Pub Date : 2024-07-05DOI: 10.1016/j.jcta.2024.105934
Rigoberto Flórez , José L. Ramírez , Diego Villamizar
In this paper, we present a study on polyominoes, which are polygons created by connecting unit squares along their edges. Specifically, we focus on a related concept called a bargraph, which is a path on a lattice in traced along the boundaries of a column convex polyomino where the lower edge is on the x-axis. To explore new variations of bargraphs, we introduce the notion of non-decreasing bargraphs, which incorporate an additional restriction concerning the valleys within the path. We establish intriguing connections between these novel objects and unimodal compositions. To facilitate our analysis, we employ generating functions, including q-series, as well as various closed formulas. These tools enable us to enumerate the different types of bargraphs based on their semi-perimeter, area, and the number of peaks. Furthermore, we provide combinatorial justifications for some of the derived closed formulas.
在本文中,我们将对多面体进行研究,多面体是由单位正方形沿边连接而成的多边形。具体来说,我们关注一个相关的概念,即 "条形图"(bargraph)。"条形图 "是在 Z≥0×Z≥0 的网格上沿着柱凸多面体的边界追踪的路径,其中下边位于 x 轴上。为了探索条形图的新变化,我们引入了非递减条形图的概念,其中包含了关于路径内山谷的额外限制。我们在这些新对象和单模态组合之间建立了有趣的联系。为了便于分析,我们使用了包括 q 序列在内的生成函数以及各种封闭公式。通过这些工具,我们可以根据半周长、面积和峰值数量枚举出不同类型的条形图。此外,我们还为一些推导出的封闭公式提供了组合理由。
{"title":"Restricted bargraphs and unimodal compositions","authors":"Rigoberto Flórez , José L. Ramírez , Diego Villamizar","doi":"10.1016/j.jcta.2024.105934","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105934","url":null,"abstract":"<div><p>In this paper, we present a study on <em>polyominoes</em>, which are polygons created by connecting unit squares along their edges. Specifically, we focus on a related concept called a <em>bargraph</em>, which is a path on a lattice in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> traced along the boundaries of a column convex polyomino where the lower edge is on the <em>x</em>-axis. To explore new variations of bargraphs, we introduce the notion of <em>non-decreasing bargraphs</em>, which incorporate an additional restriction concerning the valleys within the path. We establish intriguing connections between these novel objects and unimodal compositions. To facilitate our analysis, we employ generating functions, including <em>q</em>-series, as well as various closed formulas. These tools enable us to enumerate the different types of bargraphs based on their semi-perimeter, area, and the number of peaks. Furthermore, we provide combinatorial justifications for some of the derived closed formulas.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105934"},"PeriodicalIF":0.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000736/pdfft?md5=f5366b9dc5560c0148e0644514e1990d&pid=1-s2.0-S0097316524000736-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1016/j.jcta.2024.105933
Nian Hong Zhou
In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and d-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.
在本文中,我们完善了安德鲁斯和梅尔卡关于截断五角数列的一个结果。随后,我们建立了一些涉及安德鲁斯-戈登-布列苏德同位式和 d 不规则分区的实在性结果。特别是,我们证明了 Merca 和 Krattenthaler-Merca-Radu 关于截断五角数列的几个猜想。
{"title":"Positivity and tails of pentagonal number series","authors":"Nian Hong Zhou","doi":"10.1016/j.jcta.2024.105933","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105933","url":null,"abstract":"<div><p>In this paper, we refine a result of Andrews and Merca on truncated pentagonal number series. Subsequently, we establish some positivity results involving Andrews–Gordon–Bressoud identities and <em>d</em>-regular partitions. In particular, we prove several conjectures of Merca and Krattenthaler–Merca–Radu on truncated pentagonal number series.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105933"},"PeriodicalIF":0.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1016/j.jcta.2024.105932
Sucharita Biswas , Peter J. Cameron , Angsuman Das , Hiranya Kishore Dey
The difference graph of a finite group G is the difference of the enhanced power graph of G and the power graph of G, where all isolated vertices are removed. In this paper we study the connectedness and perfectness of with respect to various properties of the underlying group G. We also find several connections between the difference graph of G and the Gruenberg-Kegel graph of G. We also examine the operation of twin reduction on graphs, a technique which produces smaller graphs which may be easier to analyze. Applying this technique to simple groups can have a number of outcomes, not fully understood, but including some graphs with large girth.
