Pub Date : 2024-12-19DOI: 10.1016/j.jcta.2024.106001
Gábor P. Nagy
The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in F2n, there should be Sidon sets of size at least 2n/2+1 for all n. This paper provides an overview of the known large Sidon sets in F2n, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.
{"title":"Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions","authors":"Gábor P. Nagy","doi":"10.1016/j.jcta.2024.106001","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.106001","url":null,"abstract":"The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mrow><mml:mi mathvariant=\"double-struck\">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:math>, there should be Sidon sets of size at least <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo stretchy=\"false\">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn></mml:math> for all <ce:italic>n</ce:italic>. This paper provides an overview of the known large Sidon sets in <mml:math altimg=\"si1.svg\"><mml:msubsup><mml:mrow><mml:mi mathvariant=\"double-struck\">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:math>, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1016/j.jcta.2024.105984
Yushuang Fan, Qinghai Zhong
Let (G,+,0) be a finite abelian group and let ηN(G) be the smallest integer ℓ such that every sequence over G∖{0} of length ℓ has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that ηN(Cn⊕Cn)=3n+1 for every n≥2 and solved the corresponding inverse problem for groups Cp⊕Cp, where p is a prime. In this paper, we determine the precise value of ηN(G) for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups Cn⊕Cn, where n≥2, which confirms a conjecture of Gao, Geroldinger and Wang for all n≥2 except n=4.
{"title":"On joint short minimal zero-sum subsequences over finite abelian groups of rank two","authors":"Yushuang Fan, Qinghai Zhong","doi":"10.1016/j.jcta.2024.105984","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105984","url":null,"abstract":"Let <mml:math altimg=\"si1.svg\"><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo>,</mml:mo><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be a finite abelian group and let <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> be the smallest integer <ce:italic>ℓ</ce:italic> such that every sequence over <mml:math altimg=\"si3.svg\"><mml:mi>G</mml:mi><mml:mo>∖</mml:mo><mml:mo stretchy=\"false\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">}</mml:mo></mml:math> of length <ce:italic>ℓ</ce:italic> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <mml:math altimg=\"si4.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy=\"false\">)</mml:mo><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>3</mml:mn><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mn>1</mml:mn></mml:math> for every <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> and solved the corresponding inverse problem for groups <mml:math altimg=\"si6.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>, where <ce:italic>p</ce:italic> is a prime. In this paper, we determine the precise value of <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <mml:math altimg=\"si7.svg\"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo>⊕</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:math>, where <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math>, which confirms a conjecture of Gao, Geroldinger and Wang for all <mml:math altimg=\"si5.svg\"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>2</mml:mn></mml:math> except <mml:math altimg=\"si8.svg\"><mml:mi>n</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>4</mml:mn></mml:math>.","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"91 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.jcta.2024.105979
Michael Kiermaier , Jonathan Mannaert , Alfred Wassermann
In 1982, Cameron and Liebler investigated certain special sets of lines in , and gave several equivalent characterizations. Due to their interesting geometric and algebraic properties, these Cameron-Liebler line classes got much attention. Several generalizations and variants have been considered in the literature, the main directions being a variation of the dimensions of the involved spaces, and studying the analogous situation in the subset lattice. An important tool is the interpretation of the objects as Boolean functions in the Johnson and q-Johnson schemes.
In this article, we develop a unified theory covering all these variations. Generalized versions of algebraic and geometric properties will be investigated, having a parallel in the notion of designs and antidesigns in association schemes. This leads to a natural definition of the degree and the weights of functions in the ambient scheme, refining the existing definitions. We will study the effect of dualization and of elementary modifications of the ambient space on the degree and the weights. Moreover, a divisibility property of the sizes of Boolean functions of degree t will be proven.
