Abstract This study introduces a new ANN updating procedure of streamflow prediction for a physically based HEC-HMS hydrological model of the Upper Thames River watershed (Ontario, Canada). Besides streamflow and precipitation, the updating procedure uses other meteorological variables as inputs, which are not applied in calibration of the HEC-HMS model. All the results of performance measures on training, validation and test datasets for river gauges at Mitchell and Stratford revealed that the ANN updated models have performed better than the HEC-HMS model. The ANN model results were in excellent agreement with observed streamflow. The uncertainties can be associated with different input variables and different length of datasets used in the HEC-HMS model and the ANN model. The performance results suggest improvement in the RMSE values of the trained networks when additional meteorological data was used. The updated errors from the gauged sites of Mitchell and Stratford were used to update the streamflow values at the ungauged site of JR750 of the HEC-HMS model. While the underlying physical process in the ANN model consisting of interconnected neurons to map input-output relationships is not easily understood (in a form of mathematical equation), the HEC-HMS hydrological model can reveal useful information about the parameters of a hydrological process.
{"title":"Output updating of a physically based model for gauged and ungauged sites of the Upper Thames River watershed","authors":"P. Jeevaragagam, S. Simonovic","doi":"10.2478/johh-2023-0019","DOIUrl":"https://doi.org/10.2478/johh-2023-0019","url":null,"abstract":"Abstract This study introduces a new ANN updating procedure of streamflow prediction for a physically based HEC-HMS hydrological model of the Upper Thames River watershed (Ontario, Canada). Besides streamflow and precipitation, the updating procedure uses other meteorological variables as inputs, which are not applied in calibration of the HEC-HMS model. All the results of performance measures on training, validation and test datasets for river gauges at Mitchell and Stratford revealed that the ANN updated models have performed better than the HEC-HMS model. The ANN model results were in excellent agreement with observed streamflow. The uncertainties can be associated with different input variables and different length of datasets used in the HEC-HMS model and the ANN model. The performance results suggest improvement in the RMSE values of the trained networks when additional meteorological data was used. The updated errors from the gauged sites of Mitchell and Stratford were used to update the streamflow values at the ungauged site of JR750 of the HEC-HMS model. While the underlying physical process in the ANN model consisting of interconnected neurons to map input-output relationships is not easily understood (in a form of mathematical equation), the HEC-HMS hydrological model can reveal useful information about the parameters of a hydrological process.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"259 - 270"},"PeriodicalIF":1.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43140000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. T. M. Perera, D. A. L. Leelamanie, Morihiro Maeda, Yasushi Mori
Abstract The heat generated during wildfires modifies soil characteristics, including soil water repellency (SWR) and the water stability of aggregates, which are known to be interrelated. SWR lowers the rate of water entry into aggregates, minimizing aggregate disruption and subsequent erosion. This study aimed to examine these aggregate characteristics (SWR, water stability of aggregates) of thermally heated water-repellent soil aggregates under laboratory conditions. Water-repellent aggregates were collected from Eucalyptus grandis forest soil separately from four soil depths (0–5, 5–10, 10–15, and 15–20 cm) with varying initial repellency levels. Using an automated programmable muffle furnace, aggregates were separately exposed to three heating temperatures, T H (150, 200, 250 °C), three rates of heating (speed of rising temperature to reach relevant T H ), R H (200, 400, 800 °C h −1 ), and three durations of exposure to relevant T H , E D (30, 60, 120 min). The molarity of an ethanol droplet test was used to measure the contact angle (contact angle>90°). The water drop penetration time (WDPT) was also measured. The SWR of aggregates declined with the increasing T H and E D . All aggregates were wettable once exposed to 250 °C. At the lowest T H and E D (150 °C, 30 min), the contact angle was <90° only in the least repellent aggregates collected from 10–15 and 15–20 cm depths. Although R H indicated the least influence on the measured parameters, the slowest R H (200 °C h −1 ) caused a comparatively greater decline in SWR. Water stability of aggregates increased with heating irrespective of decreasing SWR. Further investigations on heat-induced changes in organic compounds at molecular levels would be necessary to understand the theories for the behavior of aggregates.
