Pub Date : 2024-04-03DOI: 10.1016/j.jcta.2024.105890
Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang
<div><p>Given a subgroup <em>H</em> of a group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, a <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> difference family (DF) is a set <span><math><mi>F</mi></math></span> of <em>k</em>-subsets of <em>G</em> such that <span><math><mo>{</mo><mi>f</mi><mo>−</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi><mo>,</mo><mi>f</mi><mo>≠</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>F</mi><mo>∈</mo><mi>F</mi><mo>}</mo><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span>. Let <span><math><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> be the subgroup of order <em>h</em> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> generated by <em>g</em>. A <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-DF is called cyclic and written as a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF. This paper shows that for <span><math><mi>h</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>, there exists a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF if and only if <span><math><mi>g</mi><mi>h</mi><mo>≡</mo><mi>h</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, <span><math><mi>g</mi><mo>⩾</mo><mn>4</mn></math></span> and <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>)</mo><mo>∉</mo><mo>{</mo><mo>(</mo><mn>9</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>)</mo><mo>}</mo></math></span>. As a corollary, it is shown that a 1-rotational Steiner system S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> exists if and only if <span><math><mi>v</mi><mo>≡</mo><mn>4</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>28</mn></math></span>. This solves the long-standing open problem on the existence of a 1-rotational S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span>. As another corollary, we establish the existence of an optimal <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-optical orthogonal code with <span><math><mo>⌊</mo><mo>(</mo><mi>v</mi><mo>−</
给定一个群(G,+)的子群 H,一个(G,H,k,1)差族(DF)是 G 的 k 个子集的集合 F,使得 {f-f′:f,f′∈F,f≠f′,F∈F}=G∖H。设 gZgh 是 g 在 Zgh 中产生的阶为 h 的子群。(Zgh,gZgh,k,1)-DF 称为循环DF,并写成 (gh,h,k,1)-CDF。本文指出,对于 h∈{2,3,6},当且仅当 gh≡h(mod12),g⩾4 且 (g,h)∉{(9,3),(5,6)} 时,存在一个 (gh,h,4,1)-CDF 。推论表明,当且仅当 v≡4(mod12)且 v≠28 时,存在一个 1 旋转的斯坦纳系统 S(2,4,v)。这就解决了存在 1- 旋转 S(2,4,v) 这一长期悬而未决的问题。作为另一个推论,我们确定了对于任意正整数 v≡1,2,3,4,6(mod12)和 v≠25,存在一个具有⌊(v-1)/12⌋码字的最优 (v,4,1) 光正交码。我们还给出了我们的结果在块大小为四的循环群可分设计和权重为四且最小距离为六的最优循环三元恒权码中的应用。
{"title":"Cyclic relative difference families with block size four and their applications","authors":"Chenya Zhao , Binwei Zhao , Yanxun Chang , Tao Feng , Xiaomiao Wang , Menglong Zhang","doi":"10.1016/j.jcta.2024.105890","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105890","url":null,"abstract":"<div><p>Given a subgroup <em>H</em> of a group <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mo>+</mo><mo>)</mo></math></span>, a <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> difference family (DF) is a set <span><math><mi>F</mi></math></span> of <em>k</em>-subsets of <em>G</em> such that <span><math><mo>{</mo><mi>f</mi><mo>−</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi><mo>,</mo><mi>f</mi><mo>≠</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><mi>F</mi><mo>∈</mo><mi>F</mi><mo>}</mo><mo>=</mo><mi>G</mi><mo>∖</mo><mi>H</mi></math></span>. Let <span><math><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> be the subgroup of order <em>h</em> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub></math></span> generated by <em>g</em>. A <span><math><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>g</mi><msub><mrow><mi>Z</mi></mrow><mrow><mi>g</mi><mi>h</mi></mrow></msub><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-DF is called cyclic and written as a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF. This paper shows that for <span><math><mi>h</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>}</mo></math></span>, there exists a <span><math><mo>(</mo><mi>g</mi><mi>h</mi><mo>,</mo><mi>h</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-CDF if and only if <span><math><mi>g</mi><mi>h</mi><mo>≡</mo><mi>h</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, <span><math><mi>g</mi><mo>⩾</mo><mn>4</mn></math></span> and <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mi>h</mi><mo>)</mo><mo>∉</mo><mo>{</mo><mo>(</mo><mn>9</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mo>(</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>)</mo><mo>}</mo></math></span>. As a corollary, it is shown that a 1-rotational Steiner system S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> exists if and only if <span><math><mi>v</mi><mo>≡</mo><mn>4</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span> and <span><math><mi>v</mi><mo>≠</mo><mn>28</mn></math></span>. This solves the long-standing open problem on the existence of a 1-rotational S<span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span>. As another corollary, we establish the existence of an optimal <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-optical orthogonal code with <span><math><mo>⌊</mo><mo>(</mo><mi>v</mi><mo>−</","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105890"},"PeriodicalIF":1.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.jcta.2024.105893
Ping Li
We examine the coefficients in front of Chern numbers for complex genera, and pay special attention to the -genus, the Γ-genus as well as the Todd genus. Some related geometric applications to hyper-Kähler and Calabi-Yau manifolds are discussed. Along this line and building on the work of Doubilet in 1970s, various Hoffman-type formulas for multiple-(star) zeta values and transition matrices among canonical bases of the ring of symmetric functions can be uniformly treated in a more general framework.
