom eye model featuring a retina composed of human induced pluripotent stem cells (iPSC) retinal neurons and replicating the ocular saccadic movements by custom actuators. Our findings demonstrate that S2IM unlocks scan-less super-resolution with a resolution enhancement of 1.91, with promising prospects also beyond ophthalmoscopy applications such as active matter or atmospheric/astronomical observation.
{"title":"Stochastically structured illumination microscopy scan less super resolution imaging","authors":"Denzel Fusco, Emmanouil Xypakis, Ylenia Gigante, Lorenza Mautone, Silvia Di Angelantonio, Giorgia Ponsi, Giancarlo Ruocco, Marco Leonetti","doi":"10.1038/s44303-024-00047-x","DOIUrl":"10.1038/s44303-024-00047-x","url":null,"abstract":"In super-resolution, a varying illumination image stack is required. This enriched dataset typically necessitates precise mechanical control and micron-scale optical alignment and repeatability. Here, we introduce a novel methodology for super-resolution microscopy called stochastically structured illumination microscopy (S2IM), which bypasses the need for illumination control exploiting instead the random, uncontrolled movement of the target object. We tested our methodology within the clinically relevant ophthalmoscopic setting, harnessing the inherent saccadic motion of the eye to induce stochastic displacement of the illumination pattern on the retina. We opted to avoid human subjects by utilizing a phantom eye model featuring a retina composed of human induced pluripotent stem cells (iPSC) retinal neurons and replicating the ocular saccadic movements by custom actuators. Our findings demonstrate that S2IM unlocks scan-less super-resolution with a resolution enhancement of 1.91, with promising prospects also beyond ophthalmoscopy applications such as active matter or atmospheric/astronomical observation.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00047-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s44303-024-00043-1
Segos Ioannis, Van Eeckhoven Jens, Greig Alan, Redd Michael, Thrasivoulou Christopher, Conradt Barbara
Super-resolution (SR) 3D rendering allows superior quantitative analysis of intracellular structures but has largely been limited to fixed or ex vivo samples. Here we developed a method to perform SR live imaging of mitochondria during post-embryonic development of C. elegans larvae. Our workflow includes the drug-free mechanical immobilisation of animals using polystyrene nanobeads, which has previously not been used for in vivo SR imaging. Based on the alignment of moving objects and global threshold-based image segmentation, our method enables an efficient 3D reconstruction of individual mitochondria. We demonstrate for the first time that the frequency distribution of fluorescence intensities is not affected by photobleaching, and that global thresholding alone enables the quantitative comparison of mitochondria along timeseries. Our composite approach significantly improves the study of biological structures and processes in SR during C. elegans post-embryonic development. Furthermore, the discovery that image segmentation does not require any prior correction against photobleaching, a fundamental problem in fluorescence microscopy, will impact experimental strategies aimed at quantitatively studying the dynamics of organelles and other intracellular compartments in any biological system.
