Pub Date : 2025-10-28DOI: 10.1016/j.jco.2025.101998
Christian Weiß
We establish the existence of N-point sets in dimension d whose star-discrepancy is bounded above by , where the numerical constant improves upon all previously known bounds. This improvement is obtained by combining a recent result by Gnewuch on bracketing numbers in high dimensions with discrepancy bounds for Hammersley point sets due to Atanassov in dimensions .
{"title":"Hammersley point sets and inverse of star-discrepancy","authors":"Christian Weiß","doi":"10.1016/j.jco.2025.101998","DOIUrl":"10.1016/j.jco.2025.101998","url":null,"abstract":"<div><div>We establish the existence of <em>N</em>-point sets in dimension <em>d</em> whose star-discrepancy is bounded above by <span><math><mn>2.4631832</mn><msqrt><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>N</mi></mrow></mfrac></mrow></msqrt></math></span>, where the numerical constant improves upon all previously known bounds. This improvement is obtained by combining a recent result by Gnewuch on bracketing numbers in high dimensions with discrepancy bounds for Hammersley point sets due to Atanassov in dimensions <span><math><mn>1</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"93 ","pages":"Article 101998"},"PeriodicalIF":1.8,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145442663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-13DOI: 10.1016/j.jco.2025.101996
Matthieu Dolbeault, Erich Novak, Kateryna Pozharska, Mathias Sonnleitner, Henryk Woźniakowski
{"title":"Jonathan Siegel is the winner of the 2025 Joseph F. Traub Information-Based Complexity Young Researcher Award","authors":"Matthieu Dolbeault, Erich Novak, Kateryna Pozharska, Mathias Sonnleitner, Henryk Woźniakowski","doi":"10.1016/j.jco.2025.101996","DOIUrl":"10.1016/j.jco.2025.101996","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101996"},"PeriodicalIF":1.8,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-24DOI: 10.1016/j.jco.2025.101995
Hongzhi Tong
We consider in this paper the quantile regression in a functional polynomial model, where the conditional quantile of a scalar response is modeled by a polynomial of functional predictor. It extends beyond the standard functional linear setting to accommodate more general functional polynomial model. A Tikhonov regularized functional polynomial quantile regression approach is introduced and investigated. By utilizing some techniques of empirical processes, we establish the explicit convergence rates of the prediction error of the proposed estimator under mild assumptions.
{"title":"Statistical analysis of prediction in functional polynomial quantile regression","authors":"Hongzhi Tong","doi":"10.1016/j.jco.2025.101995","DOIUrl":"10.1016/j.jco.2025.101995","url":null,"abstract":"<div><div>We consider in this paper the quantile regression in a functional polynomial model, where the conditional quantile of a scalar response is modeled by a polynomial of functional predictor. It extends beyond the standard functional linear setting to accommodate more general functional polynomial model. A Tikhonov regularized functional polynomial quantile regression approach is introduced and investigated. By utilizing some techniques of empirical processes, we establish the explicit convergence rates of the prediction error of the proposed estimator under mild assumptions.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101995"},"PeriodicalIF":1.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1016/j.jco.2025.101994
Amir Naseem , Krzysztof Gdawiec , Sania Qureshi , Ioannis K. Argyros , Muhammad Aziz ur Rehman , Amanullah Soomro , Evren Hincal , Kamyar Hosseini , Ausif Padder
This study introduces an optimal fourth-order iterative method derived by combining two established methods, resulting in enhanced convergence when solving nonlinear equations. Through rigorous convergence analysis using both Taylor expansion and the Banach space framework, the fourth-order optimality condition is verified. We demonstrate the superior efficiency and stability of this new method compared to traditional alternatives. Numerical experiments confirm its effectiveness, showing a reduction in the average number of iterations and computational time. Visual analysis with polynomiographs confirms the method's robustness, focusing on convergence area index, iteration count, computational time, fractal dimension, and Wada measure of basins. These findings underscore the potential of this optimal method for tackling complex nonlinear problems in various scientific and engineering fields.