{"title":"The degree of functions in the Johnson and q-Johnson schemes","authors":"Michael Kiermaier , Jonathan Mannaert , Alfred Wassermann","doi":"10.1016/j.jcta.2024.105979","DOIUrl":"10.1016/j.jcta.2024.105979","url":null,"abstract":"<div><div>In 1982, Cameron and Liebler investigated certain <em>special sets of lines</em> in <span><math><mi>PG</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and gave several equivalent characterizations. Due to their interesting geometric and algebraic properties, these <em>Cameron-Liebler line classes</em> got much attention. Several generalizations and variants have been considered in the literature, the main directions being a variation of the dimensions of the involved spaces, and studying the analogous situation in the subset lattice. An important tool is the interpretation of the objects as Boolean functions in the <em>Johnson</em> and <em>q-Johnson schemes</em>.</div><div>In this article, we develop a unified theory covering all these variations. Generalized versions of algebraic and geometric properties will be investigated, having a parallel in the notion of <em>designs</em> and <em>antidesigns</em> in association schemes. This leads to a natural definition of the <em>degree</em> and the <em>weights</em> of functions in the ambient scheme, refining the existing definitions. We will study the effect of dualization and of elementary modifications of the ambient space on the degree and the weights. Moreover, a divisibility property of the sizes of Boolean functions of degree <em>t</em> will be proven.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 105979"},"PeriodicalIF":0.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.jcta.2024.105980
Van Long Phuoc Pham , Keshav Goyal , Han Mao Kiah
Transmit a codeword , that belongs to an -deletion-correcting code of length n, over a t-deletion channel for some . Levenshtein (2001) [10], proposed the problem of determining , the minimum number of distinct channel outputs required to uniquely reconstruct . Prior to this work, is known only when . Here, we provide an asymptotically exact solution for all values of ℓ and t. Specifically, we show that . In the special instances: where , we show that ; and when and , we show that . We also provide a conjecture on the exact value of for all values of n, ℓ, and t.
{"title":"Sequence reconstruction problem for deletion channels: A complete asymptotic solution","authors":"Van Long Phuoc Pham , Keshav Goyal , Han Mao Kiah","doi":"10.1016/j.jcta.2024.105980","DOIUrl":"10.1016/j.jcta.2024.105980","url":null,"abstract":"<div><div>Transmit a codeword <figure><img></figure>, that belongs to an <span><math><mo>(</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-deletion-correcting code of length <em>n</em>, over a <em>t</em>-deletion channel for some <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi><mo><</mo><mi>n</mi></math></span>. Levenshtein (2001) <span><span>[10]</span></span>, proposed the problem of determining <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, the minimum number of distinct channel outputs required to uniquely reconstruct <figure><img></figure>. Prior to this work, <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> is known only when <span><math><mi>ℓ</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span>. Here, we provide an asymptotically exact solution for all values of <em>ℓ</em> and <em>t</em>. Specifically, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>ℓ</mi><mo>)</mo><mo>!</mo></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mi>ℓ</mi></mrow></msup><mo>−</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>. In the special instances: where <span><math><mi>ℓ</mi><mo>=</mo><mi>t</mi></math></span>, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>; and when <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>t</mi><mo>=</mo><mn>4</mn></math></span>, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>≤</mo><mn>20</mn><mi>n</mi><mo>−</mo><mn>150</mn></math></span>. We also provide a conjecture on the exact value of <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for all values of <em>n</em>, <em>ℓ</em>, and <em>t</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105980"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.jcta.2024.105981
Yang Huang, Yuejian Peng
<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></m
如果对于任意的 A∈A 和 B∈B 来说,A∩B≠∅Sm_2205↩,则两个族 A 和 B 是相交的。如果 Ai 和 Aj 在 1≤i<j≤t 时交叉,我们称 t 个族为 A1,A2,...,At 成对交叉族。此外,如果对于每个 j∈[t] Aj≠∅,那么我们说 A1,A2,...At 是非空的成对相交族。设 A1⊆([n]k1),A2⊆([n]k2),...,At⊆([n]kt)为非空成对相交族,t≥2,k1≥k2≥⋯≥kt,n≥k1+k2,d1,d2,...,dt 为正数。本文给出了∑j=1tdj|Aj|的尖锐上界,并描述了达到上界的族 A1,A2,...At 的特征。我们的结果统一了 Frankl 和 Tokushige (1992) [5]、Shi、Frankl 和 Qian (2022) [15]、Huang、Peng 和 Wang [10] 以及 Zhang 和 Feng [16] 的结果。此外,我们的结果可以应用于对某些 n<k1+k2 的处理,而之前已知的所有结果都没有这样的应用。在证明过程中,我们应用了 Kruskal 和 Katona 的一个结果,使我们只考虑其元素是按词典顺序排列的第一个 |Ai| 元素的 Ai 族。我们用一个单变量函数 fi(R) 限定∑i=1tdi|Ai|,其中 R 是按词法顺序排列的 Ai 的最后一个元素,并验证了 -fi(R)具有比极值结果更强的单调性。我们认为,除了极值结果之外,本文中函数的单模态性本身也很有趣。
{"title":"Non-empty pairwise cross-intersecting families","authors":"Yang Huang, Yuejian Peng","doi":"10.1016/j.jcta.2024.105981","DOIUrl":"10.1016/j.jcta.2024.105981","url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></m","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105981"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.jcta.2024.105983
Hongxue Liang , Alessandro Montinaro
In this paper, we provide a complete classification of 2- designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as t-spreads, translation planes, quadrics and Segre varieties.