超分辨率(SR)三维渲染技术可对细胞内结构进行出色的定量分析,但该技术在很大程度上仅限于固定或体外样本。在此,我们开发了一种方法,对线粒体在优雅类幼虫胚后发育过程中进行 SR 实时成像。我们的工作流程包括使用聚苯乙烯纳米吸附剂对动物进行无药物机械固定,这种方法以前从未用于体内 SR 成像。基于移动物体的对齐和基于全局阈值的图像分割,我们的方法实现了单个线粒体的高效三维重建。我们首次证明,荧光强度的频率分布不受光漂白的影响,而且仅靠全局阈值就能定量比较线粒体的时间序列。我们的复合方法大大改进了对线粒体在胚后发育过程中的生物结构和过程的研究。此外,图像分割不需要事先对荧光显微镜中的一个基本问题--光漂白进行任何校正,这一发现将对定量研究任何生物系统中细胞器和其他细胞内区室动态的实验策略产生影响。
{"title":"Impact of photobleaching on quantitative, spatio-temporal, super-resolution imaging of mitochondria in live C. elegans larvae","authors":"Segos Ioannis, Van Eeckhoven Jens, Greig Alan, Redd Michael, Thrasivoulou Christopher, Conradt Barbara","doi":"10.1038/s44303-024-00043-1","DOIUrl":"10.1038/s44303-024-00043-1","url":null,"abstract":"Super-resolution (SR) 3D rendering allows superior quantitative analysis of intracellular structures but has largely been limited to fixed or ex vivo samples. Here we developed a method to perform SR live imaging of mitochondria during post-embryonic development of C. elegans larvae. Our workflow includes the drug-free mechanical immobilisation of animals using polystyrene nanobeads, which has previously not been used for in vivo SR imaging. Based on the alignment of moving objects and global threshold-based image segmentation, our method enables an efficient 3D reconstruction of individual mitochondria. We demonstrate for the first time that the frequency distribution of fluorescence intensities is not affected by photobleaching, and that global thresholding alone enables the quantitative comparison of mitochondria along timeseries. Our composite approach significantly improves the study of biological structures and processes in SR during C. elegans post-embryonic development. Furthermore, the discovery that image segmentation does not require any prior correction against photobleaching, a fundamental problem in fluorescence microscopy, will impact experimental strategies aimed at quantitatively studying the dynamics of organelles and other intracellular compartments in any biological system.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00043-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s44303-024-00051-1
Veronica Clavijo Jordan, André F. Martins, Erica Dao, Kalotina Geraki, Sara Chirayil, Xiaodong Wen, Pooyan Khalighinejad, Daniel Parrott, Xiaojing Wang, Patricia Gonzalez Pagan, Neil Rofsky, Michael Farquharson, A. Dean Sherry
Previous studies have shown that the zinc-responsive MRI probe, GdL1, can distinguish healthy versus malignant prostate tissues based upon differences in zinc content and secretion. In this study, mice were fed chow containing low, normal, or high zinc content for 3 weeks before imaging glucose stimulated zinc secretion (GSZS) by MRI. The distribution of zinc in prostate tissue in these three groups was imaged by synchrotron radiation X-ray fluorescence (SR-XRF). A zinc deficiency caused systemic and organ-level dysregulation, weight loss, and altered zinc bioavailability. Zinc efflux from the prostate increased in parallel to dietary zinc in healthy mice but not in TRAMP mice, consistent with a lowered capacity to store dietary zinc in malignant cells. This differential zinc efflux suggests that a dietary supplement of zinc prior to a GSZS study may enhance image contrast between healthy and malignant prostate tissue, thereby improving the accuracy of prostate cancer detection in man.
{"title":"Impact of dietary zinc on stimulated zinc secretion MRI in the healthy and malignant mouse prostate","authors":"Veronica Clavijo Jordan, André F. Martins, Erica Dao, Kalotina Geraki, Sara Chirayil, Xiaodong Wen, Pooyan Khalighinejad, Daniel Parrott, Xiaojing Wang, Patricia Gonzalez Pagan, Neil Rofsky, Michael Farquharson, A. Dean Sherry","doi":"10.1038/s44303-024-00051-1","DOIUrl":"10.1038/s44303-024-00051-1","url":null,"abstract":"Previous studies have shown that the zinc-responsive MRI probe, GdL1, can distinguish healthy versus malignant prostate tissues based upon differences in zinc content and secretion. In this study, mice were fed chow containing low, normal, or high zinc content for 3 weeks before imaging glucose stimulated zinc secretion (GSZS) by MRI. The distribution of zinc in prostate tissue in these three groups was imaged by synchrotron radiation X-ray fluorescence (SR-XRF). A zinc deficiency caused systemic and organ-level dysregulation, weight loss, and altered zinc bioavailability. Zinc efflux from the prostate increased in parallel to dietary zinc in healthy mice but not in TRAMP mice, consistent with a lowered capacity to store dietary zinc in malignant cells. This differential zinc efflux suggests that a dietary supplement of zinc prior to a GSZS study may enhance image contrast between healthy and malignant prostate tissue, thereby improving the accuracy of prostate cancer detection in man.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00051-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1038/s44303-024-00048-w
Luca Menozzi, Junjie Yao
Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.
