首页 > 最新文献

Journal of Complexity最新文献

英文 中文
A space-time adaptive low-rank method for high-dimensional parabolic partial differential equations 高维抛物偏微分方程的时空自适应低阶方法
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-02-09 DOI: 10.1016/j.jco.2024.101839
Markus Bachmayr, Manfred Faldum

An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.

本文构建并分析了抛物线偏微分方程的自适应方法,该方法结合了时间上的稀疏小波展开和空间变量上的自适应低阶近似。结果表明,该方法收敛并满足与现有椭圆问题自适应低阶方法相似的复杂度边界,从而确定了它适用于高维空间域上的抛物问题。该构造还为此类问题提供了可计算的严格后验误差边界。数值实验对结果进行了说明。
{"title":"A space-time adaptive low-rank method for high-dimensional parabolic partial differential equations","authors":"Markus Bachmayr,&nbsp;Manfred Faldum","doi":"10.1016/j.jco.2024.101839","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101839","url":null,"abstract":"<div><p>An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101839"},"PeriodicalIF":1.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000165/pdfft?md5=4d8d034eef881c11a8710e5ae9111cdb&pid=1-s2.0-S0885064X24000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139737552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic analysis in multivariate worst case approximation with Gaussian kernels 用高斯核进行多变量最坏情况逼近的渐近分析
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-02-07 DOI: 10.1016/j.jco.2024.101838
A.A. Khartov , I.A. Limar

We consider a problem of approximation of d-variate functions defined on Rd which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as d. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as d.

我们考虑的是定义在 Rd 上的 d 变量函数的近似问题,这些函数属于具有张量乘型再现高斯核且形状参数不变的希尔伯特空间。在最坏情况下,我们研究了信息复杂度随 d→∞ 的增长。在误差阈值固定的情况下,以及当误差阈值随 d→∞ 变为零时,我们得到了渐近线。
{"title":"Asymptotic analysis in multivariate worst case approximation with Gaussian kernels","authors":"A.A. Khartov ,&nbsp;I.A. Limar","doi":"10.1016/j.jco.2024.101838","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101838","url":null,"abstract":"<div><p>We consider a problem of approximation of <em>d</em>-variate functions defined on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101838"},"PeriodicalIF":1.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139714084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thomas Jahn, Tino Ullrich and Felix Voigtlaender are the Winners of the 2023 Best Paper Award of the Journal of Complexity 托马斯-扬、蒂诺-乌尔里希和费利克斯-沃伊特兰德荣获《复杂性学报》2023 年度最佳论文奖
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-30 DOI: 10.1016/j.jco.2024.101834
Erich Novak
{"title":"Thomas Jahn, Tino Ullrich and Felix Voigtlaender are the Winners of the 2023 Best Paper Award of the Journal of Complexity","authors":"Erich Novak","doi":"10.1016/j.jco.2024.101834","DOIUrl":"10.1016/j.jco.2024.101834","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101834"},"PeriodicalIF":1.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000116/pdfft?md5=1582996b1025acb2a96c8e9b4945e0ef&pid=1-s2.0-S0885064X24000116-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tamed-adaptive Euler-Maruyama approximation for SDEs with superlinearly growing and piecewise continuous drift, superlinearly growing and locally Hölder continuous diffusion 具有超线性增长和片断连续漂移、超线性增长和局部赫尔德连续扩散的 SDE 的驯服-自适应欧拉-马鲁山近似法
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-18 DOI: 10.1016/j.jco.2024.101833
Minh-Thang Do , Hoang-Long Ngo , Nhat-An Pho

In this paper, we consider stochastic differential equations whose drift coefficient is superlinearly growing and piecewise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder continuous. We first prove the existence and uniqueness of solution to such stochastic differential equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the rate of convergence in L1-norm of the scheme in both finite and infinite time intervals.