{"title":"Alterations in aggregate characteristics of thermally heated water-repellent soil aggregates under laboratory conditions","authors":"H. T. M. Perera, D. A. L. Leelamanie, Morihiro Maeda, Yasushi Mori","doi":"10.2478/johh-2023-0009","DOIUrl":"https://doi.org/10.2478/johh-2023-0009","url":null,"abstract":"Abstract The heat generated during wildfires modifies soil characteristics, including soil water repellency (SWR) and the water stability of aggregates, which are known to be interrelated. SWR lowers the rate of water entry into aggregates, minimizing aggregate disruption and subsequent erosion. This study aimed to examine these aggregate characteristics (SWR, water stability of aggregates) of thermally heated water-repellent soil aggregates under laboratory conditions. Water-repellent aggregates were collected from Eucalyptus grandis forest soil separately from four soil depths (0–5, 5–10, 10–15, and 15–20 cm) with varying initial repellency levels. Using an automated programmable muffle furnace, aggregates were separately exposed to three heating temperatures, T H (150, 200, 250 °C), three rates of heating (speed of rising temperature to reach relevant T H ), R H (200, 400, 800 °C h −1 ), and three durations of exposure to relevant T H , E D (30, 60, 120 min). The molarity of an ethanol droplet test was used to measure the contact angle (contact angle>90°). The water drop penetration time (WDPT) was also measured. The SWR of aggregates declined with the increasing T H and E D . All aggregates were wettable once exposed to 250 °C. At the lowest T H and E D (150 °C, 30 min), the contact angle was <90° only in the least repellent aggregates collected from 10–15 and 15–20 cm depths. Although R H indicated the least influence on the measured parameters, the slowest R H (200 °C h −1 ) caused a comparatively greater decline in SWR. Water stability of aggregates increased with heating irrespective of decreasing SWR. Further investigations on heat-induced changes in organic compounds at molecular levels would be necessary to understand the theories for the behavior of aggregates.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135188542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The objectives of the research were to: (1) assess the strength of relationships between the soil thermal and hydrophysical properties, (2) evaluate the strength of association of evapotranspiration of spring wheat crop with soil thermal and hydrophysical properties, and (3) estimate the ranges of the thermal and hydrophysical properties of the sandy Haplic Podzol during the growing period of spring wheat in 2022. The study included instrumental simultaneous measurements of meteorological data, soil water retention curve, soil moisture content (SMC) and thermal properties. Actual evapotranspiration was calculated according to the Allen equation. Spearman’s rank correlation coefficients showed that the increase in SMC from 0.10 cm3 cm−3 to 0.26 cm3 cm−3 resulted in a significant increase in thermal conductivity (r = 0.81, p < 0.001), volumetric heat capacity (r = 0.93, p < 0.001) and thermal diffusivity (r = 0.94, p < 0.001). Actual evapotranspiration also rose with the increasing SMC (r = 0.91, p < 0.001) and matric water potentials (r = 0.61, p < 0.05). As a consequence of the changes in SMC, the Spearman’s rank correlation coefficients supported the strong positive relationships of actual evapotranspiration with volumetric heat capacity (r = 0.97, p < 0.001), thermal conductivity (r = 0.96, p < 0.001) and thermal diffusivity (r = 0.96, p < 0.001). Pearson correlation coefficients also supported the strong input of thermal inertia to the actual evapotranspiration (r = 0.88, p < 0.01). During the whole period of observations, actual evapotranspiration varied from 0.05 to 0.59 mm hr−1, soil thermal conductivity – from 0.225 to −1.056 W m−1 K−1, volumetric heat capacity – from 1.057 to 1.889 MJ m–3 K−1, heat diffusivity from 0.189 to 0.559 mm2 s−1, and thermal inertia – from 516 to 1412 J m−2 K−1 s−0.5.
