Pub Date : 2025-02-25DOI: 10.1016/j.jcta.2025.106029
Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers
Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular m-ovoids of k-spaces are introduced as a generalization of m-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.
极空间中的卡梅隆-利伯勒生成器集是几年前作为投影空间中子空间的卡梅隆-利伯勒集的自然广义而提出的。在这篇文章中,我们首次提出了极空间中非难卡梅隆-利伯勒生成器集的两个构造。此外,还介绍了 k 空间的正则 m-ovoids 作为极空间 m-ovoids 的广义。它们被用于上述卡梅隆-利伯勒集合的一个构造中。
{"title":"Regular ovoids and Cameron-Liebler sets of generators in polar spaces","authors":"Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers","doi":"10.1016/j.jcta.2025.106029","DOIUrl":"10.1016/j.jcta.2025.106029","url":null,"abstract":"<div><div>Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular <em>m</em>-ovoids of <em>k</em>-spaces are introduced as a generalization of <em>m</em>-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106029"},"PeriodicalIF":0.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1016/j.jcta.2025.106020
Mircea Merca
<div><div>In 1920, Percy Alexander MacMahon defined the partition generating functions<span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span></span></span> and<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span></span></span> which have since played an important rol
1920 年,珀西-亚历山大-麦克马洪定义了分区生成函数 Ak(q):=∑0<n1<n2<⋯<nkqn1+n2+⋯+nk(1-qn1)2(1-qn2)2⋯(1-qnk)2 和 Ck(q):=∑0<n1<n2<⋯<nkq2n1+2n2+⋯+2nk-k(1-q2n1-1)2(1-q2n2-1)2⋯(1-q2nk-1)2,它们在组合数学中发挥了重要作用。对于每一个非负整数 k,乔治-安德鲁斯(George E. Andrews)和西蒙-罗斯(Simon C. F. Rose)证明了 Ak(q)可以用分区的生成函数来表示,其中每一部分可以用三种不同颜色中的一种来着色,而 Ck(q)可以用过分区的生成函数来表示。最近,对于每个非负整数 k,Ken Ono 和 Ajit Singh 证明了 Ak(q)、Ak+1(q)、Ak+2(q)......给出了每个部分可以用三种不同颜色中的一种着色的 n 的分区数的生成函数,而 Ck(q)、Ck+1(q)、Ck+2(q)......给出了 n 的过度分区数的生成函数。本文还介绍了一些悬而未决的问题。
{"title":"Truncated forms of MacMahon's q-series","authors":"Mircea Merca","doi":"10.1016/j.jcta.2025.106020","DOIUrl":"10.1016/j.jcta.2025.106020","url":null,"abstract":"<div><div>In 1920, Percy Alexander MacMahon defined the partition generating functions<span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span></span></span> and<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span></span></span> which have since played an important rol","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106020"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1016/j.jcta.2025.106022
Valentina Kiritchenko
We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson–Miller mitosis in the type A and Fujita mitosis in the type C on Kogan faces of Gelfand–Zetlin polytopes.
{"title":"Simple geometric mitosis","authors":"Valentina Kiritchenko","doi":"10.1016/j.jcta.2025.106022","DOIUrl":"10.1016/j.jcta.2025.106022","url":null,"abstract":"<div><div>We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson–Miller mitosis in the type <em>A</em> and Fujita mitosis in the type <em>C</em> on Kogan faces of Gelfand–Zetlin polytopes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106022"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1016/j.jcta.2025.106026
Shkredov I.D.
We obtain a polynomial criterion for a set to have a small doubling in terms of the common energy of its subsets.
我们得到了一个多项式标准,即一个集合在其子集合的公共能量方面有一个小的加倍。
{"title":"On common energies and sumsets","authors":"Shkredov I.D.","doi":"10.1016/j.jcta.2025.106026","DOIUrl":"10.1016/j.jcta.2025.106026","url":null,"abstract":"<div><div>We obtain a polynomial criterion for a set to have a small doubling in terms of the common energy of its subsets.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106026"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1016/j.jcta.2025.106024
Zhenxian Chen , Changchang Xi
We show that the Terwilliger algebra of a quasi-thin association scheme over a field is always a quasi-hereditary cellular algebra in the sense of Cline-Parshall-Scott and of Graham-Lehrer, respectively, and that the basic algebra of the Terwilliger algebra is the dual extension of a star with all arrows pointing to its center if the field has characteristic 2. Thus many homological and representation-theoretic properties of these Terwilliger algebras can be determined completely. For example, the Nakayama conjecture holds true for Terwilliger algebras of quasi-thin association schemes.
