首页 > 最新文献

Journal of Complexity最新文献

英文 中文
Optimal recovery and volume estimates 最佳恢复和容量估计
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-17 DOI: 10.1016/j.jco.2023.101780
Alexander Kushpel

We study volumes of sections of convex origin-symmetric bodies in Rn induced by orthonormal systems on probability spaces. The approach is based on volume estimates of John-Löwner ellipsoids and expectations of norms induced by the respective systems. The estimates obtained allow us to establish lower bounds for the radii of sections which gives lower bounds for Gelfand widths (or linear cowidths). As an application we offer a new method of evaluation of Gelfand and Kolmogorov widths of multiplier operators. In particular, we establish sharp orders of widths of standard Sobolev classes Wpγ, γ>0 in Lq on two-point homogeneous spaces in the difficult case, i.e. if 1<qp.

研究了由概率空间上的正交系统诱导的Rn中凸原点对称体的截面体积。该方法基于John-Löwner椭球体的体积估计和各自系统引起的规范期望。得到的估计使我们能够建立截面半径的下界,从而给出Gelfand宽度(或线性宽度)的下界。作为应用,我们给出了一种新的求乘子算子的Gelfand宽度和Kolmogorov宽度的方法。特别地,我们在两点齐次空间上,即当1<q≤p≤∞的困难情况下,建立了Lq上标准Sobolev类Wpγ, γ>0的宽度的尖锐阶。
{"title":"Optimal recovery and volume estimates","authors":"Alexander Kushpel","doi":"10.1016/j.jco.2023.101780","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101780","url":null,"abstract":"<div><p>We study volumes of sections of convex origin-symmetric bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span> induced by orthonormal systems on probability spaces. The approach is based on volume estimates of John-Löwner ellipsoids and expectations of norms induced by the respective systems. The estimates obtained allow us to establish lower bounds for the radii of sections which gives lower bounds for Gelfand widths (or linear cowidths). As an application we offer a new method of evaluation of Gelfand and Kolmogorov widths of multiplier operators. In particular, we establish sharp orders of widths of standard Sobolev classes </span><span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span>, <span><math><mi>γ</mi><mo>&gt;</mo><mn>0</mn></math></span> in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> on two-point homogeneous spaces in the difficult case, i.e. if <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101780"},"PeriodicalIF":1.7,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs Bochner空间中的深度ReLU神经网络逼近及其在参数偏微分方程中的应用
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-15 DOI: 10.1016/j.jco.2023.101779
Dinh Dũng , Van Kien Nguyen , Duong Thanh Pham

We investigate non-adaptive methods of deep ReLU neural network approximation in Bochner spaces L2(U,X,μ) of functions on U taking values in a separable Hilbert space X, where U is either R equipped with the standard Gaussian probability measure, or [1,1] equipped with the Jacobi probability measure. Functions to be approximated are assumed to satisfy a certain weighted 2-summability of the generalized chaos polynomial expansion coefficients with respect to the measure μ. We prove the convergence rate of this approximation in terms of the size of approximating deep ReLU neural networks. These results then are applied to approximation of the solution to parametric elliptic PDEs with random inputs for the lognormal and affine cases.

本文研究了Bochner空间L2(U∞,X,μ)中U∞上取值的函数的深度ReLU神经网络逼近的非自适应方法,其中U∞为带有标准高斯概率测度的R∞,或带有Jacobi概率测度的[−1,1]∞。假定待逼近的函数满足广义混沌多项式展开系数对测度μ具有一定的加权可和性。我们用深度ReLU神经网络的大小证明了这种近似的收敛速度。然后将这些结果应用于对数正态和仿射情况下随机输入参数椭圆偏微分方程解的逼近。
{"title":"Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs","authors":"Dinh Dũng ,&nbsp;Van Kien Nguyen ,&nbsp;Duong Thanh Pham","doi":"10.1016/j.jco.2023.101779","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101779","url":null,"abstract":"<div><p><span><span>We investigate non-adaptive methods of deep ReLU neural network approximation in </span>Bochner spaces </span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>,</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></math></span> of functions on <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span><span> taking values in a separable Hilbert space </span><em>X</em>, where <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> is either <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span><span> equipped with the standard Gaussian probability measure, or </span><span><math><msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>∞</mo></mrow></msup></math></span> equipped with the Jacobi probability measure. Functions to be approximated are assumed to satisfy a certain weighted <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-summability of the generalized chaos polynomial expansion coefficients with respect to the measure <em>μ</em><span>. We prove the convergence rate of this approximation in terms of the size of approximating deep ReLU neural networks. These results then are applied to approximation of the solution to parametric<span> elliptic PDEs with random inputs for the lognormal and affine cases.</span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101779"},"PeriodicalIF":1.7,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The curse of dimensionality for the Lp-discrepancy with finite p 有限p的lp差异的维数诅咒
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-08 DOI: 10.1016/j.jco.2023.101769
Erich Novak , Friedrich Pillichshammer

