Pub Date : 2024-12-31DOI: 10.1016/j.jcta.2024.106005
Chiara Castello, Olga Polverino, Ferdinando Zullo
For a linear Hamming metric code of length n over a finite field, the number of distinct weights of its codewords is at most n. The codes achieving the equality in the above bound were called full weight spectrum codes. In this paper, we will focus on the analogous class of codes within the framework of cyclic subspace codes. Cyclic subspace codes have garnered significant attention, particularly for their applications in random network coding to correct errors and erasures. We investigate one-orbit cyclic subspace codes that are full weight spectrum in this context. Utilizing number-theoretical results and combinatorial arguments, we provide a complete classification of full weight spectrum one-orbit cyclic subspace codes.
{"title":"Full weight spectrum one-orbit cyclic subspace codes","authors":"Chiara Castello, Olga Polverino, Ferdinando Zullo","doi":"10.1016/j.jcta.2024.106005","DOIUrl":"10.1016/j.jcta.2024.106005","url":null,"abstract":"<div><div>For a linear Hamming metric code of length <em>n</em> over a finite field, the number of distinct weights of its codewords is at most <em>n</em>. The codes achieving the equality in the above bound were called full weight spectrum codes. In this paper, we will focus on the analogous class of codes within the framework of cyclic subspace codes. Cyclic subspace codes have garnered significant attention, particularly for their applications in random network coding to correct errors and erasures. We investigate one-orbit cyclic subspace codes that are <em>full weight spectrum</em> in this context. Utilizing number-theoretical results and combinatorial arguments, we provide a complete classification of full weight spectrum one-orbit cyclic subspace codes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106005"},"PeriodicalIF":0.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.jcta.2024.106004
Yasutsugu Fujita , Maohua Le
<div><div>Let <span><math><mi>N</mi></math></span>, <span><math><mi>P</mi></math></span> be the sets of all positive integers and odd primes, respectively. In 1991, when studying the existence of abelian difference sets with multiplier −1, S.-L. Ma <span><span>[14]</span></span> conjectured that the equation <span><math><mo>(</mo><mo>⁎</mo><mo>)</mo></math></span> <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> has only one solution <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>49</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This is a far from solved problem that has been poorly known for so long. In this paper, using some elementary methods, we first prove that if <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is a solution of <span><math><mo>(</mo><mo>⁎</mo><mo>)</mo></math></span> with <span><math><mi>m</mi><mo>=</mo><mn>2</mn><mi>n</mi></math></span>, then there exist an odd positive integer <em>g</em> and a positive integer <em>t</em> which make <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>a</mi></mrow></msup><mo>=</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>−</mo><mo>(</mo><mi>g</mi><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>/</mo><mo>(</mo><mi>α</mi><mo>−</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> for any integer <em>r</em>, <span><math><mi>α</mi><mo>=</mo><mn>2</mn><mi>g</mi><mo>+</mo><msqrt><mrow><mn>4</mn><msup><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt
{"title":"Contributions to Ma's conjecture concerning abelian difference sets with multiplier −1 (I)","authors":"Yasutsugu Fujita , Maohua Le","doi":"10.1016/j.jcta.2024.106004","DOIUrl":"10.1016/j.jcta.2024.106004","url":null,"abstract":"<div><div>Let <span><math><mi>N</mi></math></span>, <span><math><mi>P</mi></math></span> be the sets of all positive integers and odd primes, respectively. In 1991, when studying the existence of abelian difference sets with multiplier −1, S.-L. Ma <span><span>[14]</span></span> conjectured that the equation <span><math><mo>(</mo><mo>⁎</mo><mo>)</mo></math></span> <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> has only one solution <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>49</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This is a far from solved problem that has been poorly known for so long. In this paper, using some elementary methods, we first prove that if <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is a solution of <span><math><mo>(</mo><mo>⁎</mo><mo>)</mo></math></span> with <span><math><mi>m</mi><mo>=</mo><mn>2</mn><mi>n</mi></math></span>, then there exist an odd positive integer <em>g</em> and a positive integer <em>t</em> which make <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>a</mi></mrow></msup><mo>=</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>−</mo><mo>(</mo><mi>g</mi><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><msup><mrow><mover><mrow><mi>α</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo><mo>/</mo><mo>(</mo><mi>α</mi><mo>−</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> for any integer <em>r</em>, <span><math><mi>α</mi><mo>=</mo><mn>2</mn><mi>g</mi><mo>+</mo><msqrt><mrow><mn>4</mn><msup><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106004"},"PeriodicalIF":0.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1016/j.jcta.2024.106001
Gábor P. Nagy
The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in , there should be Sidon sets of size at least for all n. This paper provides an overview of the known large Sidon sets in , and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.