在本文中,我们考虑了漂移系数为超线性增长且片断连续的随机微分方程,以及扩散系数为超线性增长且局部荷尔德连续的随机微分方程。我们首先证明了这类随机微分方程解的存在性和唯一性,然后提出了一种驯服自适应的 Euler-Maruyama 近似方案。我们研究了该方案在有限和无限时间间隔内的 L1 值收敛速率。
{"title":"Tamed-adaptive Euler-Maruyama approximation for SDEs with superlinearly growing and piecewise continuous drift, superlinearly growing and locally Hölder continuous diffusion","authors":"Minh-Thang Do ,&nbsp;Hoang-Long Ngo ,&nbsp;Nhat-An Pho","doi":"10.1016/j.jco.2024.101833","DOIUrl":"10.1016/j.jco.2024.101833","url":null,"abstract":"<div><p><span>In this paper, we consider stochastic differential equations<span> whose drift coefficient is superlinearly growing and piecewise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder continuous. We first prove the existence and uniqueness of solution to such stochastic differential equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the rate of convergence in </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-norm of the scheme in both finite and infinite time intervals.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101833"},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online regularized learning algorithm for functional data 功能数据的在线正则化学习算法
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-09 DOI: 10.1016/j.jco.2024.101825
Yuan Mao, Zheng-Chu Guo

In recent years, functional linear models have attracted growing attention in statistics and machine learning for recovering the slope function or its functional predictor. This paper considers online regularized learning algorithm for functional linear models in a reproducing kernel Hilbert space. It provides convergence analysis of excess prediction error and estimation error with polynomially decaying step-size and constant step-size, respectively. Fast convergence rates can be derived via a capacity dependent analysis. Introducing an explicit regularization term extends the saturation boundary of unregularized online learning algorithms with polynomially decaying step-size and achieves fast convergence rates of estimation error without capacity assumption. In contrast, the latter remains an open problem for the unregularized online learning algorithm with decaying step-size. This paper also demonstrates competitive convergence rates of both prediction error and estimation error with constant step-size compared to existing literature.

近年来,函数线性模型在统计学和机器学习领域受到越来越多的关注,其目的是恢复斜率函数或其函数预测器。本文研究了重现核希尔伯特空间中函数线性模型的在线正则化学习算法。在步长多项式衰减和步长不变的情况下,分别对超额预测误差和估计误差进行了收敛分析。通过容量相关分析,可以得出快速收敛率。通过引入显式正则化项,我们提升了非正则化在线学习算法在步长多项式衰减时的饱和边界,并在不考虑容量假设的情况下建立了估计误差的快速收敛率。然而,如何获得步长衰减的非规则化在线学习算法的估计误差的收敛率与容量无关,仍然是一个有待解决的问题。研究还表明,在步长不变的情况下,预测误差和估计误差的收敛率与文献中的收敛率相比具有竞争力。
{"title":"Online regularized learning algorithm for functional data","authors":"Yuan Mao,&nbsp;Zheng-Chu Guo","doi":"10.1016/j.jco.2024.101825","DOIUrl":"10.1016/j.jco.2024.101825","url":null,"abstract":"<div><p>In recent years, functional linear models have attracted growing attention in statistics<span> and machine learning for recovering the slope function or its functional predictor. This paper considers online regularized learning algorithm for functional linear models in a reproducing kernel Hilbert space<span>. It provides convergence analysis of excess prediction error and estimation error with polynomially decaying step-size and constant step-size, respectively. Fast convergence rates can be derived via a capacity dependent analysis. Introducing an explicit regularization term extends the saturation boundary of unregularized online learning algorithms with polynomially decaying step-size and achieves fast convergence rates of estimation error without capacity assumption. In contrast, the latter remains an open problem for the unregularized online learning algorithm with decaying step-size. This paper also demonstrates competitive convergence rates of both prediction error and estimation error with constant step-size compared to existing literature.</span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101825"},"PeriodicalIF":1.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a class of linear regression methods 关于一类线性回归方法
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-09 DOI: 10.1016/j.jco.2024.101826
Ying-Ao Wang , Qin Huang , Zhigang Yao , Ye Zhang

In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.