{"title":"A high-efficiency fourth-order iterative method for nonlinear equations: Convergence and computational gains","authors":"Amir Naseem , Krzysztof Gdawiec , Sania Qureshi , Ioannis K. Argyros , Muhammad Aziz ur Rehman , Amanullah Soomro , Evren Hincal , Kamyar Hosseini , Ausif Padder","doi":"10.1016/j.jco.2025.101994","DOIUrl":"10.1016/j.jco.2025.101994","url":null,"abstract":"<div><div>This study introduces an optimal fourth-order iterative method derived by combining two established methods, resulting in enhanced convergence when solving nonlinear equations. Through rigorous convergence analysis using both Taylor expansion and the Banach space framework, the fourth-order optimality condition is verified. We demonstrate the superior efficiency and stability of this new method compared to traditional alternatives. Numerical experiments confirm its effectiveness, showing a reduction in the average number of iterations and computational time. Visual analysis with polynomiographs confirms the method's robustness, focusing on convergence area index, iteration count, computational time, fractal dimension, and Wada measure of basins. These findings underscore the potential of this optimal method for tackling complex nonlinear problems in various scientific and engineering fields.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101994"},"PeriodicalIF":1.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-22DOI: 10.1016/j.jco.2025.101993
David Alonso-Gutiérrez, Luis C. García-Lirola
<div><div>Borell's inequality states the existence of a positive absolute constant <span><math><mi>C</mi><mo>></mo><mn>0</mn></math></span> such that for every <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span><span><span><span><math><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>≤</mo><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></mrow></msup><mo>≤</mo><mi>C</mi><mfrac><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></mfrac><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></math></span></span></span> whenever <em>X</em> is a random vector uniformly distributed on any convex body <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is the standard canonical basis in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In this paper, we will prove a discrete version of this inequality, which will hold whenever <em>X</em> is a random vector uniformly distributed on <span><math><mi>K</mi><mo>∩</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any convex body <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> containing the origin in its interior. We will also make use of such discrete version to obtain discrete inequalities from which we can recover the estimate <span><math><mi>E</mi><mi>w</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo><mo>∼</mo><mi>w</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>log</mi><mo></mo><mi>N</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>)</mo></math></span> for any convex body <em>K</em> containing the origin in its interior, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is the centrally symmetric random polytope <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>=</mo><mtext>conv</mtext><mo>{</mo><mo>±</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub
{"title":"Borell's inequality and mean width of random polytopes via discrete inequalities","authors":"David Alonso-Gutiérrez, Luis C. García-Lirola","doi":"10.1016/j.jco.2025.101993","DOIUrl":"10.1016/j.jco.2025.101993","url":null,"abstract":"<div><div>Borell's inequality states the existence of a positive absolute constant <span><math><mi>C</mi><mo>></mo><mn>0</mn></math></span> such that for every <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span><span><span><span><math><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>≤</mo><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></mrow></msup><mo>≤</mo><mi>C</mi><mfrac><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></mfrac><msup><mrow><mo>(</mo><mi>E</mi><mo>|</mo><mo>〈</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>,</mo></math></span></span></span> whenever <em>X</em> is a random vector uniformly distributed on any convex body <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is the standard canonical basis in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In this paper, we will prove a discrete version of this inequality, which will hold whenever <em>X</em> is a random vector uniformly distributed on <span><math><mi>K</mi><mo>∩</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any convex body <span><math><mi>K</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> containing the origin in its interior. We will also make use of such discrete version to obtain discrete inequalities from which we can recover the estimate <span><math><mi>E</mi><mi>w</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo><mo>∼</mo><mi>w</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>log</mi><mo></mo><mi>N</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>)</mo></math></span> for any convex body <em>K</em> containing the origin in its interior, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is the centrally symmetric random polytope <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>=</mo><mtext>conv</mtext><mo>{</mo><mo>±</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101993"},"PeriodicalIF":1.8,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-16DOI: 10.1016/j.jco.2025.101992
Mario Ullrich
We prove a sharp bound between sampling numbers and entropy numbers in the uniform norm for bounded convex sets of bounded functions.