有限群 G 的差分图 D(G) 是 G 的增强幂图与去掉所有孤立顶点的 G 的幂图的差分。在本文中,我们研究了 D(G) 的连通性和完备性与底层群 G 的各种属性的关系。我们还发现了 G 的差分图与 G 的格伦伯格-凯格尔图之间的一些联系。我们还研究了图的孪缩操作,这种技术可以生成更小的图,从而更容易分析。将这种技术应用于简单群会产生许多结果,这些结果尚未完全明了,但包括一些具有较大周长的图。
{"title":"On the difference of the enhanced power graph and the power graph of a finite group","authors":"Sucharita Biswas , Peter J. Cameron , Angsuman Das , Hiranya Kishore Dey","doi":"10.1016/j.jcta.2024.105932","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105932","url":null,"abstract":"<div><p>The difference graph <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the difference of the enhanced power graph of <em>G</em> and the power graph of <em>G</em>, where all isolated vertices are removed. In this paper we study the connectedness and perfectness of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with respect to various properties of the underlying group <em>G</em>. We also find several connections between the difference graph of <em>G</em> and the Gruenberg-Kegel graph of <em>G</em>. We also examine the operation of twin reduction on graphs, a technique which produces smaller graphs which may be easier to analyze. Applying this technique to simple groups can have a number of outcomes, not fully understood, but including some graphs with large girth.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105932"},"PeriodicalIF":0.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.jcta.2024.105923
Huiling Li , Zhilin Zhang , Shenglin Zhou
In this note we show that a flag-transitive automorphism group G of a non-trivial 2- design with is not of product action type. In conclusion, G is a primitive group of affine or almost simple type.
在本注释中,我们证明了一个非三维 2-(v,k,λ) 设计的、λ≥(r,λ)2 的旗反自形群 G 不属于积作用类型。总之,G 是仿射型或近似简单型的基元群。
{"title":"Flag-transitive automorphism groups of 2-designs with λ ≥ (r,λ)2 are not product type","authors":"Huiling Li , Zhilin Zhang , Shenglin Zhou","doi":"10.1016/j.jcta.2024.105923","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105923","url":null,"abstract":"<div><p>In this note we show that a flag-transitive automorphism group <em>G</em> of a non-trivial 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>λ</mi><mo>≥</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> is not of product action type. In conclusion, <em>G</em> is a primitive group of affine or almost simple type.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105923"},"PeriodicalIF":1.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A subset of a finite transitive group is intersecting if any two elements of agree on an element of Ω. The intersection density of G is the number where and is the stabilizer of ω in G. It is known that if is an imprimitive group of degree a product of two odd primes admitting a block of size p or two complete block systems, whose blocks are of size q, then .
In this paper, we analyze the intersection density of imprimitive groups of degree pq with a unique block system with blocks of size q based on the kernel of the induced action on blocks. For those whose kernels are non-trivial, it is proved that the intersection density is larger than 1 whenever there exists a cyclic code C with parameters such that any codeword of C has weight at most , and under some additional conditions on the cyclic code, it is a proper rational number. For those that are quasiprimitive, we reduce the cases to almost simple groups containing or a projective special linear group. We give some examples where the latter has intersection density equal to 1, under some restrictions on p and q.