{"title":"Structure of Terwilliger algebras of quasi-thin association schemes","authors":"Zhenxian Chen , Changchang Xi","doi":"10.1016/j.jcta.2025.106024","DOIUrl":"10.1016/j.jcta.2025.106024","url":null,"abstract":"<div><div>We show that the Terwilliger algebra of a quasi-thin association scheme over a field is always a quasi-hereditary cellular algebra in the sense of Cline-Parshall-Scott and of Graham-Lehrer, respectively, and that the basic algebra of the Terwilliger algebra is the dual extension of a star with all arrows pointing to its center if the field has characteristic 2. Thus many homological and representation-theoretic properties of these Terwilliger algebras can be determined completely. For example, the Nakayama conjecture holds true for Terwilliger algebras of quasi-thin association schemes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106024"},"PeriodicalIF":0.9,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1016/j.jcta.2025.106010
Zhicong Lin , Jun Ma
By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma–Mansour–Wang–Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin–Ma–Ma–Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of “even-degree nodes on odd levels” and “odd-degree nodes” on weakly increasing trees is found, extending the Schett polynomials, a generalization of the Jacobi elliptic functions introduced by Schett, to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences. Moreover, via introducing a group action on trees, we prove the partial γ-positivity of the multiset Schett polynomials, a result which implies both the symmetry and the unimodality of these polynomials.
{"title":"A symmetry on weakly increasing trees and multiset Schett polynomials","authors":"Zhicong Lin , Jun Ma","doi":"10.1016/j.jcta.2025.106010","DOIUrl":"10.1016/j.jcta.2025.106010","url":null,"abstract":"<div><div>By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma–Mansour–Wang–Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin–Ma–Ma–Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of “even-degree nodes on odd levels” and “odd-degree nodes” on weakly increasing trees is found, extending the Schett polynomials, a generalization of the Jacobi elliptic functions introduced by Schett, to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences. Moreover, via introducing a group action on trees, we prove the partial <em>γ</em>-positivity of the multiset Schett polynomials, a result which implies both the symmetry and the unimodality of these polynomials.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106010"},"PeriodicalIF":0.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1016/j.jcta.2025.106006
Xiaoran Wang, Junling Zhou
This paper concentrates on recursive constructions for 2-designs over finite fields. In 1998, Itoh presented a powerful recursive construction: for certain index λ, if there exists a Singer cycle invariant 2- design, then there also exists an SL invariant 2- design for all integers . We investigate the -incidence matrix between 2-subspaces and k-subspaces of with and in this work. As a generalization of Itoh's construction, the important case of is supplemented and a doubling construction is established for 2- designs over finite fields. As a further generalization, a product construction is developed for q-analogs of group divisible designs (q-GDDs). For general block dimension , several new infinite families of q-GDDs are constructed. As applications, plenty of new infinite families of 2-designs over finite fields are constructed.
{"title":"On recursive constructions for 2-designs over finite fields","authors":"Xiaoran Wang, Junling Zhou","doi":"10.1016/j.jcta.2025.106006","DOIUrl":"10.1016/j.jcta.2025.106006","url":null,"abstract":"<div><div>This paper concentrates on recursive constructions for 2-designs over finite fields. In 1998, Itoh presented a powerful recursive construction: for certain index <em>λ</em>, if there exists a Singer cycle invariant 2-<span><math><msub><mrow><mo>(</mo><mi>l</mi><mo>,</mo><mn>3</mn><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> design, then there also exists an SL<span><math><mo>(</mo><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></math></span> invariant 2-<span><math><msub><mrow><mo>(</mo><mi>m</mi><mi>l</mi><mo>,</mo><mn>3</mn><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> design for all integers <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. We investigate the <span><math><mrow><mi>GL</mi></mrow><mo>(</mo><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></math></span>-incidence matrix between 2-subspaces and <em>k</em>-subspaces of <span><math><mi>GF</mi><mspace></mspace><msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mi>m</mi><mi>l</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> in this work. As a generalization of Itoh's construction, the important case of <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> is supplemented and a doubling construction is established for 2-<span><math><msub><mrow><mo>(</mo><mi>l</mi><mo>,</mo><mn>3</mn><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> designs over finite fields. As a further generalization, a product construction is developed for <em>q</em>-analogs of group divisible designs (<em>q</em>-GDDs). For general block dimension <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, several new infinite families of <em>q</em>-GDDs are constructed. As applications, plenty of new infinite families of 2-designs over finite fields are constructed.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106006"},"PeriodicalIF":0.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1016/j.jcta.2025.106008
Kaimei Huang , Zhicong Lin , Sherry H.F. Yan
A pair of permutation statistics is said to be r-Euler-Mahonian if and (rdes, rmaj) are equidistributed over the set of all permutations of , where rdes denotes the r-descent number and rmaj denotes the r-major index introduced by Rawlings. The main objective of this paper is to prove that and (rdes, rmaj) are equidistributed over , thereby confirming a recent conjecture posed by Liu. When , the result recovers the equidistribution of and , which was first conjectured by Denert and proved by Foata and Zeilberger.