摘要本研究的目的是:(1)评估土壤热物性与水物性之间的关系强度;(2)评估春小麦作物蒸散量与土壤热物性与水物性之间的关联强度;(3)估算2022年春小麦生育期沙质Haplic Podzol的热物性和水物性范围。该研究包括仪器同时测量气象数据、土壤保水曲线、土壤含水量(SMC)和热特性。根据Allen方程计算实际蒸散量。Spearman等级相关系数表明,SMC从0.10 cm3 cm - 3增加到0.26 cm3 cm - 3,导致导热系数(r = 0.81, p < 0.001)、体积热容(r = 0.93, p < 0.001)和热扩散系数(r = 0.94, p < 0.001)显著增加。实际蒸散量也随SMC (r = 0.91, p < 0.001)和基质水势(r = 0.61, p < 0.05)的增加而增加。由于SMC的变化,Spearman等级相关系数支持实际蒸散发与容积热容(r = 0.97, p < 0.001)、热导率(r = 0.96, p < 0.001)和热扩散率(r = 0.96, p < 0.001)之间的强正相关关系。Pearson相关系数也支持热惯性对实际蒸散的强输入(r = 0.88, p < 0.01)。在整个观测期间,实际蒸散量变化范围为0.05 ~ 0.59 mm hr−1,土壤热导率变化范围为0.225 ~−1.056 W m−1 K−1,体积热容变化范围为1.057 ~ 1.889 MJ m−3 K−1,热扩散系数变化范围为0.189 ~ 0.559 mm2 s−1,热惯性变化范围为516 ~ 1412 J m−2 K−1 s−0.5。
{"title":"Effects of thermal and hydrophysical properties of sandy Haplic Podzol on actual evapotranspiration of spring wheat","authors":"E. Balashov, A. Dobrokhotov, L. V. Kozyreva","doi":"10.2478/johh-2023-0013","DOIUrl":"https://doi.org/10.2478/johh-2023-0013","url":null,"abstract":"Abstract The objectives of the research were to: (1) assess the strength of relationships between the soil thermal and hydrophysical properties, (2) evaluate the strength of association of evapotranspiration of spring wheat crop with soil thermal and hydrophysical properties, and (3) estimate the ranges of the thermal and hydrophysical properties of the sandy Haplic Podzol during the growing period of spring wheat in 2022. The study included instrumental simultaneous measurements of meteorological data, soil water retention curve, soil moisture content (SMC) and thermal properties. Actual evapotranspiration was calculated according to the Allen equation. Spearman’s rank correlation coefficients showed that the increase in SMC from 0.10 cm3 cm−3 to 0.26 cm3 cm−3 resulted in a significant increase in thermal conductivity (r = 0.81, p < 0.001), volumetric heat capacity (r = 0.93, p < 0.001) and thermal diffusivity (r = 0.94, p < 0.001). Actual evapotranspiration also rose with the increasing SMC (r = 0.91, p < 0.001) and matric water potentials (r = 0.61, p < 0.05). As a consequence of the changes in SMC, the Spearman’s rank correlation coefficients supported the strong positive relationships of actual evapotranspiration with volumetric heat capacity (r = 0.97, p < 0.001), thermal conductivity (r = 0.96, p < 0.001) and thermal diffusivity (r = 0.96, p < 0.001). Pearson correlation coefficients also supported the strong input of thermal inertia to the actual evapotranspiration (r = 0.88, p < 0.01). During the whole period of observations, actual evapotranspiration varied from 0.05 to 0.59 mm hr−1, soil thermal conductivity – from 0.225 to −1.056 W m−1 K−1, volumetric heat capacity – from 1.057 to 1.889 MJ m–3 K−1, heat diffusivity from 0.189 to 0.559 mm2 s−1, and thermal inertia – from 516 to 1412 J m−2 K−1 s−0.5.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"125 - 131"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45973238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The root tuber of Pinellia ternata has been used as a traditional therapeutic herbal medicine. It is reported to impart beneficial attributes in recovering COVID-19 patients. To meet an increasing demand of P. ternata, this study is intended to investigate the effects of biochar on the soil hydrological and agronomic properties of two decomposed soils (i.e., completely decomposed granite (CDG) and lateritic soil) for the growth of P. ternata. The plant was grown in instrumented pots with different biochar application rate (0%, 3% and 5%) for a period of three months. Peanut shell biochar inclusion in both soils resulted in reduction of soil hydraulic conductivity and increase in soil water retention capacity. These alterations in hydrological properties were attributed to measured change in total porosity, biochar intra pore and hydrophilic functional groups. The macro-nutrient (i.e., N, P, K, Ca, and Mg) concentration of both soils increased substantially, while the pH and cation exchange capacity levels in the amended soils were altered to facilitate optimum growth of P. ternata. The tuber biomass in biochar amended CDG at all amendment rate increases by up to 70%. In case of lateritic soil, the tuber biomass increased by 23% at only 5% biochar application rate. All treatments satisfied the minimum succinic acid concentration required as per pharmacopoeia standard index. The lower tuber biomass exhibits a higher succinic acid concentration regardless of the soil type used to grow P. ternata. The biochar improved the yield and quality of P. ternata in both soils.