{"title":"Deep tissue photoacoustic imaging with light and sound","authors":"Luca Menozzi, Junjie Yao","doi":"10.1038/s44303-024-00048-w","DOIUrl":"10.1038/s44303-024-00048-w","url":null,"abstract":"Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00048-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1038/s44303-024-00046-y
Biqi Chen, Zi Yin, Billy Wai-Lung Ng, Dan Michelle Wang, Rocky S. Tuan, Ryoma Bise, Dai Fei Elmer Ker
Label-free, live cell recognition (i.e. instance segmentation) and tracking using computer vision-aided recognition can be a powerful tool that rapidly generates multi-modal readouts of cell populations at single cell resolution. However, this technology remains hindered by the lack of accurate, universal algorithms. This review presents related biological and computer vision concepts to bridge these disciplines, paving the way for broad applications in cell-based diagnostics, drug discovery, and biomanufacturing.
{"title":"Label-free live cell recognition and tracking for biological discoveries and translational applications","authors":"Biqi Chen, Zi Yin, Billy Wai-Lung Ng, Dan Michelle Wang, Rocky S. Tuan, Ryoma Bise, Dai Fei Elmer Ker","doi":"10.1038/s44303-024-00046-y","DOIUrl":"10.1038/s44303-024-00046-y","url":null,"abstract":"Label-free, live cell recognition (i.e. instance segmentation) and tracking using computer vision-aided recognition can be a powerful tool that rapidly generates multi-modal readouts of cell populations at single cell resolution. However, this technology remains hindered by the lack of accurate, universal algorithms. This review presents related biological and computer vision concepts to bridge these disciplines, paving the way for broad applications in cell-based diagnostics, drug discovery, and biomanufacturing.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-26"},"PeriodicalIF":0.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00046-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1038/s44303-024-00042-2
Kanghyun Kim, Amey Chaware, Clare B. Cook, Shiqi Xu, Monica Abdelmalak, Colin Cooke, Kevin C. Zhou, Mark Harfouche, Paul Reamey, Veton Saliu, Jed Doman, Clay Dugo, Gregor Horstmeyer, Richard Davis, Ian Taylor-Cho, Wen-Chi Foo, Lucas Kreiss, Xiaoyin Sara Jiang, Roarke Horstmeyer
Optical microscopy has long been the standard method for diagnosis in cytopathology. Whole slide scanners can image and digitize large sample areas automatically, but are slow, expensive and therefore not widely available. Clinical diagnosis of cytology specimens is especially challenging since these samples are both spread over large areas and thick, which requires 3D capture. Here, we introduce a new parallelized microscope for scanning thick specimens across extremely wide fields-of-view (54 × 72 mm2) at 1.2 and 0.6 μm resolutions, accompanied by machine learning software to rapidly assess these 16 gigapixel scans. This Multi-Camera Array Scanner (MCAS) comprises 48 micro-cameras closely arranged to simultaneously image different areas. By capturing 624 megapixels per snapshot, the MCAS is significantly faster than most conventional whole-slide scanners. We used this system to digitize entire cytology samples (scanning three entire slides in 3D in just several minutes) and demonstrate two machine learning techniques to assist pathologists: first, an adenocarcinoma detection model in lung specimens (0.73 recall); second, a slide-level classification model of lung smears (0.969 AUC).