{"title":"Sidon sets, thin sets, and the nonlinearity of vectorial Boolean functions","authors":"Gábor P. Nagy","doi":"10.1016/j.jcta.2024.106001","DOIUrl":"10.1016/j.jcta.2024.106001","url":null,"abstract":"<div><div>The vectorial nonlinearity of a vector-valued function is its distance from the set of affine functions. In 2017, Liu, Mesnager, and Chen conjectured a general upper bound for the vectorial linearity. Recently, Carlet established a lower bound in terms of differential uniformity. In this paper, we improve Carlet's lower bound. Our approach is based on the fact that the level sets of a vectorial Boolean function are thin sets. In particular, level sets of APN functions are Sidon sets, hence the Liu-Mesnager-Chen conjecture predicts that in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, there should be Sidon sets of size at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> for all <em>n</em>. This paper provides an overview of the known large Sidon sets in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, and examines the completeness of the large Sidon sets derived from hyperbolas and ellipses of the finite affine plane.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106001"},"PeriodicalIF":0.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1016/j.jcta.2024.106002
Pat Devlin, Leo Douhovnikoff
We study the diametric problem (i.e., optimal anticodes) in the space of permutations under the Ulam distance. That is, let denote the set of permutations on n symbols, and for each , define their Ulam distance as the number of distinct symbols that must be deleted from each until they are equal. We obtain a near-optimal upper bound on the size of the intersection of two balls in this space, and as a corollary, we prove that a set of diameter at most k has size at most , compared to the best known construction of size .
{"title":"Diametric problem for permutations with the Ulam metric (optimal anticodes)","authors":"Pat Devlin, Leo Douhovnikoff","doi":"10.1016/j.jcta.2024.106002","DOIUrl":"10.1016/j.jcta.2024.106002","url":null,"abstract":"<div><div>We study the diametric problem (i.e., optimal anticodes) in the space of permutations under the Ulam distance. That is, let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> denote the set of permutations on <em>n</em> symbols, and for each <span><math><mi>σ</mi><mo>,</mo><mi>τ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, define their Ulam distance as the number of distinct symbols that must be deleted from each until they are equal. We obtain a near-optimal upper bound on the size of the intersection of two balls in this space, and as a corollary, we prove that a set of diameter at most <em>k</em> has size at most <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>+</mo><mi>C</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></msup><mi>n</mi><mo>!</mo><mo>/</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo></math></span>, compared to the best known construction of size <span><math><mi>n</mi><mo>!</mo><mo>/</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106002"},"PeriodicalIF":0.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1016/j.jcta.2024.106000
Gabe Cunningham , Elías Mochán , Antonio Montero
A map on a surface whose automorphism group has a subgroup acting regularly on its vertices is called a Cayley map. Here we generalize that notion to maniplexes and polytopes. We define to be a Cayley extension of if the facets of are isomorphic to and if some subgroup of the automorphism group of acts regularly on the facets of . We show that many natural extensions in the literature on maniplexes and polytopes are in fact Cayley extensions. We also describe several universal Cayley extensions. Finally, we examine the automorphism group and symmetry type graph of Cayley extensions.
{"title":"Cayley extensions of maniplexes and polytopes","authors":"Gabe Cunningham , Elías Mochán , Antonio Montero","doi":"10.1016/j.jcta.2024.106000","DOIUrl":"10.1016/j.jcta.2024.106000","url":null,"abstract":"<div><div>A map on a surface whose automorphism group has a subgroup acting regularly on its vertices is called a Cayley map. Here we generalize that notion to maniplexes and polytopes. We define <span><math><mi>M</mi></math></span> to be a <em>Cayley extension</em> of <span><math><mi>K</mi></math></span> if the facets of <span><math><mi>M</mi></math></span> are isomorphic to <span><math><mi>K</mi></math></span> and if some subgroup of the automorphism group of <span><math><mi>M</mi></math></span> acts regularly on the facets of <span><math><mi>M</mi></math></span>. We show that many natural extensions in the literature on maniplexes and polytopes are in fact Cayley extensions. We also describe several universal Cayley extensions. Finally, we examine the automorphism group and symmetry type graph of Cayley extensions.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106000"},"PeriodicalIF":0.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1016/j.jcta.2024.106003
Björn Kriepke, Gohar M. Kyureghyan, Matthias Schymura
Motivated by complexity questions in integer programming, this paper aims to contribute to the understanding of combinatorial properties of integer matrices of row rank r and with bounded subdeterminants. In particular, we study the column number question for integer matrices whose every minor is non-zero and bounded by a fixed constant Δ in absolute value. Approaching the problem in two different ways, one that uses results from coding theory, and the other from the geometry of numbers, we obtain linear and asymptotically sublinear upper bounds on the maximal number of columns of such matrices, respectively. We complement these results by lower bound constructions, matching the linear upper bound for , and a discussion of a computational approach to determine the maximal number of columns for small parameters Δ and r.