{"title":"On a conjecture concerning the r-Euler-Mahonian statistic on permutations","authors":"Kaimei Huang , Zhicong Lin , Sherry H.F. Yan","doi":"10.1016/j.jcta.2025.106008","DOIUrl":"10.1016/j.jcta.2025.106008","url":null,"abstract":"<div><div>A pair <span><math><mo>(</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math></span> of permutation statistics is said to be <em>r</em>-Euler-Mahonian if <span><math><mo>(</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo><mrow><mi>s</mi><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math></span> and (rdes, rmaj) are equidistributed over the set <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of all permutations of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, where rdes denotes the <em>r</em>-descent number and rmaj denotes the <em>r</em>-major index introduced by Rawlings. The main objective of this paper is to prove that <span><math><mo>(</mo><msub><mrow><mi>exc</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>den</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></math></span> and (rdes, rmaj) are equidistributed over <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, thereby confirming a recent conjecture posed by Liu. When <span><math><mi>r</mi><mo>=</mo><mn>1</mn></math></span>, the result recovers the equidistribution of <span><math><mo>(</mo><mrow><mi>des</mi></mrow><mo>,</mo><mrow><mi>maj</mi></mrow><mo>)</mo></math></span> and <span><math><mo>(</mo><mrow><mi>exc</mi></mrow><mo>,</mo><mrow><mi>den</mi></mrow><mo>)</mo></math></span>, which was first conjectured by Denert and proved by Foata and Zeilberger.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"212 ","pages":"Article 106008"},"PeriodicalIF":0.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143095725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1016/j.jcta.2025.106009
Jason P. Bell, Sean Monahan, Matthew Satriano, Karen Situ, Zheng Xie
Soprunov and Soprunova posed a question on the existence of infinite families of toric codes that are “good” in a precise sense. We prove that such good families do not exist by proving a more general Szemerédi-type result: for all and all positive integers N, subsets of density at least c in contain hypercubes of arbitrarily large dimension as n grows.
{"title":"There are no good infinite families of toric codes","authors":"Jason P. Bell, Sean Monahan, Matthew Satriano, Karen Situ, Zheng Xie","doi":"10.1016/j.jcta.2025.106009","DOIUrl":"10.1016/j.jcta.2025.106009","url":null,"abstract":"<div><div>Soprunov and Soprunova posed a question on the existence of infinite families of toric codes that are “good” in a precise sense. We prove that such good families do not exist by proving a more general Szemerédi-type result: for all <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> and all positive integers <em>N</em>, subsets of density at least <em>c</em> in <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> contain hypercubes of arbitrarily large dimension as <em>n</em> grows.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106009"},"PeriodicalIF":0.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1016/j.jcta.2025.106007
Sándor Z. Kiss , Csaba Sándor
Let be an integer and let A be a set of nonnegative integers. For a k-tuple of positive integers with , we define the additive representation function . For , Moser constructed a set A of nonnegative integers such that holds for every nonnegative integer n. In this paper we characterize all the k-tuples and the sets A of nonnegative integers with for every integer .
{"title":"Unique representations of integers by linear forms","authors":"Sándor Z. Kiss , Csaba Sándor","doi":"10.1016/j.jcta.2025.106007","DOIUrl":"10.1016/j.jcta.2025.106007","url":null,"abstract":"<div><div>Let <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> be an integer and let <em>A</em> be a set of nonnegative integers. For a <em>k</em>-tuple of positive integers <span><math><munder><mrow><mi>λ</mi></mrow><mo>_</mo></munder><mo>=</mo><mo>(</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> with <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we define the additive representation function <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi><mo>,</mo><munder><mrow><mi>λ</mi></mrow><mo>_</mo></munder></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mo>|</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>:</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>n</mi><mo>}</mo><mo>|</mo></math></span>. For <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>, Moser constructed a set <em>A</em> of nonnegative integers such that <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi><mo>,</mo><munder><mrow><mi>λ</mi></mrow><mo>_</mo></munder></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> holds for every nonnegative integer <em>n</em>. In this paper we characterize all the <em>k</em>-tuples <span><math><munder><mrow><mi>λ</mi></mrow><mo>_</mo></munder></math></span> and the sets <em>A</em> of nonnegative integers with <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi><mo>,</mo><munder><mrow><mi>λ</mi></mrow><mo>_</mo></munder></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for every integer <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106007"},"PeriodicalIF":0.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}