The Lp-discrepancy is a quantitative measure for the irregularity of distribution of an N-element point set in the d-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension d and error threshold ε(0,1) is the minimal number of points in [0,1)d such that the minimal normalized Lp-discrepancy is less or equal ε. It is well known, that the inverse of L2-discrepancy grows exponentially fast with the dimension d, i.e., we have the curse of dimensionality, whereas the inverse of L-discrepancy depends exactly linearly on d. The behavior of inverse of Lp-discrepancy for general p{2,} has been an open problem for many years. In this paper we show that the Lp-discrepancy suffers from the curse of dimensionality for all p in (1,2] which are of the form p=2/(21) with N.

This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite Lq-norm, where q is an even positive integer satisfying 1/p+1/q=1.

lp -差异是对d维单位立方中n元点集分布不规则性的定量度量,它与数值积分类蒙特卡罗算法的最坏情况误差密切相关。它在维数d上是逆的,误差阈值ε∈(0,1)是在[0,1)d中使最小归一化lp差异小于或等于ε的最小点数。众所周知,l2 -差分的逆随维数d呈指数级增长,即我们有维数的curse,而L∞-差分的逆则完全线性地依赖于d。对于一般p∈{2,∞},l2 -差分的逆的性质多年来一直是一个开放的问题。在本文中,我们证明了对于(1,2)中所有形式为p= 2r /(2r−1)且r∈N的p,其lp -差异受到维数诅咒的影响。这个结果来自于一个更一般的结果,我们展示了在锚定Sobolev空间中锚定0的一次可微函数的数值积分的最坏情况误差,每个变量的一阶导数具有有限的lq -范数,其中q是一个满足1/p+1/q=1的偶数正整数。
{"title":"The curse of dimensionality for the Lp-discrepancy with finite p","authors":"Erich Novak ,&nbsp;Friedrich Pillichshammer","doi":"10.1016/j.jco.2023.101769","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101769","url":null,"abstract":"<div><p>The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is a quantitative measure for the irregularity of distribution of an <em>N</em>-element point set in the <em>d</em>-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension <em>d</em> and error threshold <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the minimal number of points in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that the minimal normalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is less or equal <em>ε</em>. It is well known, that the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-discrepancy grows exponentially fast with the dimension <em>d</em>, i.e., we have the curse of dimensionality, whereas the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-discrepancy depends exactly linearly on <em>d</em>. The behavior of inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy for general <span><math><mi>p</mi><mo>∉</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span> has been an open problem for many years. In this paper we show that the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy suffers from the curse of dimensionality for all <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> which are of the form <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>/</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>.</p><p>This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-norm, where <em>q</em> is an even positive integer satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101769"},"PeriodicalIF":1.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the cardinality of lower sets and universal discretization 下集的基数性与泛离散化
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2022.101726
F. Dai , A. Prymak , A. Shadrin , V.N. Temlyakov , S. Tikhonov

A set Q in Z+d is a lower set if (k1,,kd)Q implies (l1,,ld)Q whenever 0liki for all i. We derive new and refine known results regarding the cardinality of the lower sets of size n in Z+d. Next we apply these results for universal discretization of the L2-norm of elements from n-dimensional subspaces of trigonometric polynomials generated by lower sets.