Our result together with those of Alavi et al. [1], [2], Praeger et al. [17], Zhou and the first author [39], [40] provides a complete classification of 2- design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.
{"title":"A classification of the flag-transitive 2-(v,k,2) designs","authors":"Hongxue Liang , Alessandro Montinaro","doi":"10.1016/j.jcta.2024.105983","DOIUrl":"10.1016/j.jcta.2024.105983","url":null,"abstract":"<div><div>In this paper, we provide a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> designs admitting a flag-transitive automorphism group of affine type with the only exception of the semilinear 1-dimensional group. Alongside this analysis, we provide a construction of seven new families of such flag-transitive 2-designs, one of them infinite, and some of them involving remarkable objects such as <em>t</em>-spreads, translation planes, quadrics and Segre varieties.</div><div>Our result together with those of Alavi et al. <span><span>[1]</span></span>, <span><span>[2]</span></span>, Praeger et al. <span><span>[17]</span></span>, Zhou and the first author <span><span>[39]</span></span>, <span><span>[40]</span></span> provides a complete classification of 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> design admitting a flag-transitive automorphism group with the only exception of the semilinear 1-dimensional case.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105983"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142701472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.jcta.2024.105982
Byungchan Kim , Eunmi Kim
Let be the set of partitions of n into distinct parts, and be the sum of reciprocals of the parts of the partition λ. We show that as , Moreover, for , the set of ordinary partitions of n, we show that as , To prove these asymptotic formulas in a uniform manner, we derive a general asymptotic formula using Wright's circle method.
设 Dn 是将 n 分割为不同部分的集合,srp(λ) 是分割 λ 的各部分的倒数之和。 我们证明,当 n→∞ 时,E[srp(λ):λ∈Dn]∼log(3n)4andVar[srp(λ):λ∈Dn]∼π224。此外,对于 n 的普通分区集合 Pn,我们证明当 n→∞ 时,E[srp(λ):λ∈Pn]∼πn6andVar[srp(λ):λ∈Pn]∼π215n。为了统一证明这些渐近公式,我们利用赖特圆法推导出一个一般渐近公式。
{"title":"Distributions of reciprocal sums of parts in integer partitions","authors":"Byungchan Kim , Eunmi Kim","doi":"10.1016/j.jcta.2024.105982","DOIUrl":"10.1016/j.jcta.2024.105982","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of partitions of <em>n</em> into distinct parts, and <span><math><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> be the sum of reciprocals of the parts of the partition <em>λ</em>. We show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><mi>log</mi><mo></mo><mo>(</mo><mn>3</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>24</mn></mrow></mfrac><mo>.</mo></math></span></span></span> Moreover, for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the set of ordinary partitions of <em>n</em>, we show that as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>,<span><span><span><math><mi>E</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mi>π</mi><msqrt><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></msqrt><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>Var</mi><mo>[</mo><mi>srp</mi><mo>(</mo><mi>λ</mi><mo>)</mo><mo>:</mo><mi>λ</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo><mo>∼</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>15</mn></mrow></mfrac><mi>n</mi><mo>.</mo></math></span></span></span> To prove these asymptotic formulas in a uniform manner, we derive a general asymptotic formula using Wright's circle method.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105982"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.jcta.2024.105978
Takahiro Matsushita , Shun Wakatsuki
We show that the dominance complex of a graph G coincides with the combinatorial Alexander dual of the neighborhood complex of the complement of G. Using this, we obtain a relation between the chromatic number of G and the homology group of . We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of by determining the homotopy types of the independence complex of .
我们证明了图 G 的支配复数 D(G) 与 G 的补集的邻域复数 N(G‾) 的组合亚历山大对偶重合,并由此得到了 G 的色度数 χ(G) 与 D(G) 的同调群之间的关系。我们还从邻接复数的著名事实中得到了几个与支配复数有关的已知结果。之后,我们提出了一种利用简单图的独立复数计算支配复数同调群的新方法。我们证明了支配复数同调群的几种已知计算方法可以简化为独立复数的已知计算方法。最后,我们通过确定 Pn×P3×P2 独立复数的同调类型来确定 D(Pn×P3) 的同调群。
{"title":"Dominance complexes, neighborhood complexes and combinatorial Alexander duals","authors":"Takahiro Matsushita , Shun Wakatsuki","doi":"10.1016/j.jcta.2024.105978","DOIUrl":"10.1016/j.jcta.2024.105978","url":null,"abstract":"<div><div>We show that the dominance complex <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> coincides with the combinatorial Alexander dual of the neighborhood complex <span><math><mi>N</mi><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> of the complement of <em>G</em>. Using this, we obtain a relation between the chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> and the homology group of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of <span><math><mi>D</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> by determining the homotopy types of the independence complex of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105978"},"PeriodicalIF":0.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.jcta.2024.105968
Sam Mattheus, Geertrui Van de Voorde
We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in and plane spreads in , and caps in . The latter result extends work due to Roche-Newton and Warren [21] and Bhowmick and Roche-Newton [6].