{"title":"The complex genera, symmetric functions and multiple zeta values","authors":"Ping Li","doi":"10.1016/j.jcta.2024.105893","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105893","url":null,"abstract":"<div><p>We examine the coefficients in front of Chern numbers for complex genera, and pay special attention to the <span><math><msup><mrow><mtext>Td</mtext></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span>-genus, the Γ-genus as well as the Todd genus. Some related geometric applications to hyper-Kähler and Calabi-Yau manifolds are discussed. Along this line and building on the work of Doubilet in 1970s, various Hoffman-type formulas for multiple-(star) zeta values and transition matrices among canonical bases of the ring of symmetric functions can be uniformly treated in a more general framework.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105893"},"PeriodicalIF":1.1,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1016/j.jcta.2024.105889
Peter Frankl , János Pach , Dömötör Pálvölgyi
Extending the notion of sunflowers, we call a family of at least two sets an odd-sunflower if every element of the underlying set is contained in an odd number of sets or in none of them. It follows from the Erdős–Szemerédi conjecture, recently proved by Naslund and Sawin, that there is a constant such that every family of subsets of an n-element set that contains no odd-sunflower consists of at most sets. We construct such families of size at least . We also characterize minimal odd-sunflowers of triples.
扩展向日葵的概念,如果底层集合的每个元素都包含在奇数个集合中或不包含在任何一个集合中,我们就称至少有两个集合的族为奇数向日葵。根据最近由纳斯伦德和萨温证明的厄尔多斯-塞梅雷迪猜想,存在一个常数 μ<2,使得不包含奇数向日葵的 n 元素集合的每个子集族至多由 μn 个集合组成。我们构建的这种族的大小至少为 1.5021n。我们还描述了三元组的最小奇数太阳花的特征。
{"title":"Odd-sunflowers","authors":"Peter Frankl , János Pach , Dömötör Pálvölgyi","doi":"10.1016/j.jcta.2024.105889","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105889","url":null,"abstract":"<div><p>Extending the notion of sunflowers, we call a family of at least two sets an <em>odd-sunflower</em> if every element of the underlying set is contained in an odd number of sets or in none of them. It follows from the Erdős–Szemerédi conjecture, recently proved by Naslund and Sawin, that there is a constant <span><math><mi>μ</mi><mo><</mo><mn>2</mn></math></span> such that every family of subsets of an <em>n</em>-element set that contains no odd-sunflower consists of at most <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> sets. We construct such families of size at least <span><math><msup><mrow><mn>1.5021</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We also characterize minimal odd-sunflowers of triples.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105889"},"PeriodicalIF":1.1,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000281/pdfft?md5=4524ddd068e6ba4b9569281736257e67&pid=1-s2.0-S0097316524000281-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.jcta.2024.105887
Sergey Goryainov , Chi Hoi Yip
It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power , we study Peisert-type graphs of order without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of q. If q is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when q is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.
{"title":"Extremal Peisert-type graphs without the strict-EKR property","authors":"Sergey Goryainov , Chi Hoi Yip","doi":"10.1016/j.jcta.2024.105887","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105887","url":null,"abstract":"<div><p>It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>, we study Peisert-type graphs of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of <em>q</em>. If <em>q</em> is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when <em>q</em> is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105887"},"PeriodicalIF":1.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140162511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1016/j.jcta.2024.105886
Rodica Andreea Dinu , Martin Vodička
Group-based models appear in algebraic statistics as mathematical models coming from evolutionary biology, namely in the study of mutations of genomes. Motivated also by applications, we are interested in determining the algebraic degrees of the phylogenetic varieties coming from these models. These algebraic degrees are called phylogenetic degrees. In this paper, we compute the phylogenetic degree of the variety with and any n-claw tree. As these varieties are toric, computing their phylogenetic degree relies on computing the volume of their associated polytopes . We apply combinatorial methods and we give concrete formulas for these volumes.