有限传递群 G≤Sym(Ω) 的一个子集 F,如果 F 的任意两个元素与 Ω 的一个元素一致,则该子集 F 是相交的。G 的相交密度为ρ(G)=max{|F|/|Gω||F⊂G 是相交的},其中 ω∈Ω 和 Gω 是 ω 在 G 中的稳定子。众所周知,如果 G≤Sym(Ω) 是一个阶数为两个奇数素数 p>q 的乘积的冒元群,其中容纳一个大小为 p 的块或两个完整的块系统,其块的大小为 q,则 ρ(G)=1...... 在本文中,我们根据块上诱导作用的内核,分析了阶数为 pq 的冒元群与具有大小为 q 的块的唯一块系统的交集密度。对于那些内核是非琐碎的,只要存在一个参数为 [p,k]q 的循环码 C,使得 C 的任何码元的权重至多为 p-1,并且在循环码的一些附加条件下,它是一个适当的有理数,那么就证明交集密度大于 1。对于那些准三元组,我们将其简化为包含 Alt(5) 或投影特殊线性群的几乎简单群。我们给出了一些例子,在 p 和 q 的某些限制条件下,后者的交集密度等于 1。
{"title":"Intersection density of imprimitive groups of degree pq","authors":"Angelot Behajaina , Roghayeh Maleki , Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1016/j.jcta.2024.105922","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105922","url":null,"abstract":"<div><p>A subset <span><math><mi>F</mi></math></span> of a finite transitive group <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is <em>intersecting</em> if any two elements of <span><math><mi>F</mi></math></span> agree on an element of Ω. The <em>intersection density</em> of <em>G</em> is the number<span><span><span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>/</mo><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>|</mo><mo>|</mo><mi>F</mi><mo>⊂</mo><mi>G</mi><mtext> is intersecting</mtext><mo>}</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>ω</mi><mo>∈</mo><mi>Ω</mi></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> is the stabilizer of <em>ω</em> in <em>G</em>. It is known that if <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is an imprimitive group of degree a product of two odd primes <span><math><mi>p</mi><mo>></mo><mi>q</mi></math></span> admitting a block of size <em>p</em> or two complete block systems, whose blocks are of size <em>q</em>, then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>.</p><p>In this paper, we analyze the intersection density of imprimitive groups of degree <em>pq</em> with a unique block system with blocks of size <em>q</em> based on the kernel of the induced action on blocks. For those whose kernels are non-trivial, it is proved that the intersection density is larger than 1 whenever there exists a cyclic code <em>C</em> with parameters <span><math><msub><mrow><mo>[</mo><mi>p</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> such that any codeword of <em>C</em> has weight at most <span><math><mi>p</mi><mo>−</mo><mn>1</mn></math></span>, and under some additional conditions on the cyclic code, it is a proper rational number. For those that are quasiprimitive, we reduce the cases to almost simple groups containing <span><math><mi>Alt</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span> or a projective special linear group. We give some examples where the latter has intersection density equal to 1, under some restrictions on <em>p</em> and <em>q</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"208 ","pages":"Article 105922"},"PeriodicalIF":1.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400061X/pdfft?md5=4600ca58b59525e76de9f361f9c870b7&pid=1-s2.0-S009731652400061X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1016/j.jcta.2024.105921
Ken Ono, Ajit Singh
<div><p>In his important 1920 paper on partitions, MacMahon defined the partition generating functions<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>m</mi><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>m</mi></mrow><mrow><mi>odd</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1<
{"title":"Remarks on MacMahon's q-series","authors":"Ken Ono, Ajit Singh","doi":"10.1016/j.jcta.2024.105921","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105921","url":null,"abstract":"<div><p>In his important 1920 paper on partitions, MacMahon defined the partition generating functions<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>m</mi><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span><span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>m</mi></mrow><mrow><mi>odd</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>;</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1<","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105921"},"PeriodicalIF":1.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1016/j.jcta.2024.105920
Naihuan Jing , Ning Liu
We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters (denoted by ) are computed by assigning some values to skew Macdonald polynomials in λ-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A -Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the q-Murnaghan-Nakayama rule; (ii) An iterative formula for the -Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the -Kostka polynomials are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary λ and μ in terms of the generalized -binomial coefficient introduced independently by Lassalle and Okounkov.