Finally, we investigate caps in p-random subsets of , which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren [6], [21], and arcs in projective spaces by Chen, Liu, Nie and Zeng [8].
我们利用代数和极值组合学的技术,推导出有限几何中若干(超)图中独立集数的上界。通过这种方法,我们得到了极空间中部分敖包和旌旗的 EKR 集、PG(2r-1,q) 中的线展和 PG(5,q) 中的面展以及 PG(3,q) 中的盖的渐近尖锐上界。最后,我们研究了 PG(r,q) 的 p 个随机子集中的盖,这与 Bhowmick 和 Roche-Newton 以及 Roche-Newton 和 Warren [6], [21] 最近针对投影平面中的弧所做的工作,以及 Chen, Liu, Nie 和 Zeng [8] 最近针对投影空间中的弧所做的工作相似。
{"title":"Upper bounds for the number of substructures in finite geometries from the container method","authors":"Sam Mattheus, Geertrui Van de Voorde","doi":"10.1016/j.jcta.2024.105968","DOIUrl":"10.1016/j.jcta.2024.105968","url":null,"abstract":"<div><div>We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and plane spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and caps in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. The latter result extends work due to Roche-Newton and Warren <span><span>[21]</span></span> and Bhowmick and Roche-Newton <span><span>[6]</span></span>.</div><div>Finally, we investigate caps in <em>p</em>-random subsets of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren <span><span>[6]</span></span>, <span><span>[21]</span></span>, and arcs in projective spaces by Chen, Liu, Nie and Zeng <span><span>[8]</span></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105968"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.jcta.2024.105969
E. Ghorbani , S. Kamali , G.B. Khosrovshahi
Motivated by a classical result of Graver and Jurkat (1973) and Graham, Li, and Li (1980) in combinatorial design theory, which states that the permutations of t- minimal trades generate the vector space of all t- trades, we investigate the vector space spanned by permutations of an arbitrary trade. We prove that this vector space possesses a decomposition as a direct sum of subspaces formed in the same way by a specific family of so-called total trades. As an application, we demonstrate that for any t- design, its permutations can span the vector space generated by all t- designs for sufficiently large values of v. In other words, any t- design, or even any t-trade, can be expressed as a linear combination of permutations of a fixed t-design. This substantially extends a result by Ghodrati (2019), who proved the same result for Steiner designs.
受 Graver 和 Jurkat(1973 年)以及 Graham、Li 和 Li(1980 年)在组合设计理论中的一个经典结果(即 t-(v,k)最小交易的排列组合产生所有 t-(v,k)交易的向量空间)的启发,我们研究了任意交易的排列组合所跨越的向量空间。我们证明,这个向量空间可以分解为由特定的所谓总交易系列以相同方式形成的子空间的直接和。换句话说,任何 t-(v,k,λ)设计,甚至任何 t 交易,都可以表示为固定 t 设计的排列组合的线性组合。这大大扩展了 Ghodrati(2019)的一个结果,他为斯坦纳设计证明了同样的结果。
{"title":"The vector space generated by permutations of a trade or a design","authors":"E. Ghorbani , S. Kamali , G.B. Khosrovshahi","doi":"10.1016/j.jcta.2024.105969","DOIUrl":"10.1016/j.jcta.2024.105969","url":null,"abstract":"<div><div>Motivated by a classical result of Graver and Jurkat (1973) and Graham, Li, and Li (1980) in combinatorial design theory, which states that the permutations of <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> minimal trades generate the vector space of all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> trades, we investigate the vector space spanned by permutations of an arbitrary trade. We prove that this vector space possesses a decomposition as a direct sum of subspaces formed in the same way by a specific family of so-called total trades. As an application, we demonstrate that for any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, its permutations can span the vector space generated by all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs for sufficiently large values of <em>v</em>. In other words, any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, or even any <em>t</em>-trade, can be expressed as a linear combination of permutations of a fixed <em>t</em>-design. This substantially extends a result by Ghodrati (2019), who proved the same result for Steiner designs.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105969"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}