{"title":"Influence of biochar on improving hydrological and nutrient status of two decomposed soils for yield of medicinal plant - Pinellia ternata","authors":"C. Ng, Lisa Touyon, Sanandam Bordoloi","doi":"10.2478/johh-2023-0008","DOIUrl":"https://doi.org/10.2478/johh-2023-0008","url":null,"abstract":"Abstract The root tuber of Pinellia ternata has been used as a traditional therapeutic herbal medicine. It is reported to impart beneficial attributes in recovering COVID-19 patients. To meet an increasing demand of P. ternata, this study is intended to investigate the effects of biochar on the soil hydrological and agronomic properties of two decomposed soils (i.e., completely decomposed granite (CDG) and lateritic soil) for the growth of P. ternata. The plant was grown in instrumented pots with different biochar application rate (0%, 3% and 5%) for a period of three months. Peanut shell biochar inclusion in both soils resulted in reduction of soil hydraulic conductivity and increase in soil water retention capacity. These alterations in hydrological properties were attributed to measured change in total porosity, biochar intra pore and hydrophilic functional groups. The macro-nutrient (i.e., N, P, K, Ca, and Mg) concentration of both soils increased substantially, while the pH and cation exchange capacity levels in the amended soils were altered to facilitate optimum growth of P. ternata. The tuber biomass in biochar amended CDG at all amendment rate increases by up to 70%. In case of lateritic soil, the tuber biomass increased by 23% at only 5% biochar application rate. All treatments satisfied the minimum succinic acid concentration required as per pharmacopoeia standard index. The lower tuber biomass exhibits a higher succinic acid concentration regardless of the soil type used to grow P. ternata. The biochar improved the yield and quality of P. ternata in both soils.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"156 - 168"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47964804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Šimanský, E. Wójcik-Gront, N. Buchkina, J. Horák
Abstract The formation of soil aggregates, including water-stable aggregates, is linked to soil organic matter (SOM). Biochar (B) is carbon-rich, which, in addition to storing carbon in a stable form for many years, has important benefits for soils and plants, but the mechanisms of soil structure formation after B and mineral fertiliser application are not sufficiently studied. For this reason, the study aimed to answer the following questions: How (1) the rate of B and (2) varying levels of nitrogen fertiliser (N) being applied to the soil affect the dynamics of soil aggregation due to the increase in the content of soil organic carbon, labile carbon in the bulk soil and in the content of water-stable aggregates (WSA) size-fractions. In 2014–2021, in Dolná Malanta (experimental site of Slovak University of Agriculture on silty loam Haplic Luvisol) during the growing seasons, soil samples were collected from all the B (0, 10 and 20 t ha–1) and N (0, 1st and 2nd level of N fertilisation) treatments. The results have shown that the highest values of many variables were associated with B20 treatment for all the N fertilisation levels. B compared to N more significantly affected the content of almost all the size-fractions of WSA. In all the treatments, the content of WSAma >5 mm, 5–3 mm, 3–2 mm and 1–0.5 mm in size was increasing over time – a yearly increase from 0.31 to 2.14% for 8-years. Based on the changes in the SOM content, WSA were divided into 3 groups: 1) Water-stable microaggregates (WSAmi < 0.25 mm), 2) Smaller size-fractions of water-stable macroaggregates (WSAma 1–0.25 mm), and 3) Medium and large fractions of WSAma (WSAma ≥1 mm).