{"title":"A multiparametric Murnaghan-Nakayama rule for Macdonald polynomials","authors":"Naihuan Jing , Ning Liu","doi":"10.1016/j.jcta.2024.105920","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105920","url":null,"abstract":"<div><p>We introduce a new family of operators as multi-parameter deformation of the one-row Macdonald polynomials. The matrix coefficients of these operators acting on the space of symmetric functions with rational coefficients in two parameters <span><math><mi>q</mi><mo>,</mo><mi>t</mi></math></span> (denoted by <span><math><mi>Λ</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>) are computed by assigning some values to skew Macdonald polynomials in <em>λ</em>-ring notation. The new rule is utilized to provide new iterative formulas and also recover various existing formulas in a unified manner. Specifically the following applications are discussed: (i) A <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Murnaghan-Nakayama rule for Macdonald functions is given as a generalization of the <em>q</em>-Murnaghan-Nakayama rule; (ii) An iterative formula for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Green polynomial is deduced; (iii) A simple proof of the Murnaghan-Nakayama rule for the Hecke algebra and the Hecke-Clifford algebra is offered; (iv) A combinatorial inversion of the Pieri rule for Hall-Littlewood functions is derived with the help of the vertex operator realization of the Hall-Littlewood functions; (v) Two iterative formulae for the <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-Kostka polynomials <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>λ</mi><mi>μ</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> are obtained from the dual version of our multiparametric Murnaghan-Nakayama rule, one of which yields an explicit formula for arbitrary <em>λ</em> and <em>μ</em> in terms of the generalized <span><math><mo>(</mo><mi>q</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-binomial coefficient introduced independently by Lassalle and Okounkov.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105920"},"PeriodicalIF":1.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1016/j.jcta.2024.105919
Daniel R. Hawtin , Cheryl E. Praeger , Jin-Xin Zhou
<div><p>The family of finite 2-arc-transitive graphs of a given valency is closed under forming non-trivial <em>normal quotients</em>, and graphs in this family having no non-trivial normal quotient are called ‘basic’. To date, the vast majority of work in the literature has focused on classifying these ‘basic’ graphs. By contrast we give here a characterisation of the normal covers of the ‘basic’ 2-arc-transitive graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. The characterisation identified the special role of graphs associated with a subgroup of automorphisms called an <em>n-dimensional mixed dihedral group</em>. This is a group <em>H</em> with two subgroups <em>X</em> and <em>Y</em>, each elementary abelian of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, such that <span><math><mi>X</mi><mo>∩</mo><mi>Y</mi><mo>=</mo><mn>1</mn></math></span>, <em>H</em> is generated by <span><math><mi>X</mi><mo>∪</mo><mi>Y</mi></math></span>, and <span><math><mi>H</mi><mo>/</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≅</mo><mi>X</mi><mo>×</mo><mi>Y</mi></math></span>.</p><p>Our characterisation shows that each 2-arc-transitive normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is either itself a Cayley graph, or is the line graph of a Cayley graph of an <em>n</em>-dimensional mixed dihedral group. In the latter case, we show that the 2-arc-transitive group acting on the normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> induces an <em>edge-affine</em> action on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (and we show that such actions are one of just four possible types of 2-arc-transitive actions on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>). As a partial converse, we provide a graph theoretic characterisation of <em>n</em>-dimensional mixed dihedral groups, and finally, for each <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we give an explicit construction of an <em>n</em>-dimensional mixed dihedral group which is a 2-group of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mi>n</mi></mrow><m