本文提出了对一大类线性回归方法的设计和分析的统一研究。所提出的总体框架包括传统的线性回归方法(如最小二乘回归和岭回归)和一些新的回归方法(如 Landweber 回归和 Showalter 回归),这些方法是最近在优化和逆问题领域提出的。研究了这一类线性回归方法的强一致性、减小的均方误差、渐近高斯特性和最佳最坏情况误差。通过各种数值实验证明了所提出的线性回归方法的一致性和效率。
{"title":"On a class of linear regression methods","authors":"Ying-Ao Wang ,&nbsp;Qin Huang ,&nbsp;Zhigang Yao ,&nbsp;Ye Zhang","doi":"10.1016/j.jco.2024.101826","DOIUrl":"10.1016/j.jco.2024.101826","url":null,"abstract":"<div><p>In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101826"},"PeriodicalIF":1.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Tikhonov regularization in Hilbert scales for inverse learning 用于逆向学习的希尔伯特尺度非线性提霍诺夫正则化
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-06 DOI: 10.1016/j.jco.2024.101824
Abhishake Rastogi

In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.

本文研究了希尔伯特尺度下的 Tikhonov 正则化方案,用于解决具有一般噪声的非线性统计逆问题。该方案中的正则规范比希尔伯特空间中的规范更强。我们的重点是在条件稳定性估计的基础上对该方案进行理论分析。我们利用距离函数的概念,建立了重现核希尔伯特空间环境下直接误差和重建误差的高概率估计。此外,我们还通过适当的源条件,在正则性类别上为过平滑情况和正则情况建立了明确的样本量收敛率。我们的结果改进并概括了之前在相关环境中获得的结果。
{"title":"Nonlinear Tikhonov regularization in Hilbert scales for inverse learning","authors":"Abhishake Rastogi","doi":"10.1016/j.jco.2024.101824","DOIUrl":"10.1016/j.jco.2024.101824","url":null,"abstract":"<div><p>In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101824"},"PeriodicalIF":1.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000013/pdfft?md5=1a65eb323b09b712bcf07de5eb47b8eb&pid=1-s2.0-S0885064X24000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Randomized complexity of parametric integration and the role of adaption II. Sobolev spaces 参数积分的随机复杂性和适应的作用 II.索波列夫空间
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-02 DOI: 10.1016/j.jco.2023.101823
Stefan Heinrich
<div><p><span>We study the complexity of randomized computation of integrals depending on a parameter, with integrands<span> from Sobolev spaces. That is, for </span></span><span><math><mi>r</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span> we are given <span><math><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and we seek to approximate<span><span><span><math><mo>(</mo><mi>S</mi><mi>f</mi><mo>)</mo><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>f</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>t</mi><mspace></mspace><mo>(</mo><mi>s</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> with error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-norm. Information is standard, that is, function values of <em>f</em>. Our results extend previous work of Heinrich and Sindambiwe (1999) <span>[10]</span> for <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span> and Wiegand (2006) <span>[15]</span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>=</mo><mi>q</mi><mo><</mo><mo>∞</mo></math></span>. Wiegand's analysis was carried out under the assumption that <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is continuously embedded in <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span> (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed – a stochastic discretization
我们研究的是随机计算取决于参数的积分的复杂性,积分来自索波列夫空间。也就是说,对于 r,d1,d2∈N,1≤p,q≤∞,D1=[0,1]d1,D2=[0,1]d2,我们给定了 f∈Wpr(D1×D2),我们寻求逼近(Sf)(s)=∫D2f(s,t)dt(s∈D1),误差以 Lq(D1)-norm 度量。我们的结果扩展了海因里希和辛丹比韦(《复杂性学报》,15 (1999),317-341)先前针对 p=q=∞ 和维甘德(Shaker Verlag,2006)针对 1≤p=q<∞ 所做的工作。Wiegand 的分析是在 Wpr(D1×D2) 连续嵌入 C(D1×D2) 的假设条件(嵌入条件)下进行的。我们还研究了嵌入条件不成立的情况。本文以第一部分为基础,研究了矢量均值计算--参数积分的有限维对应物。在第一部分中,解决了基于信息的复杂性的一个基本问题,即随机设置中线性问题的适应能力。这里解决了这个问题的另一个方面。
{"title":"Randomized complexity of parametric integration and the role of adaption II. Sobolev spaces","authors":"Stefan Heinrich","doi":"10.1016/j.jco.2023.101823","DOIUrl":"10.1016/j.jco.2023.101823","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;We study the complexity of randomized computation of integrals depending on a parameter, with integrands&lt;span&gt; from Sobolev spaces. That is, for &lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; we are given &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and we seek to approximate&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; with error measured in the &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-norm. Information is standard, that is, function values of &lt;em&gt;f&lt;/em&gt;. Our results extend previous work of Heinrich and Sindambiwe (1999) &lt;span&gt;[10]&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and Wiegand (2006) &lt;span&gt;[15]&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Wiegand's analysis was carried out under the assumption that &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is continuously embedded in &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt; (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed – a stochastic discretization","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"82 ","pages":"Article 101823"},"PeriodicalIF":1.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp lower error bounds for strong approximation of SDEs with piecewise Lipschitz continuous drift coefficient 具有片状 Lipschitz 连续漂移系数的 SDE 强逼近的尖锐误差下限
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2024-01-02 DOI: 10.1016/j.jco.2023.101822
Simon Ellinger