在有界函数的有界凸集的一致范数中,证明了抽样数与熵数之间的一个锐界。
{"title":"Sampling and entropy numbers in the uniform norm","authors":"Mario Ullrich","doi":"10.1016/j.jco.2025.101992","DOIUrl":"10.1016/j.jco.2025.101992","url":null,"abstract":"<div><div>We prove a sharp bound between sampling numbers and entropy numbers in the uniform norm for bounded convex sets of bounded functions.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101992"},"PeriodicalIF":1.8,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-10DOI: 10.1016/j.jco.2025.101991
Wen Wen , Han Li , Yutao Hu , Lingjuan Wu , Hong Chen
Investigating the generalization and robustness of adversarial learning is an active research topic due to its implications in designing robust models for a wide range of machine learning tasks. In this paper, we aim to investigate the adversarially robust generalization of bipartite ranking against pairwise perturbation attacks from the lens of learning theory. We establish high-probability generalization error bounds of linear hypotheses and multi-layer neural networks for bipartite ranking under adversarial attacks, by developing Rademacher complexity over i.i.d. sample blocks and covering numbers. Our results provide a theoretical characterization of the interplay between generalization error and perturbation-related factors, revealing the important impact of feature dimension and weight regularization for achieving good generalization performance. Experimental results on real-world datasets validate the effectiveness of our theoretical findings.
{"title":"Generalization bounds of adversarial bipartite ranking with pairwise perturbation","authors":"Wen Wen , Han Li , Yutao Hu , Lingjuan Wu , Hong Chen","doi":"10.1016/j.jco.2025.101991","DOIUrl":"10.1016/j.jco.2025.101991","url":null,"abstract":"<div><div>Investigating the generalization and robustness of adversarial learning is an active research topic due to its implications in designing robust models for a wide range of machine learning tasks. In this paper, we aim to investigate the adversarially robust generalization of bipartite ranking against pairwise perturbation attacks from the lens of learning theory. We establish high-probability generalization error bounds of linear hypotheses and multi-layer neural networks for bipartite ranking under adversarial attacks, by developing Rademacher complexity over i.i.d. sample blocks and covering numbers. Our results provide a theoretical characterization of the interplay between generalization error and perturbation-related factors, revealing the important impact of feature dimension and weight regularization for achieving good generalization performance. Experimental results on real-world datasets validate the effectiveness of our theoretical findings.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101991"},"PeriodicalIF":1.8,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-02DOI: 10.1016/j.jco.2025.101989
Emmanuel Gobet , Matthieu Lerasle , David Métivier
We aim to calculate an expectation for functions using a family of estimators with a budget of B evaluation points. The standard Monte Carlo method achieves a root mean squared risk of order , both for a fixed square integrable function F and for the worst-case risk over the class of functions with . Using a sequence of Randomized Quasi Monte Carlo (RQMC) methods, in contrast, we achieve faster convergence for the risk when fixing a function F, compared to the worst-case risk which is still of order . We address the convergence of quantiles of the absolute error, namely, for a given confidence level this is the minimal ε such that holds. We show that a judicious choice of a robust aggregation method coupled with RQMC methods allows reaching improved convergence rates for ε depending on δ and B when fixing a function F. This study includes a review on concentration bounds for the empirical mean as well as sub-Gaussian mean estimates and is supported by numerical experiments, ranging from bounded F to heavy-tailed , the latter being well suited to functions F with a singularity. The different methods we have tested are available in a Julia package.