给定化合价的有限二弧遍历图系在形成非三维正商时是封闭的,这个系中没有非三维正商的图被称为 "基本 "图。迄今为止,文献中的绝大多数工作都集中在对这些 "基本 "图的分类上。相比之下,我们在此给出了 n≥2 时 "基本 "2-弧-传递图 K2n,2n 的法向盖的特征。该特征描述确定了与一个称为 n 维混合二面群的自动群子群相关联的图形的特殊作用。这是一个具有两个子群 X 和 Y 的群 H,每个子群都是阶数为 2n 的初等无差别群,使得 X∩Y=1, H 由 X∪Y 生成,并且 H/H′≅X×Y.我们的特征描述表明,K2n,2n 的每个 2 弧传正则盖要么本身就是一个 Cayley 图,要么就是一个 n 维混合二面群的 Cayley 图的线图。在后一种情况下,我们证明了作用于 K2n,2n 的法向盖上的 2-arc-transitive 群会在 K2n,2n 上诱导出一个边缘-正方形作用(我们还证明了这种作用是 K2n,2n 上四种可能的 2-arc-transitive 作用之一)。作为部分反证,我们提供了 n 维混合二面群的图论特征,最后,对于每个 n≥2,我们给出了一个 n 维混合二面群的明确构造,它是一个阶为 2n2+2n 的 2 群,以及一个相应的 K2n,2n 的 2 幂阶的 2-弧遍历法盖。请注意,这些结果部分地解决了李才恒提出的关于 "基本 "2-弧传图的素幂级数法向盖的问题。
{"title":"A characterisation of edge-affine 2-arc-transitive covers of K2n,2n","authors":"Daniel R. Hawtin , Cheryl E. Praeger , Jin-Xin Zhou","doi":"10.1016/j.jcta.2024.105919","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105919","url":null,"abstract":"<div><p>The family of finite 2-arc-transitive graphs of a given valency is closed under forming non-trivial <em>normal quotients</em>, and graphs in this family having no non-trivial normal quotient are called ‘basic’. To date, the vast majority of work in the literature has focused on classifying these ‘basic’ graphs. By contrast we give here a characterisation of the normal covers of the ‘basic’ 2-arc-transitive graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>. The characterisation identified the special role of graphs associated with a subgroup of automorphisms called an <em>n-dimensional mixed dihedral group</em>. This is a group <em>H</em> with two subgroups <em>X</em> and <em>Y</em>, each elementary abelian of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, such that <span><math><mi>X</mi><mo>∩</mo><mi>Y</mi><mo>=</mo><mn>1</mn></math></span>, <em>H</em> is generated by <span><math><mi>X</mi><mo>∪</mo><mi>Y</mi></math></span>, and <span><math><mi>H</mi><mo>/</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≅</mo><mi>X</mi><mo>×</mo><mi>Y</mi></math></span>.</p><p>Our characterisation shows that each 2-arc-transitive normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is either itself a Cayley graph, or is the line graph of a Cayley graph of an <em>n</em>-dimensional mixed dihedral group. In the latter case, we show that the 2-arc-transitive group acting on the normal cover of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> induces an <em>edge-affine</em> action on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (and we show that such actions are one of just four possible types of 2-arc-transitive actions on <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>). As a partial converse, we provide a graph theoretic characterisation of <em>n</em>-dimensional mixed dihedral groups, and finally, for each <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, we give an explicit construction of an <em>n</em>-dimensional mixed dihedral group which is a 2-group of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mi>n</mi></mrow><m","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105919"},"PeriodicalIF":1.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1016/j.jcta.2024.105910
Jeffrey Shallit , Arseny Shur , Stefan Zorcic
We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word t gives a complementary morphism that is -free and hence α-free for every real number . We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of t that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length k exist for all . Moreover, if k is not of the form , then the images of letters can be chosen to be factors of t. Finally, we observe that each cubefree complementary morphism is also α-free for some ; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is α-free for any .
In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.
我们重温了无幂态词的话题,重点研究了互补态词类的性质。这类态式是在 2 个字母的字母表上定义的,并将字母 0 和 1 映射为互补词。我们证明了著名的 Thue-Morse 词 t 的每个前缀给出的互补形态都是无 3+ 的,因此对于每个实数 α>3 都是α-free 的。我们还用一个 4 态二进制有限自动机描述了给出无立方互补形态的 t 的所有前缀的长度。接下来,我们将证明在所有 k∉{3,6}中都存在长度为 k 的无立方(3-free)互补变形。此外,如果 k 不是 3⋅2n 的形式,那么字母的图像可以选择为 t 的因子。最后,我们观察到,对于某个 α<3 来说,每个无立方互补变形也是α-free 的;相反,对于任何 α<3 来说,将每个字母映射到长度为 3 的单词(或者长度为 6 的单词)的二元变形都是α-free 的。我们还讨论了它的使用和局限性。