{"title":"Managing soil organic matter through biochar application and varying levels of N fertilisation increases the rate of water-stable aggregates formation","authors":"V. Šimanský, E. Wójcik-Gront, N. Buchkina, J. Horák","doi":"10.2478/johh-2023-0004","DOIUrl":"https://doi.org/10.2478/johh-2023-0004","url":null,"abstract":"Abstract The formation of soil aggregates, including water-stable aggregates, is linked to soil organic matter (SOM). Biochar (B) is carbon-rich, which, in addition to storing carbon in a stable form for many years, has important benefits for soils and plants, but the mechanisms of soil structure formation after B and mineral fertiliser application are not sufficiently studied. For this reason, the study aimed to answer the following questions: How (1) the rate of B and (2) varying levels of nitrogen fertiliser (N) being applied to the soil affect the dynamics of soil aggregation due to the increase in the content of soil organic carbon, labile carbon in the bulk soil and in the content of water-stable aggregates (WSA) size-fractions. In 2014–2021, in Dolná Malanta (experimental site of Slovak University of Agriculture on silty loam Haplic Luvisol) during the growing seasons, soil samples were collected from all the B (0, 10 and 20 t ha–1) and N (0, 1st and 2nd level of N fertilisation) treatments. The results have shown that the highest values of many variables were associated with B20 treatment for all the N fertilisation levels. B compared to N more significantly affected the content of almost all the size-fractions of WSA. In all the treatments, the content of WSAma >5 mm, 5–3 mm, 3–2 mm and 1–0.5 mm in size was increasing over time – a yearly increase from 0.31 to 2.14% for 8-years. Based on the changes in the SOM content, WSA were divided into 3 groups: 1) Water-stable microaggregates (WSAmi < 0.25 mm), 2) Smaller size-fractions of water-stable macroaggregates (WSAma 1–0.25 mm), and 3) Medium and large fractions of WSAma (WSAma ≥1 mm).","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"199 - 209"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46564910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The heat generated during wildfires modifies soil characteristics, including soil water repellency (SWR) and the water stability of aggregates, which are known to be interrelated. SWR lowers the rate of water entry into aggregates, minimizing aggregate disruption and subsequent erosion. This study aimed to examine these aggregate characteristics (SWR, water stability of aggregates) of thermally heated water-repellent soil aggregates under laboratory conditions. Water-repellent aggregates were collected from Eucalyptus grandis forest soil separately from four soil depths (0–5, 5–10, 10–15, and 15–20 cm) with varying initial repellency levels. Using an automated programmable muffle furnace, aggregates were separately exposed to three heating temperatures, TH (150, 200, 250 °C), three rates of heating (speed of rising temperature to reach relevant TH), RH (200, 400, 800 °C h−1), and three durations of exposure to relevant TH, ED (30, 60, 120 min). The molarity of an ethanol droplet test was used to measure the contact angle (contact angle>90°). The water drop penetration time (WDPT) was also measured. The SWR of aggregates declined with the increasing TH and ED. All aggregates were wettable once exposed to 250 °C. At the lowest TH and ED (150 °C, 30 min), the contact angle was <90° only in the least repellent aggregates collected from 10–15 and 15–20 cm depths. Although RH indicated the least influence on the measured parameters, the slowest RH (200 °C h−1) caused a comparatively greater decline in SWR. Water stability of aggregates increased with heating irrespective of decreasing SWR. Further investigations on heat-induced changes in organic compounds at molecular levels would be necessary to understand the theories for the behavior of aggregates.