{"title":"Rapid 3D imaging at cellular resolution for digital cytopathology with a multi-camera array scanner (MCAS)","authors":"Kanghyun Kim, Amey Chaware, Clare B. Cook, Shiqi Xu, Monica Abdelmalak, Colin Cooke, Kevin C. Zhou, Mark Harfouche, Paul Reamey, Veton Saliu, Jed Doman, Clay Dugo, Gregor Horstmeyer, Richard Davis, Ian Taylor-Cho, Wen-Chi Foo, Lucas Kreiss, Xiaoyin Sara Jiang, Roarke Horstmeyer","doi":"10.1038/s44303-024-00042-2","DOIUrl":"10.1038/s44303-024-00042-2","url":null,"abstract":"Optical microscopy has long been the standard method for diagnosis in cytopathology. Whole slide scanners can image and digitize large sample areas automatically, but are slow, expensive and therefore not widely available. Clinical diagnosis of cytology specimens is especially challenging since these samples are both spread over large areas and thick, which requires 3D capture. Here, we introduce a new parallelized microscope for scanning thick specimens across extremely wide fields-of-view (54 × 72 mm2) at 1.2 and 0.6 μm resolutions, accompanied by machine learning software to rapidly assess these 16 gigapixel scans. This Multi-Camera Array Scanner (MCAS) comprises 48 micro-cameras closely arranged to simultaneously image different areas. By capturing 624 megapixels per snapshot, the MCAS is significantly faster than most conventional whole-slide scanners. We used this system to digitize entire cytology samples (scanning three entire slides in 3D in just several minutes) and demonstrate two machine learning techniques to assist pathologists: first, an adenocarcinoma detection model in lung specimens (0.73 recall); second, a slide-level classification model of lung smears (0.969 AUC).","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00042-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1038/s44303-024-00049-9
Khrishanthne Sambasivan, Will E. Tyrrell, Rizwan Farooq, Jenasee Mynerich, Richard S. Edwards, Muhammet Tanc, Teresa Guerrero Urbano, Timothy H. Witney
{"title":"Author Correction: [18F]FSPG-PET provides an early marker of radiotherapy response in head and neck squamous cell cancer","authors":"Khrishanthne Sambasivan, Will E. Tyrrell, Rizwan Farooq, Jenasee Mynerich, Richard S. Edwards, Muhammet Tanc, Teresa Guerrero Urbano, Timothy H. Witney","doi":"10.1038/s44303-024-00049-9","DOIUrl":"10.1038/s44303-024-00049-9","url":null,"abstract":"","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00049-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scanning electron microscopy under low-vacuum conditions allows high-resolution imaging of complex cell/tissue architectures in nonconductive specimens. However, the conventional methods for metal staining of biological specimens require harmful uranium compounds, which hampers the applications of electron microscopy. Here, we introduce a uranium-free KMnO4/Pb metal staining protocol that allows multiscale imaging of extensive cell/tissue architectures to intensive subcellular ultrastructures. The obtained image contrast was equivalent to that of Ur/Pb staining and sufficient for ultrastructural observation, showing the fine processes of podocytes in the glomerulus, which were invisible by light microscopy. The stainability in the elastic tissue indicated that the distinct histochemical properties of KMnO4 oxidation led to Pb deposition and BSE signal enhancement superior to Ur staining. Elemental analysis clarified that the determinant of the backscattered electron signal intensity was the amount of Pb deposition enhanced by KMnO4 oxidation. This user-friendly method is anticipated to create a new approach for biomedical electron microscopy.