{"title":"On the size of integer programs with bounded non-vanishing subdeterminants","authors":"Björn Kriepke, Gohar M. Kyureghyan, Matthias Schymura","doi":"10.1016/j.jcta.2024.106003","DOIUrl":"10.1016/j.jcta.2024.106003","url":null,"abstract":"<div><div>Motivated by complexity questions in integer programming, this paper aims to contribute to the understanding of combinatorial properties of integer matrices of row rank <em>r</em> and with bounded subdeterminants. In particular, we study the column number question for integer matrices whose every <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> minor is non-zero and bounded by a fixed constant Δ in absolute value. Approaching the problem in two different ways, one that uses results from coding theory, and the other from the geometry of numbers, we obtain linear and asymptotically sublinear upper bounds on the maximal number of columns of such matrices, respectively. We complement these results by lower bound constructions, matching the linear upper bound for <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, and a discussion of a computational approach to determine the maximal number of columns for small parameters Δ and <em>r</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106003"},"PeriodicalIF":0.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1016/j.jcta.2024.105984
Yushuang Fan , Qinghai Zhong
Let be a finite abelian group and let be the smallest integer ℓ such that every sequence over of length ℓ has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that for every and solved the corresponding inverse problem for groups , where p is a prime. In this paper, we determine the precise value of for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups , where , which confirms a conjecture of Gao, Geroldinger and Wang for all except .
{"title":"On joint short minimal zero-sum subsequences over finite abelian groups of rank two","authors":"Yushuang Fan , Qinghai Zhong","doi":"10.1016/j.jcta.2024.105984","DOIUrl":"10.1016/j.jcta.2024.105984","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span> be a finite abelian group and let <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the smallest integer <em>ℓ</em> such that every sequence over <span><math><mi>G</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> of length <em>ℓ</em> has two joint short minimal zero-sum subsequences. In 2013, Gao et al. obtained that <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> and solved the corresponding inverse problem for groups <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, where <em>p</em> is a prime. In this paper, we determine the precise value of <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for all finite abelian groups of rank 2 and resolve the corresponding inverse problem for groups <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊕</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, which confirms a conjecture of Gao, Geroldinger and Wang for all <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> except <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 105984"},"PeriodicalIF":0.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.jcta.2024.105979
Michael Kiermaier , Jonathan Mannaert , Alfred Wassermann
In 1982, Cameron and Liebler investigated certain special sets of lines in , and gave several equivalent characterizations. Due to their interesting geometric and algebraic properties, these Cameron-Liebler line classes got much attention. Several generalizations and variants have been considered in the literature, the main directions being a variation of the dimensions of the involved spaces, and studying the analogous situation in the subset lattice. An important tool is the interpretation of the objects as Boolean functions in the Johnson and q-Johnson schemes.
In this article, we develop a unified theory covering all these variations. Generalized versions of algebraic and geometric properties will be investigated, having a parallel in the notion of designs and antidesigns in association schemes. This leads to a natural definition of the degree and the weights of functions in the ambient scheme, refining the existing definitions. We will study the effect of dualization and of elementary modifications of the ambient space on the degree and the weights. Moreover, a divisibility property of the sizes of Boolean functions of degree t will be proven.