{"title":"Alterations in aggregate characteristics of thermally heated water-repellent soil aggregates under laboratory conditions","authors":"Htm Perera, D.A.L. Leelamanie, M. Maeda, Y. Mori","doi":"10.2139/ssrn.4223206","DOIUrl":"https://doi.org/10.2139/ssrn.4223206","url":null,"abstract":"Abstract The heat generated during wildfires modifies soil characteristics, including soil water repellency (SWR) and the water stability of aggregates, which are known to be interrelated. SWR lowers the rate of water entry into aggregates, minimizing aggregate disruption and subsequent erosion. This study aimed to examine these aggregate characteristics (SWR, water stability of aggregates) of thermally heated water-repellent soil aggregates under laboratory conditions. Water-repellent aggregates were collected from Eucalyptus grandis forest soil separately from four soil depths (0–5, 5–10, 10–15, and 15–20 cm) with varying initial repellency levels. Using an automated programmable muffle furnace, aggregates were separately exposed to three heating temperatures, TH (150, 200, 250 °C), three rates of heating (speed of rising temperature to reach relevant TH), RH (200, 400, 800 °C h−1), and three durations of exposure to relevant TH, ED (30, 60, 120 min). The molarity of an ethanol droplet test was used to measure the contact angle (contact angle>90°). The water drop penetration time (WDPT) was also measured. The SWR of aggregates declined with the increasing TH and ED. All aggregates were wettable once exposed to 250 °C. At the lowest TH and ED (150 °C, 30 min), the contact angle was <90° only in the least repellent aggregates collected from 10–15 and 15–20 cm depths. Although RH indicated the least influence on the measured parameters, the slowest RH (200 °C h−1) caused a comparatively greater decline in SWR. Water stability of aggregates increased with heating irrespective of decreasing SWR. Further investigations on heat-induced changes in organic compounds at molecular levels would be necessary to understand the theories for the behavior of aggregates.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"177 - 187"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47933964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ľ. Lichner, P. Šurda, Lucia Toková, Slavomír Hološ, J. Kollár, D. Igaz
Abstract Abandonment of agricultural fields triggers the ecosystem recovery in the process referred to as secondary succession. The objective of this study was to find the impact of secondary succession during 12 years lasting abandonment of agricultural fields with loamy sand and sandy loam soils on soil properties, namely soil organic carbon content, pH, water and ethanol sorptivity, hydraulic conductivity, water drop penetration time (WDPT), and repellency index (RI). The method of space-for-time substitution was used so that the fields abandoned at different times were treated as a homogeneous chronosequence. The studied soils showed a permanent increase in WDPT and a monotonous decrease in pH and water sorptivity with the duration of field abandonment. The dependence of the other characteristics on the duration of field abandonment was not unambiguous. The ethanol sorptivity decreased between 0 and 8 years of field abandonment, and increased between 8 and 12 years, when it copied a similar course of sand content during abandonment. The hydraulic conductivity halved within the first eight years of field abandonment and then increased statistically insignificantly between 8 and 12 years of abandonment. The repellency index decreased statistically insignificantly between 0 and 8 years of abandonment and then increased between 8 and 12 years.