如果(k1,…,kd)∈Q对所有i意味着(l1,…,ld)∈Q,只要0≤li≤ki。我们导出了关于Z+d中大小为n的较低集合的基数的新的和改进的已知结果。接下来,我们将这些结果应用于由较低集合生成的三角多项式的n维子空间的元素的L2范数的通用离散化。
{"title":"On the cardinality of lower sets and universal discretization","authors":"F. Dai ,&nbsp;A. Prymak ,&nbsp;A. Shadrin ,&nbsp;V.N. Temlyakov ,&nbsp;S. Tikhonov","doi":"10.1016/j.jco.2022.101726","DOIUrl":"https://doi.org/10.1016/j.jco.2022.101726","url":null,"abstract":"<div><p>A set <em>Q</em> in <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is a lower set if <span><math><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>Q</mi></math></span> implies <span><math><mo>(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>Q</mi></math></span> whenever <span><math><mn>0</mn><mo>≤</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for all <em>i</em>. We derive new and refine known results regarding the cardinality of the lower sets of size <em>n</em> in <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span><span>. Next we apply these results for universal discretization of the </span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm of elements from <em>n</em><span>-dimensional subspaces of trigonometric polynomials generated by lower sets.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101726"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The BMO-discrepancy suffers from the curse of dimensionality bmo差异受到维度的诅咒
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2023.101739
Friedrich Pillichshammer

We show that the minimal discrepancy of a point set in the d-dimensional unit cube with respect to the BMO seminorm suffers from the curse of dimensionality.

我们证明了d维单位立方体中点集相对于BMO半模的最小差异受到维数诅咒的影响。
{"title":"The BMO-discrepancy suffers from the curse of dimensionality","authors":"Friedrich Pillichshammer","doi":"10.1016/j.jco.2023.101739","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101739","url":null,"abstract":"<div><p>We show that the minimal discrepancy of a point set in the <em>d</em><span><span>-dimensional unit cube with respect to the BMO seminorm suffers from the </span>curse of dimensionality.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101739"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The area of empty axis-parallel boxes amidst 2-dimensional lattice points 在二维晶格点之间的空轴平行盒的面积
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2022.101724
Thomas Lachmann, Jaspar Wiart

The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices in the plane, that is, the supremum of the area of the empty axis-parallel boxes amidst the lattice points. We introduce a framework with which to study this based on the continued fractions expansions of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.

单位正方形中点集的散度是最大的空轴平行盒的面积。在本文中,我们感兴趣的是平面上晶格的色散,即晶格点之间的空轴平行盒的面积的最大值。我们引入了一个基于格生成器的连分式展开的框架来研究这一问题。给出了晶格具有有限色散的充分必要条件。我们得到了二次域整数环子带相关格的色散的精确公式。我们根据发生器的最大连分数系数对晶格的色散有严格的界限,精确到二分之一以内。我们提供了Zaremba猜想的等价公式。使用这个框架,我们能够对先前的结果给出非常简短的证明。
{"title":"The area of empty axis-parallel boxes amidst 2-dimensional lattice points","authors":"Thomas Lachmann,&nbsp;Jaspar Wiart","doi":"10.1016/j.jco.2022.101724","DOIUrl":"https://doi.org/10.1016/j.jco.2022.101724","url":null,"abstract":"<div><p>The dispersion of a point set in the unit square is the area of the largest empty axis-parallel box. In this paper we are interested in the dispersion of lattices<span> in the plane, that is, the supremum<span> of the area of the empty axis-parallel boxes amidst the lattice points<span>. We introduce a framework with which to study this based on the continued fractions expansions<span> of the lattice generators. We give necessary and sufficient conditions under which a lattice has finite dispersion. We obtain an exact formula for the dispersion of the lattices associated to subrings of the ring of integers of quadratic fields. We have tight bounds for the dispersion of a lattice based on the largest continued fraction coefficient of the generators, accurate to within one half. We provide an equivalent formulation of Zaremba's conjecture. Using this framework we are able to give very short proofs of previous results.</span></span></span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101724"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nonasymptotic analysis of robust regression with modified Huber's loss 修正Huber损失鲁棒回归的非渐近分析
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2023.101744
Hongzhi Tong

To achieve robustness against the outliers or heavy-tailed sampling distribution, we consider an Ivanov regularized empirical risk minimization scheme associated with a modified Huber's loss for nonparametric regression in reproducing kernel Hilbert space. By tuning the scaling and regularization parameters in accordance with the sample size, we develop nonasymptotic concentration results for such an adaptive estimator. Specifically, we establish the best convergence rates for prediction error when the conditional distribution satisfies a weak moment condition.