We study pathwise approximation of strong solutions of scalar stochastic differential equations (SDEs) at a single time in the presence of discontinuities of the drift coefficient. Recently, it has been shown by Müller-Gronbach and Yaroslavtseva (2022) that for all p[1,) a transformed Milstein-type scheme reaches an Lp-error rate of at least 3/4 when the drift coefficient is a piecewise Lipschitz-continuous function with a piecewise Lipschitz-continuous derivative and the diffusion coefficient is constant. It has been proven by Müller-Gronbach and Yaroslavtseva (2023) that this rate 3/4 is optimal if one additionally assumes that the drift coefficient is bounded, increasing and has a point of discontinuity. While boundedness and monotonicity of the drift coefficient are crucial for the proof of the matching lower bound from Müller-Gronbach and Yaroslavtseva (2023), we show that both conditions can be dropped. For the proof we apply a transformation technique which was so far only used to obtain upper bounds.

我们研究的是在漂移系数不连续的情况下,标量随机微分方程(SDE)的强解在单一时间的路径近似。最近,Müller-Gronbach 和 Yaroslavtseva(2022 年)证明,对于所有 p∈[1,∞],当漂移系数是一个具有片断 Lipschitz-continuous 导数的片断 Lipschitz-continuous 函数,且扩散系数为常数时,变换后的 Milstein-type 方案的 Lp 误差率至少为 3/4。Müller-Gronbach 和 Yaroslavtseva(2023 年)已经证明,如果再假设漂移系数是有界的、递增的并且有一个不连续点,那么这个误差率 3/4 是最佳的。虽然漂移系数的有界性和单调性对于证明 Müller-Gronbach 和 Yaroslavtseva(2023)的匹配下限至关重要,但我们证明这两个条件都可以放弃。为了证明这一点,我们采用了迄今为止只用于获得上界的变换技术。
{"title":"Sharp lower error bounds for strong approximation of SDEs with piecewise Lipschitz continuous drift coefficient","authors":"Simon Ellinger","doi":"10.1016/j.jco.2023.101822","DOIUrl":"10.1016/j.jco.2023.101822","url":null,"abstract":"<div><p><span>We study pathwise approximation of strong solutions of scalar stochastic differential equations (SDEs) at a single time in the presence of discontinuities of the drift coefficient. Recently, it has been shown by Müller-Gronbach and Yaroslavtseva (2022) that for all </span><span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> a transformed Milstein-type scheme reaches an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span><span>-error rate of at least 3/4 when the drift coefficient is a piecewise Lipschitz-continuous function with a piecewise Lipschitz-continuous derivative and the diffusion coefficient is constant. It has been proven by Müller-Gronbach and Yaroslavtseva (2023) that this rate 3/4 is optimal if one additionally assumes that the drift coefficient is bounded, increasing and has a point of discontinuity. While </span>boundedness and monotonicity of the drift coefficient are crucial for the proof of the matching lower bound from Müller-Gronbach and Yaroslavtseva (2023), we show that both conditions can be dropped. For the proof we apply a transformation technique which was so far only used to obtain upper bounds.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"81 ","pages":"Article 101822"},"PeriodicalIF":1.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexity for a class of elliptic ordinary integro-differential equations 一类椭圆常积分微分方程的复杂性
IF 1.7 2区 数学 Q1 MATHEMATICS Pub Date : 2023-12-27 DOI: 10.1016/j.jco.2023.101820
A.G. Werschulz
<div><p>Consider the variational form of the ordinary integro-differential equation (OIDE)<span><span><span><math><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>u</mi><mo>+</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></munderover><mi>q</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>y</mi><mo>)</mo><mi>u</mi><mo>(</mo><mi>y</mi><mo>)</mo><mrow><mtext>dy</mtext></mrow><mo>=</mo><mi>f</mi></math></span></span></span> on the unit interval <em>I</em><span>, subject to homogeneous Neumann boundary conditions. Here, </span><em>f</em> and <em>q</em> respectively belong to the unit ball of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> and