{"title":"Impact of duration of land abandonment on soil properties","authors":"Ľ. Lichner, P. Šurda, Lucia Toková, Slavomír Hološ, J. Kollár, D. Igaz","doi":"10.2478/johh-2023-0011","DOIUrl":"https://doi.org/10.2478/johh-2023-0011","url":null,"abstract":"Abstract Abandonment of agricultural fields triggers the ecosystem recovery in the process referred to as secondary succession. The objective of this study was to find the impact of secondary succession during 12 years lasting abandonment of agricultural fields with loamy sand and sandy loam soils on soil properties, namely soil organic carbon content, pH, water and ethanol sorptivity, hydraulic conductivity, water drop penetration time (WDPT), and repellency index (RI). The method of space-for-time substitution was used so that the fields abandoned at different times were treated as a homogeneous chronosequence. The studied soils showed a permanent increase in WDPT and a monotonous decrease in pH and water sorptivity with the duration of field abandonment. The dependence of the other characteristics on the duration of field abandonment was not unambiguous. The ethanol sorptivity decreased between 0 and 8 years of field abandonment, and increased between 8 and 12 years, when it copied a similar course of sand content during abandonment. The hydraulic conductivity halved within the first eight years of field abandonment and then increased statistically insignificantly between 8 and 12 years of abandonment. The repellency index decreased statistically insignificantly between 0 and 8 years of abandonment and then increased between 8 and 12 years.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"148 - 155"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48561877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Klamerus-Iwan, R. Kozłowski, A. Sadowska-Rociek, E. Słowik-Opoka, D. Kupka, P. Giordani, P. Porada, John T. Van Stan
Abstract The wide variability in functional traits that enable the cosmopolitan distribution of lichens often includes the water storage capacity, S, of their thallus. Lichen S in forest canopies can be large enough to intercept and evaporate significant amounts of rainwater, contributing to the runoff-reduction ecosystem services provided by urban forests; however, S is likely influenced by the presence of air pollutants (polycyclic aromatic hydrocarbons, PAHs) in urban areas. PAHs, being both chemically hydrophobic and damaging to lichen thalli, are expected to reduce lichens’ S and, thereby, limit their contribution to hydrologic ecoservices of urban forests. Hence, the relationship between PAH accumulation and rainwater uptake was examined for two lichen species, common in urban forests around the world – Platismatia glauca and Pseudevernia furfuracea. Samples were collected from an area of low air pollution and another area in a highly urbanized city centre with high air pollution exposure (Kraków, Poland). Lichen S was determined using laboratory-simulated rainfall. PAH bioaccumulation differed between species and among the samples from clean and polluted environments. After exposure to polluted air, the concentration of PAHs was higher in P. glauca than P. furfuracea. Samples from the non-urban setting, however, showed no differences between the two species. In the case of P. glauca, S decreased from 35.8% in samples from clean environment to 8.3% after six months of exposure in the urban setting. The respective S values for P. furfuracea were 25.4% and 12.4%. Results strongly suggest that PAH exposure reduces S in both lichen species. The obtained results are important both in ecohydrology and microclimatology and are part of the research on the condition of urban forests.
{"title":"Influence of polycyclic aromatic hydrocarbons on water storage capacity of two lichens species","authors":"Anna Klamerus-Iwan, R. Kozłowski, A. Sadowska-Rociek, E. Słowik-Opoka, D. Kupka, P. Giordani, P. Porada, John T. Van Stan","doi":"10.2478/johh-2023-0010","DOIUrl":"https://doi.org/10.2478/johh-2023-0010","url":null,"abstract":"Abstract The wide variability in functional traits that enable the cosmopolitan distribution of lichens often includes the water storage capacity, S, of their thallus. Lichen S in forest canopies can be large enough to intercept and evaporate significant amounts of rainwater, contributing to the runoff-reduction ecosystem services provided by urban forests; however, S is likely influenced by the presence of air pollutants (polycyclic aromatic hydrocarbons, PAHs) in urban areas. PAHs, being both chemically hydrophobic and damaging to lichen thalli, are expected to reduce lichens’ S and, thereby, limit their contribution to hydrologic ecoservices of urban forests. Hence, the relationship between PAH accumulation and rainwater uptake was examined for two lichen species, common in urban forests around the world – Platismatia glauca and Pseudevernia furfuracea. Samples were collected from an area of low air pollution and another area in a highly urbanized city centre with high air pollution exposure (Kraków, Poland). Lichen S was determined using laboratory-simulated rainfall. PAH bioaccumulation differed between species and among the samples from clean and polluted environments. After exposure to polluted air, the concentration of PAHs was higher in P. glauca than P. furfuracea. Samples from the non-urban setting, however, showed no differences between the two species. In the case of P. glauca, S decreased from 35.8% in samples from clean environment to 8.3% after six months of exposure in the urban setting. The respective S values for P. furfuracea were 25.4% and 12.4%. Results strongly suggest that PAH exposure reduces S in both lichen species. The obtained results are important both in ecohydrology and microclimatology and are part of the research on the condition of urban forests.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"139 - 147"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44285708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Rainfall interception process is an important part of the biohydrological cycle, in which vegetation plays an important role by regulating the amount and dynamics of rainfall reaching the ground. In this paper, an event-based analysis is performed to discuss the influence of vegetation on dynamic of temporal response of soil volumetric water content (VWC) in the upper soil layer during rainfall events. More specifically, six events that occurred between 19 November 2021 and 30 June 2022, characterized by different hydro-meteorological and vegetation conditions, are analyzed based on continuous measurements of VWC in the open and below groups of two deciduous (Betula pendula Roth.) and two coniferous trees (Pinus nigra Arnold), as well as rainfall in the open and throughfall on an urban experimental plot in Ljubljana, Slovenia. VWC values at the upper depth (16 cm) were the highest under the birch tree, followed by the location in the open and under the pine tree. However, in the lowest depth (74 cm) VWC values were the lowest under the birch tree. VWC responses to rainfall and throughfall showed seasonal patterns related to the pre-event wetness conditions, with a faster occurrence of maximum VWC values in the leafless period. Additionally, rainfall amount and its dynamics during the event significantly affect the response, as VWC in general reaches its peak after the occurrence of more intense rainfall. Such an event-based analysis, offering an insight into the dynamics of the event development, is crucial and very beneficial for understanding of the biohydrological processes.