{"title":"Power-free complementary binary morphisms","authors":"Jeffrey Shallit , Arseny Shur , Stefan Zorcic","doi":"10.1016/j.jcta.2024.105910","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105910","url":null,"abstract":"<div><p>We revisit the topic of power-free morphisms, focusing on the properties of the class of complementary morphisms. Such morphisms are defined over a 2-letter alphabet, and map the letters 0 and 1 to complementary words. We prove that every prefix of the famous Thue–Morse word <strong>t</strong> gives a complementary morphism that is <span><math><msup><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-free and hence <em>α</em>-free for every real number <span><math><mi>α</mi><mo>></mo><mn>3</mn></math></span>. We also describe, using a 4-state binary finite automaton, the lengths of all prefixes of <strong>t</strong> that give cubefree complementary morphisms. Next, we show that 3-free (cubefree) complementary morphisms of length <em>k</em> exist for all <span><math><mi>k</mi><mo>∉</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>. Moreover, if <em>k</em> is not of the form <span><math><mn>3</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>, then the images of letters can be chosen to be factors of <strong>t</strong>. Finally, we observe that each cubefree complementary morphism is also <em>α</em>-free for some <span><math><mi>α</mi><mo><</mo><mn>3</mn></math></span>; in contrast, no binary morphism that maps each letter to a word of length 3 (resp., a word of length 6) is <em>α</em>-free for any <span><math><mi>α</mi><mo><</mo><mn>3</mn></math></span>.</p><p>In addition to more traditional techniques of combinatorics on words, we also rely on the Walnut theorem-prover. Its use and limitations are discussed.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105910"},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.1016/j.jcta.2024.105909
Lixiang Chen , Edwin R. van Dam , Changjiang Bu
The k-power hypergraph is the k-uniform hypergraph that is obtained by adding new vertices to each edge of a graph G, for . A parity-closed walk in G is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of using the eigenvalues of signed subgraphs of G. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of in terms of parity-closed walks of G. Moreover, we give an explicit expression for the multiplicity of the spectral radius of . As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph G. By extrapolating the characteristic polynomial of to , we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on G. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on G equals the matching polynomial of G.
k-power 超图 G(k) 是在图 G 的每条边上添加 k-2 个新顶点而得到的 k-Uniform 超图,k≥3。G 中的奇偶封闭走行是指每条边使用偶数次的封闭走行。在早先的一篇论文中,我们利用 G 的有符号子图的特征值确定了 G(k) 的邻接张量的特征值。在这里,我们用 G 的奇偶封闭行走来表达 G(k) 的整个谱(即确定所有乘数和特征多项式)。作为一个附带结果,我们证明了给定长度的奇偶封闭走行的数量就是具有底层图 G 的所有有符号图的平均相应谱矩。通过将 G(k) 的特征多项式外推到 k=2,我们引入了一个伪特征函数,证明它是 G 上所有带符号图的特征多项式的几何平均数。这补充了 Godsil 和 Gutman 的一个结果,即 G 上所有带符号图的特征多项式的算术平均数等于 G 的匹配多项式。
{"title":"Spectra of power hypergraphs and signed graphs via parity-closed walks","authors":"Lixiang Chen , Edwin R. van Dam , Changjiang Bu","doi":"10.1016/j.jcta.2024.105909","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105909","url":null,"abstract":"<div><p>The <em>k</em>-power hypergraph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> is the <em>k</em>-uniform hypergraph that is obtained by adding <span><math><mi>k</mi><mo>−</mo><mn>2</mn></math></span> new vertices to each edge of a graph <em>G</em>, for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. A parity-closed walk in <em>G</em> is a closed walk that uses each edge an even number of times. In an earlier paper, we determined the eigenvalues of the adjacency tensor of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> using the eigenvalues of signed subgraphs of <em>G</em>. Here, we express the entire spectrum (that is, we determine all multiplicities and the characteristic polynomial) of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> in terms of parity-closed walks of <em>G</em>. Moreover, we give an explicit expression for the multiplicity of the spectral radius of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span>. As a side result, we show that the number of parity-closed walks of given length is the corresponding spectral moment averaged over all signed graphs with underlying graph <em>G</em>. By extrapolating the characteristic polynomial of <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> to <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, we introduce a pseudo-characteristic function which is shown to be the geometric mean of the characteristic polynomials of all signed graphs on <em>G</em>. This supplements a result by Godsil and Gutman that the arithmetic mean of the characteristic polynomials of all signed graphs on <em>G</em> equals the matching polynomial of <em>G</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"207 ","pages":"Article 105909"},"PeriodicalIF":1.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}