为了实现对离群值或重尾抽样分布的鲁棒性,我们考虑了一种带有修正Huber损失的Ivanov正则化经验风险最小化方案,用于再现核希尔伯特空间的非参数回归。通过根据样本大小调整尺度和正则化参数,我们得到了这种自适应估计器的非渐近集中结果。具体地说,我们建立了条件分布满足弱矩条件时预测误差的最佳收敛速率。
{"title":"Nonasymptotic analysis of robust regression with modified Huber's loss","authors":"Hongzhi Tong","doi":"10.1016/j.jco.2023.101744","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101744","url":null,"abstract":"<div><p><span>To achieve robustness against the outliers or heavy-tailed sampling distribution, we consider an Ivanov regularized empirical risk minimization scheme associated with a modified Huber's loss for nonparametric regression in reproducing kernel </span>Hilbert space<span>. By tuning the scaling and regularization parameters in accordance with the sample size, we develop nonasymptotic concentration results for such an adaptive estimator. Specifically, we establish the best convergence rates for prediction error when the conditional distribution satisfies a weak moment condition.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101744"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On oracle factoring of integers 关于整数的oracle分解
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2023.101741
Andrzej Dąbrowski , Jacek Pomykała , Igor E. Shparlinski

We present an oracle factorisation algorithm, which in polynomial deterministic time, finds a nontrivial factor of almost all positive integers n based on the knowledge of the number of points on certain elliptic curves in residue rings modulo n.

本文提出了一种oracle因子分解算法,该算法在多项式确定性时间内,根据残环上某些椭圆曲线上点的个数以n为模,找到几乎所有正整数n的一个非平凡因子。
{"title":"On oracle factoring of integers","authors":"Andrzej Dąbrowski ,&nbsp;Jacek Pomykała ,&nbsp;Igor E. Shparlinski","doi":"10.1016/j.jco.2023.101741","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101741","url":null,"abstract":"<div><p><span>We present an oracle factorisation algorithm, which in polynomial deterministic time, finds a nontrivial factor of almost all positive integers </span><em>n</em><span> based on the knowledge of the number of points on certain elliptic curves<span> in residue rings modulo </span></span><em>n</em>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101741"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bit-complexity of classical solutions of linear evolutionary systems of partial differential equations 偏微分方程线性演化系统经典解的位复杂度
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2022.101727
Ivan Koswara , Gleb Pogudin , Svetlana Selivanova , Martin Ziegler

We study the bit-complexity intrinsic to solving the initial-value and (several types of) boundary-value problems for linear evolutionary systems of partial differential equations (PDEs), based on the Computable Analysis approach. Our algorithms are guaranteed to compute classical solutions to such problems approximately up to error 1/2n, so that n corresponds to the number of reliable bits of the output; bit-cost is measured with respect to n. Computational Complexity Theory allows us to prove in a rigorous sense that PDEs with constant coefficients are algorithmically ‘easier’ than general ones. Indeed, solutions to the latter are shown (under natural assumptions) computable using a polynomial number of memory bits, and we prove that the complexity class PSPACE is in general optimal; while the case of constant coefficients can be solved in #P—also essentially optimally so: the Heat Equation ‘requires’ #P1. Our algorithms raise difference schemes to exponential powers, efficiently: we compute any desired entry of such a power in #P, provided that the underlying exponential-sized matrices are circulant of constant bandwidth. Exponentially powering modular two-band circulant matrices is established even feasible in P; and under additional conditions, also the solution to certain linear PDEs becomes polynomial time computable.