{"title":"The degree of functions in the Johnson and q-Johnson schemes","authors":"Michael Kiermaier , Jonathan Mannaert , Alfred Wassermann","doi":"10.1016/j.jcta.2024.105979","DOIUrl":"10.1016/j.jcta.2024.105979","url":null,"abstract":"<div><div>In 1982, Cameron and Liebler investigated certain <em>special sets of lines</em> in <span><math><mi>PG</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and gave several equivalent characterizations. Due to their interesting geometric and algebraic properties, these <em>Cameron-Liebler line classes</em> got much attention. Several generalizations and variants have been considered in the literature, the main directions being a variation of the dimensions of the involved spaces, and studying the analogous situation in the subset lattice. An important tool is the interpretation of the objects as Boolean functions in the <em>Johnson</em> and <em>q-Johnson schemes</em>.</div><div>In this article, we develop a unified theory covering all these variations. Generalized versions of algebraic and geometric properties will be investigated, having a parallel in the notion of <em>designs</em> and <em>antidesigns</em> in association schemes. This leads to a natural definition of the <em>degree</em> and the <em>weights</em> of functions in the ambient scheme, refining the existing definitions. We will study the effect of dualization and of elementary modifications of the ambient space on the degree and the weights. Moreover, a divisibility property of the sizes of Boolean functions of degree <em>t</em> will be proven.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 105979"},"PeriodicalIF":0.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.jcta.2024.105980
Van Long Phuoc Pham , Keshav Goyal , Han Mao Kiah
Transmit a codeword , that belongs to an -deletion-correcting code of length n, over a t-deletion channel for some . Levenshtein (2001) [10], proposed the problem of determining , the minimum number of distinct channel outputs required to uniquely reconstruct . Prior to this work, is known only when . Here, we provide an asymptotically exact solution for all values of ℓ and t. Specifically, we show that . In the special instances: where , we show that ; and when and , we show that . We also provide a conjecture on the exact value of for all values of n, ℓ, and t.
{"title":"Sequence reconstruction problem for deletion channels: A complete asymptotic solution","authors":"Van Long Phuoc Pham , Keshav Goyal , Han Mao Kiah","doi":"10.1016/j.jcta.2024.105980","DOIUrl":"10.1016/j.jcta.2024.105980","url":null,"abstract":"<div><div>Transmit a codeword <figure><img></figure>, that belongs to an <span><math><mo>(</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-deletion-correcting code of length <em>n</em>, over a <em>t</em>-deletion channel for some <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi><mo><</mo><mi>n</mi></math></span>. Levenshtein (2001) <span><span>[10]</span></span>, proposed the problem of determining <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, the minimum number of distinct channel outputs required to uniquely reconstruct <figure><img></figure>. Prior to this work, <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> is known only when <span><math><mi>ℓ</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span>. Here, we provide an asymptotically exact solution for all values of <em>ℓ</em> and <em>t</em>. Specifically, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>ℓ</mi><mo>)</mo><mo>!</mo></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mi>ℓ</mi></mrow></msup><mo>−</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>t</mi><mo>−</mo><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>. In the special instances: where <span><math><mi>ℓ</mi><mo>=</mo><mi>t</mi></math></span>, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>ℓ</mi></mrow></mtd></mtr><mtr><mtd><mi>ℓ</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>; and when <span><math><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>t</mi><mo>=</mo><mn>4</mn></math></span>, we show that <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>≤</mo><mn>20</mn><mi>n</mi><mo>−</mo><mn>150</mn></math></span>. We also provide a conjecture on the exact value of <span><math><mi>N</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> for all values of <em>n</em>, <em>ℓ</em>, and <em>t</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105980"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.jcta.2024.105981
Yang Huang, Yuejian Peng
<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></m
如果对于任意的 A∈A 和 B∈B 来说,A∩B≠∅Sm_2205↩,则两个族 A 和 B 是相交的。如果 Ai 和 Aj 在 1≤i<j≤t 时交叉,我们称 t 个族为 A1,A2,...,At 成对交叉族。此外,如果对于每个 j∈[t] Aj≠∅,那么我们说 A1,A2,...At 是非空的成对相交族。设 A1⊆([n]k1),A2⊆([n]k2),...,At⊆([n]kt)为非空成对相交族,t≥2,k1≥k2≥⋯≥kt,n≥k1+k2,d1,d2,...,dt 为正数。本文给出了∑j=1tdj|Aj|的尖锐上界,并描述了达到上界的族 A1,A2,...At 的特征。我们的结果统一了 Frankl 和 Tokushige (1992) [5]、Shi、Frankl 和 Qian (2022) [15]、Huang、Peng 和 Wang [10] 以及 Zhang 和 Feng [16] 的结果。此外,我们的结果可以应用于对某些 n<k1+k2 的处理,而之前已知的所有结果都没有这样的应用。在证明过程中,我们应用了 Kruskal 和 Katona 的一个结果,使我们只考虑其元素是按词典顺序排列的第一个 |Ai| 元素的 Ai 族。我们用一个单变量函数 fi(R) 限定∑i=1tdi|Ai|,其中 R 是按词法顺序排列的 Ai 的最后一个元素,并验证了 -fi(R)具有比极值结果更强的单调性。我们认为,除了极值结果之外,本文中函数的单模态性本身也很有趣。
{"title":"Non-empty pairwise cross-intersecting families","authors":"Yang Huang, Yuejian Peng","doi":"10.1016/j.jcta.2024.105981","DOIUrl":"10.1016/j.jcta.2024.105981","url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></m","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105981"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142720004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}