低真空条件下的扫描电子显微镜可以对不导电标本中复杂的细胞/组织结构进行高分辨率成像。然而,传统的生物标本金属染色方法需要使用有害的铀化合物,这阻碍了电子显微镜的应用。在这里,我们介绍了一种无铀的 KMnO4/Pb 金属染色方案,可对广泛的细胞/组织结构到密集的亚细胞超微结构进行多尺度成像。获得的图像对比度与铀/铅染色相当,足以进行超微结构观察,显示出肾小球中荚膜细胞的精细过程,而光镜下是看不到的。弹性组织中的染色性表明,KMnO4 氧化的独特组织化学特性导致了铅沉积和 BSE 信号增强,其效果优于 Ur 染色。元素分析表明,决定反向散射电子信号强度的因素是 KMnO4 氧化所增强的铅沉积量。这种用户友好型方法有望为生物医学电子显微镜开创一种新方法。
{"title":"KMnO4/Pb staining allows uranium free imaging of tissue architectures in low vacuum scanning electron microscopy","authors":"Akira Sawaguchi, Takeshi Kamimura, Kyoko Kitagawa, Yoko Nagashima, Nobuyasu Takahashi","doi":"10.1038/s44303-024-00045-z","DOIUrl":"10.1038/s44303-024-00045-z","url":null,"abstract":"Scanning electron microscopy under low-vacuum conditions allows high-resolution imaging of complex cell/tissue architectures in nonconductive specimens. However, the conventional methods for metal staining of biological specimens require harmful uranium compounds, which hampers the applications of electron microscopy. Here, we introduce a uranium-free KMnO4/Pb metal staining protocol that allows multiscale imaging of extensive cell/tissue architectures to intensive subcellular ultrastructures. The obtained image contrast was equivalent to that of Ur/Pb staining and sufficient for ultrastructural observation, showing the fine processes of podocytes in the glomerulus, which were invisible by light microscopy. The stainability in the elastic tissue indicated that the distinct histochemical properties of KMnO4 oxidation led to Pb deposition and BSE signal enhancement superior to Ur staining. Elemental analysis clarified that the determinant of the backscattered electron signal intensity was the amount of Pb deposition enhanced by KMnO4 oxidation. This user-friendly method is anticipated to create a new approach for biomedical electron microscopy.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00045-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1038/s44303-024-00040-4
Wentao Yu, Yan Zhang, Claudia T. K. Lo, Lei Kang, Terence T. W. Wong
Three-dimensional (3D) high-resolution large-volume imaging has remained a challenge. Translational rapid ultraviolet-excited sectioning tomography (TRUST) achieves rapid and cost-effective whole-organ subcellular imaging through iterative optical scanning and mechanical sectioning. However, the axial resolution is limited by the mechanical sectioning thickness or the UV light penetration depth in tissue. Here, assisted with high-and-low-frequency (HiLo) microscopy (HiLoTRUST), the optical sectioning thickness has been reduced from tens of micrometers to ~5.8 µm. In addition, HiLoTRUST has attained a finer mechanical sectioning thickness (10–15 µm) compared to TRUST (50 µm). For high-content imaging as in TRUST, we employed two additional UV light-emitting diodes (LEDs) specifically for uniform illumination. The full-color imaging ability and improved axial resolution of HiLoTRUST have been validated by two-dimensional (2D)/3D imaging of various mouse organs and human lung cancer specimens. HiLoTRUST offers a cost-effective, full-color, and high-resolution 3D imaging approach, showing its great potential in 3D histology applications.
{"title":"Rapid full-color serial sectioning tomography with speckle illumination and ultraviolet excitation","authors":"Wentao Yu, Yan Zhang, Claudia T. K. Lo, Lei Kang, Terence T. W. Wong","doi":"10.1038/s44303-024-00040-4","DOIUrl":"10.1038/s44303-024-00040-4","url":null,"abstract":"Three-dimensional (3D) high-resolution large-volume imaging has remained a challenge. Translational rapid ultraviolet-excited sectioning tomography (TRUST) achieves rapid and cost-effective whole-organ subcellular imaging through iterative optical scanning and mechanical sectioning. However, the axial resolution is limited by the mechanical sectioning thickness or the UV light penetration depth in tissue. Here, assisted with high-and-low-frequency (HiLo) microscopy (HiLoTRUST), the optical sectioning thickness has been reduced from tens of micrometers to ~5.8 µm. In addition, HiLoTRUST has attained a finer mechanical sectioning thickness (10–15 µm) compared to TRUST (50 µm). For high-content imaging as in TRUST, we employed two additional UV light-emitting diodes (LEDs) specifically for uniform illumination. The full-color imaging ability and improved axial resolution of HiLoTRUST have been validated by two-dimensional (2D)/3D imaging of various mouse organs and human lung cancer specimens. HiLoTRUST offers a cost-effective, full-color, and high-resolution 3D imaging approach, showing its great potential in 3D histology applications.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00040-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}