基于可计算分析方法,我们研究了求解偏微分方程线性进化系统(PDE)的初值和(几种类型)边值问题所固有的比特复杂性。我们的算法保证计算这些问题的经典解,误差约为1/2n,因此n对应于输出的可靠位数;比特成本是相对于n来衡量的。计算复杂性理论使我们能够在严格意义上证明,具有常数系数的偏微分方程在算法上比一般偏微分方程“更容易”。事实上,后者的解决方案显示(在自然假设下)使用多项式数量的内存位是可计算的,并且我们证明复杂性类PSPACE是一般最优的;而常数系数的情况可以在#P中求解——也基本上是最优的:热方程“需要”#P1。我们的算法有效地将差分方案提高到指数幂:我们计算#P中这种幂的任何期望项,前提是底层指数大小的矩阵是恒定带宽的循环矩阵。指数幂模两带循环矩阵在P中成立甚至可行;并且在附加条件下,某些线性偏微分方程的解也变得多项式时间可计算。
{"title":"Bit-complexity of classical solutions of linear evolutionary systems of partial differential equations","authors":"Ivan Koswara ,&nbsp;Gleb Pogudin ,&nbsp;Svetlana Selivanova ,&nbsp;Martin Ziegler","doi":"10.1016/j.jco.2022.101727","DOIUrl":"https://doi.org/10.1016/j.jco.2022.101727","url":null,"abstract":"<div><p><span>We study the bit-complexity intrinsic to solving the initial-value and (several types of) boundary-value problems for linear evolutionary systems of partial differential equations (PDEs), based on the Computable Analysis approach. Our algorithms are guaranteed to compute classical solutions to such problems approximately up to error </span><span><math><mn>1</mn><mo>/</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, so that <em>n</em> corresponds to the number of reliable bits of the output; bit-cost is measured with respect to <em>n</em><span><span>. Computational Complexity Theory allows us to prove in a rigorous sense that PDEs with </span>constant coefficients are algorithmically ‘easier’ than general ones. Indeed, solutions to the latter are shown (under natural assumptions) computable using a polynomial number of memory bits, and we prove that the complexity class </span><span>PSPACE</span> is in general optimal; while the case of constant coefficients can be solved in #<span>P</span>—also essentially optimally so: the Heat Equation ‘requires’ <span><math><msub><mrow><mi>#</mi><mtext>P</mtext></mrow><mrow><mn>1</mn></mrow></msub></math></span><span>. Our algorithms raise difference schemes to exponential powers, efficiently: we compute any desired entry of such a power in #P, provided that the underlying exponential-sized matrices are circulant of constant bandwidth. Exponentially powering modular two-band circulant matrices is established even feasible in </span><span>P</span><span>; and under additional conditions, also the solution to certain linear PDEs<span> becomes polynomial time computable.</span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101727"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements 低秩矩阵恢复和秩一测量的自适应迭代硬阈值
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-06-01 DOI: 10.1016/j.jco.2022.101725
Yu Xia , Likai Zhou

In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, [A(X)]i=Ai,X with rank(Ai)=1, i=1,...,m. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as Xn+1=Ps(XnμnPt(Asign(A(Xn)y))), which introduced the “tail” and “head” approximations Ps and Pt, respectively. In this paper, we remove the term Pt and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the 1/2-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on EA(X)1, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.

在低秩矩阵恢复中,有多种测量值不满足标准的受限等距性质(RIP),如秩一测量值,即[A(X)]i= < Ai,X >与秩(Ai)=1, i=1,…,m。低秩矩阵恢复和秩一测量的历史迭代硬阈值序列为Xn+1=Ps(Xn−μnPt(A sign(A(Xn)−y)))),分别引入了“尾”近似和“头”近似Ps和Pt。在本文中,我们去掉了Pt项,提出了一种新的自适应步长迭代硬阈值算法(简称AIHT)。在1/ 2-RIP条件下,建立了AIHT的线性收敛分析和稳定性结果。特别地,我们讨论了E‖A(X)‖1紧上界和下界下的秩一高斯测量,并提供了更好的收敛速率和采样复杂度。此外,还提供了一些经验实验,表明AIHT优于历史秩一迭代硬阈值法。
{"title":"Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements","authors":"Yu Xia ,&nbsp;Likai Zhou","doi":"10.1016/j.jco.2022.101725","DOIUrl":"https://doi.org/10.1016/j.jco.2022.101725","url":null,"abstract":"<div><p>In low-rank matrix recovery, many kinds of measurements fail to meet the standard restricted isometry property (RIP), such as rank-one measurements, that is, <span><math><msub><mrow><mo>[</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>X</mi><mo>〉</mo></math></span> with <span><math><mtext>rank</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>m</mi></math></span><span>. Historical iterative hard thresholding sequence for low-rank matrix recovery and rank-one measurements was taken as </span><span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mtext>sign</mtext><mo>(</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>y</mi><mo>)</mo><mo>)</mo><mo>)</mo></math></span>, which introduced the “tail” and “head” approximations <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, respectively. In this paper, we remove the term <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span> and provide a new iterative hard thresholding algorithm with adaptive step size (abbreviated as AIHT). The linear convergence analysis and stability results on AIHT are established under the </span><span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span>-RIP. Particularly, we discuss the rank-one Gaussian measurements under the tight upper and lower bounds on </span><span><math><mi>E</mi><msub><mrow><mo>‖</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub></math></span>, and provide better convergence rate and sampling complexity. Besides, several empirical experiments are provided to show that AIHT performs better than the historical rank-one iterative hard thresholding method.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101725"},"PeriodicalIF":1.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49882272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Complexity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1