{"title":"Accelerated convergence of error quantiles using robust randomized quasi Monte Carlo methods","authors":"Emmanuel Gobet , Matthieu Lerasle , David Métivier","doi":"10.1016/j.jco.2025.101989","DOIUrl":"10.1016/j.jco.2025.101989","url":null,"abstract":"<div><div>We aim to calculate an expectation <span><math><mi>μ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>E</mi><mrow><mo>(</mo><mi>F</mi><mo>(</mo><mi>U</mi><mo>)</mo><mo>)</mo></mrow></math></span> for functions <span><math><mi>F</mi><mo>:</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>↦</mo><mi>R</mi></math></span> using a family of estimators <span><math><msub><mrow><mover><mrow><mi>μ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub></math></span> with a budget of <em>B</em> evaluation points. The standard Monte Carlo method achieves a root mean squared risk of order <span><math><mn>1</mn><mo>/</mo><msqrt><mrow><mi>B</mi></mrow></msqrt></math></span>, both for a fixed square integrable function <em>F</em> and for the worst-case risk over the class <span><math><mi>F</mi></math></span> of functions with <span><math><msub><mrow><mo>‖</mo><mi>F</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>≤</mo><mn>1</mn></math></span>. Using a sequence of Randomized Quasi Monte Carlo (RQMC) methods, in contrast, we achieve faster convergence <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>≪</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mi>B</mi></mrow></msqrt></math></span> for the risk <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> when fixing a function <em>F</em>, compared to the worst-case risk which is still of order <span><math><mn>1</mn><mo>/</mo><msqrt><mrow><mi>B</mi></mrow></msqrt></math></span>. We address the convergence of quantiles of the absolute error, namely, for a given confidence level <span><math><mn>1</mn><mo>−</mo><mi>δ</mi></math></span> this is the minimal <em>ε</em> such that <span><math><mi>P</mi><mo>(</mo><mo>|</mo><msub><mrow><mover><mrow><mi>μ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mi>μ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>|</mo><mo>></mo><mi>ε</mi><mo>)</mo><mo>≤</mo><mi>δ</mi></math></span> holds. We show that a judicious choice of a robust aggregation method coupled with RQMC methods allows reaching improved convergence rates for <em>ε</em> depending on <em>δ</em> and <em>B</em> when fixing a function <em>F</em>. This study includes a review on concentration bounds for the empirical mean as well as sub-Gaussian mean estimates and is supported by numerical experiments, ranging from bounded <em>F</em> to heavy-tailed <span><math><mi>F</mi><mo>(</mo><mi>U</mi><mo>)</mo></math></span>, the latter being well suited to functions <em>F</em> with a singularity. The different methods we have tested are available in a Julia package.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101989"},"PeriodicalIF":1.8,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144931571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01DOI: 10.1016/j.jco.2025.101990
Austin Anderson , Steven Damelin
We use a characterization of Minkowski measurability to study the asymptotics of best packing on cut-out subsets of the real line with Minkowski dimension . Our main result is a proof that Minkowski measurability is a sufficient condition for the existence of best packing asymptotics on monotone rearrangements of these sets. For each such set, the main result provides an explicit constant of proportionality , depending only on the Minkowski dimension d, that relates its packing limit and Minkowski content. We later use the Digamma function to study the limiting value of as . This study further provides two sharpness results illustrating the necessity of the hypotheses of the main result. Finally, the aforementioned characterization of Minkowski measurability motivates the asymptotic study of an infinite multiple subset sum problem.
{"title":"On the packing functions of some linear sets of Lebesgue measure zero","authors":"Austin Anderson , Steven Damelin","doi":"10.1016/j.jco.2025.101990","DOIUrl":"10.1016/j.jco.2025.101990","url":null,"abstract":"<div><div>We use a characterization of Minkowski measurability to study the asymptotics of best packing on cut-out subsets of the real line with Minkowski dimension <span><math><mi>d</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Our main result is a proof that Minkowski measurability is a sufficient condition for the existence of best packing asymptotics on monotone rearrangements of these sets. For each such set, the main result provides an explicit constant of proportionality <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>, depending only on the Minkowski dimension <em>d</em>, that relates its packing limit and Minkowski content. We later use the Digamma function to study the limiting value of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> as <span><math><mi>d</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. This study further provides two sharpness results illustrating the necessity of the hypotheses of the main result. Finally, the aforementioned characterization of Minkowski measurability motivates the asymptotic study of an infinite multiple subset sum problem.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101990"},"PeriodicalIF":1.8,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144996569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}