摘要截雨过程是生物水文循环的重要组成部分,植被通过调节降雨到达地面的数量和动态发挥着重要作用。本文采用基于事件的分析方法,讨论了降雨过程中植被对上层土壤体积含水量(VWC)时间响应动态的影响。更具体地说,基于对两种落叶树(Betula pendula Roth)和两种针叶树(Pinus nigra Arnold)的开放和下方群体的VWC的连续测量,分析了2021年11月19日至2022年6月30日期间发生的六起事件,其特征是不同的水文气象和植被条件,以及斯洛文尼亚卢布尔雅那一个城市试验区的露天和秋季降雨。上部深度(16cm)的VWC值在桦树下最高,其次是开阔地和松树下。然而,在最低深度(74cm),桦树下的VWC值最低。VWC对降雨量和贯穿量的响应显示出与事件前湿度条件相关的季节性模式,无叶期VWC最大值出现得更快。此外,降雨量及其在事件期间的动态会显著影响响应,因为VWC通常在更强烈的降雨发生后达到峰值。这种基于事件的分析,提供了对事件发展动态的深入了解,对于理解生物水文过程至关重要,非常有益。
{"title":"Temporal response of urban soil water content in relation to the rainfall and throughfall dynamics in the open and below the trees","authors":"Katarina Zabret, K. Lebar, M. Šraj","doi":"10.2478/johh-2023-0007","DOIUrl":"https://doi.org/10.2478/johh-2023-0007","url":null,"abstract":"Abstract Rainfall interception process is an important part of the biohydrological cycle, in which vegetation plays an important role by regulating the amount and dynamics of rainfall reaching the ground. In this paper, an event-based analysis is performed to discuss the influence of vegetation on dynamic of temporal response of soil volumetric water content (VWC) in the upper soil layer during rainfall events. More specifically, six events that occurred between 19 November 2021 and 30 June 2022, characterized by different hydro-meteorological and vegetation conditions, are analyzed based on continuous measurements of VWC in the open and below groups of two deciduous (Betula pendula Roth.) and two coniferous trees (Pinus nigra Arnold), as well as rainfall in the open and throughfall on an urban experimental plot in Ljubljana, Slovenia. VWC values at the upper depth (16 cm) were the highest under the birch tree, followed by the location in the open and under the pine tree. However, in the lowest depth (74 cm) VWC values were the lowest under the birch tree. VWC responses to rainfall and throughfall showed seasonal patterns related to the pre-event wetness conditions, with a faster occurrence of maximum VWC values in the leafless period. Additionally, rainfall amount and its dynamics during the event significantly affect the response, as VWC in general reaches its peak after the occurrence of more intense rainfall. Such an event-based analysis, offering an insight into the dynamics of the event development, is crucial and very beneficial for understanding of the biohydrological processes.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"210 - 220"},"PeriodicalIF":1.9,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41543838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}