the ball of radius <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. For <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, we want to compute <em>ε</em>-approximations for this problem, measuring error in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> sense in the worst case setting. Assuming that standard information is admissible, we find that the <em>n</em>th minimal error is <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mo>)</mo></math></span>, so that the information <em>ε</em>-complexity is <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mo>)</mo></math></span><span>; moreover, finite element methods of degree </span><span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>}</mo></math></span><span> are minimal-error algorithms. We use a Picard method to approximate the solution of the resulting linear systems, since Gaussian elimination will be too expensive. We find that the total </span><em>ε</em>-complexity of the problem is at least <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mo>)</mo></math></span> and at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mi>ln</mi><mo>⁡</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></m
考虑单位区间 I 上的常积分微分方程 (OIDE)-u″+u+∫01q(⋅,y)u(y)dy=f 的变分形式,并服从同质诺伊曼边界条件。这里,f 和 q 分别属于 Hr(I) 的单位球和 Hs(I2) 的半径为 M1 的球,其中 M1∈[0,1)。对于 ε>0,我们希望计算这个问题的 ε 近似值,在最坏情况下测量 H1(I) 意义上的误差。假设标准信息是可接受的,我们发现第 n 次最小误差为 Θ(n-min{r,s/2}),因此信息ε复杂度为 Θ(ε-1/min{r,s/2});此外,度数为 max{r,s} 的有限元方法是最小误差算法。由于高斯消元法成本太高,我们采用皮卡尔法来近似求解所得到的线性系统。我们发现,问题的总复杂度至少为 Ω(ε-1/min{r,s/2}),最多为 O(ε-1/min{r,s/2}lnε-1),使用 O(lnε-1) 次 Picard 迭代即可达到上限。
{"title":"Complexity for a class of elliptic ordinary integro-differential equations","authors":"A.G. Werschulz","doi":"10.1016/j.jco.2023.101820","DOIUrl":"10.1016/j.jco.2023.101820","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Consider the variational form of the ordinary integro-differential equation (OIDE)&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;″&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mrow&gt;&lt;mtext&gt;dy&lt;/mtext&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; on the unit interval &lt;em&gt;I&lt;/em&gt;&lt;span&gt;, subject to homogeneous Neumann boundary conditions. Here, &lt;/span&gt;&lt;em&gt;f&lt;/em&gt; and &lt;em&gt;q&lt;/em&gt; respectively belong to the unit ball of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and the ball of radius &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. For &lt;span&gt;&lt;math&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we want to compute &lt;em&gt;ε&lt;/em&gt;-approximations for this problem, measuring error in the &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; sense in the worst case setting. Assuming that standard information is admissible, we find that the &lt;em&gt;n&lt;/em&gt;th minimal error is &lt;span&gt;&lt;math&gt;&lt;mi&gt;Θ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, so that the information &lt;em&gt;ε&lt;/em&gt;-complexity is &lt;span&gt;&lt;math&gt;&lt;mi&gt;Θ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;; moreover, finite element methods of degree &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt; are minimal-error algorithms. We use a Picard method to approximate the solution of the resulting linear systems, since Gaussian elimination will be too expensive. We find that the total &lt;/span&gt;&lt;em&gt;ε&lt;/em&gt;-complexity of the problem is at least &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and at most &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;ln&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/m","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"81 ","pages":"Article 101820"},"PeriodicalIF":1.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Complexity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1