{"title":"Phylogenetic degrees for claw trees","authors":"Rodica Andreea Dinu , Martin Vodička","doi":"10.1016/j.jcta.2024.105886","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105886","url":null,"abstract":"<div><p>Group-based models appear in algebraic statistics as mathematical models coming from evolutionary biology, namely in the study of mutations of genomes. Motivated also by applications, we are interested in determining the algebraic degrees of the phylogenetic varieties coming from these models. These algebraic degrees are called <em>phylogenetic degrees</em>. In this paper, we compute the phylogenetic degree of the variety <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span> and any <em>n</em>-claw tree. As these varieties are toric, computing their phylogenetic degree relies on computing the volume of their associated polytopes <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>G</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We apply combinatorial methods and we give concrete formulas for these volumes.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105886"},"PeriodicalIF":1.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000256/pdfft?md5=ffe34f8c1bb09972f0075bfe4ea95627&pid=1-s2.0-S0097316524000256-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1016/j.jcta.2024.105888
Jiaqi Liao , Zequn Lv , Mengyu Cao , Mei Lu
<div><p>Let <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be positive integers with <span><math><mi>k</mi><mo>⩾</mo><mn>2</mn></math></span>. A <em>k</em>-multiset of <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> is a collection of <em>k</em> integers from the set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> in which the integers can appear more than once but at most <em>m</em> times. A family of such <em>k</em>-multisets is called an intersecting family if every pair of <em>k</em>-multisets from the family have non-empty intersection. A finite sequence of real numbers <span><math><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is said to be unimodal if there is some <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mo>…</mo><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mo>…</mo><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Given <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>k</mi></math></span>, denote <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> as the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> in the generating function <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>ℓ</mi></mrow></msup></math></span>, where <span><math><mn>1</mn><mo>⩽</mo><mi>ℓ</mi><mo>⩽</mo><mi>n</mi></math></span>. In this paper, we first show that the sequence of <span><math><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span> is unimodal. Then we use this as a tool to prove that the intersecting family in which every <em>k</em>-multiset contains a fixed element attains the maximum cardinality for <span><math><mi>n</mi><mo>⩾</mo><mi>k</mi><mo>+</mo><mrow><mo>⌈</mo><
设 k,m,n 是 k⩾2 的正整数。一个 [n]m 的 k 多集是从集合 {1,2,...,n}中选出的 k 个整数的集合,其中的整数可以出现不止一次,但最多出现 m 次。如果族中的每一对 k 多集都有非空的交集,那么这样的 k 多集族称为交集族。如果存在某个 k∈{1,2,...,n},使得 a1⩽a2⩽...⩽ak-1⩽ak⩾ak+1⩾...⩾an,则称实数的有限序列 (a1,a2,...an) 为单模序列。给定 m,n,k,表示 Ck,ℓ 为 xk 在生成函数 (∑i=1mxi)ℓ 中的系数,其中 1⩽ℓ⩽n。在本文中,我们首先证明(Ck,1,Ck,2,...,Ck,n)序列是单峰的。然后,我们以此为工具证明,在 n⩾k+⌈k/m⌉ 的交集族中,每个 k 多集都包含一个固定元素,从而达到最大心数。在 m=1 和 m=∞ 的特殊情况下,我们的结果分别引出了著名的厄尔多斯-柯-拉多定理,以及 Meagher 和 Purdy [11] 所给出的该问题的无界多集版本。本文的主要结果可以看作是 Erdős-Ko-Rado 定理的有界多集版本。
{"title":"Erdős-Ko-Rado theorem for bounded multisets","authors":"Jiaqi Liao , Zequn Lv , Mengyu Cao , Mei Lu","doi":"10.1016/j.jcta.2024.105888","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105888","url":null,"abstract":"<div><p>Let <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be positive integers with <span><math><mi>k</mi><mo>⩾</mo><mn>2</mn></math></span>. A <em>k</em>-multiset of <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> is a collection of <em>k</em> integers from the set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> in which the integers can appear more than once but at most <em>m</em> times. A family of such <em>k</em>-multisets is called an intersecting family if every pair of <em>k</em>-multisets from the family have non-empty intersection. A finite sequence of real numbers <span><math><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is said to be unimodal if there is some <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mo>…</mo><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⩽</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⩾</mo><mo>…</mo><mo>⩾</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Given <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>k</mi></math></span>, denote <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> as the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> in the generating function <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>ℓ</mi></mrow></msup></math></span>, where <span><math><mn>1</mn><mo>⩽</mo><mi>ℓ</mi><mo>⩽</mo><mi>n</mi></math></span>. In this paper, we first show that the sequence of <span><math><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>)</mo></math></span> is unimodal. Then we use this as a tool to prove that the intersecting family in which every <em>k</em>-multiset contains a fixed element attains the maximum cardinality for <span><math><mi>n</mi><mo>⩾</mo><mi>k</mi><mo>+</mo><mrow><mo>⌈</mo><","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105888"},"PeriodicalIF":1.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1016/j.jcta.2024.105884
Young-Hoon Kiem , Donggun Lee
We introduce generalized Hessenberg varieties and establish basic facts. We show that the Tymoczko action of the symmetric group on the cohomology of Hessenberg varieties extends to generalized Hessenberg varieties and that natural morphisms among them preserve the action. By analyzing natural morphisms and birational maps among generalized Hessenberg varieties, we give an elementary proof of the Shareshian-Wachs conjecture. Moreover we present a natural generalization of the Shareshian-Wachs conjecture that involves generalized Hessenberg varieties and provide an elementary proof. As a byproduct, we propose a generalized Stanley-Stembridge conjecture for weighted graphs. Our investigation into the birational geometry of generalized Hessenberg varieties enables us to modify them into much simpler varieties like projective spaces or permutohedral varieties by explicit sequences of blowups or projective bundle maps. Using this, we provide two algorithms to compute the -representations on the cohomology of generalized Hessenberg varieties. As an application, we compute representations on the low degree cohomology of some Hessenberg varieties.
我们引入广义海森堡变项并建立基本事实。我们证明了对称群 Sn 对海森堡变的同调的泰莫茨科作用扩展到广义海森堡变,并且广义海森堡变之间的自然形态保留了这一作用。通过分析广义海森堡变项间的自然形态和双映射,我们给出了沙雷西安-瓦克斯猜想的基本证明。此外,我们还提出了涉及广义海森堡变项的 Shareshian-Wachs 猜想的自然广义化,并给出了基本证明。作为副产品,我们提出了加权图的广义斯坦利-斯坦桥猜想。我们对广义海森堡变项的双向几何的研究,使我们能够通过明确的炸开序列或投影束映射,将它们修改成更简单的变项,如投影空间或包面变项。利用这一点,我们提供了两种算法来计算广义海森伯变项同调上的 Sn 代表。作为应用,我们计算了一些海森堡变项的低度同调上的表示。
{"title":"Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture","authors":"Young-Hoon Kiem , Donggun Lee","doi":"10.1016/j.jcta.2024.105884","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105884","url":null,"abstract":"<div><p>We introduce generalized Hessenberg varieties and establish basic facts. We show that the Tymoczko action of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> on the cohomology of Hessenberg varieties extends to generalized Hessenberg varieties and that natural morphisms among them preserve the action. By analyzing natural morphisms and birational maps among generalized Hessenberg varieties, we give an elementary proof of the Shareshian-Wachs conjecture. Moreover we present a natural generalization of the Shareshian-Wachs conjecture that involves generalized Hessenberg varieties and provide an elementary proof. As a byproduct, we propose a generalized Stanley-Stembridge conjecture for <em>weighted</em> graphs. Our investigation into the birational geometry of generalized Hessenberg varieties enables us to modify them into much simpler varieties like projective spaces or permutohedral varieties by explicit sequences of blowups or projective bundle maps. Using this, we provide two algorithms to compute the <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-representations on the cohomology of generalized Hessenberg varieties. As an application, we compute representations on the low degree cohomology of some Hessenberg varieties.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105884"},"PeriodicalIF":1.1,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.jcta.2024.105885
Yuxuan Li, Binzhou Xia, Sanming Zhou
We study the normal Cayley graphs on the symmetric group , where and is the set of all cycles in with length in I. We prove that the strictly second largest eigenvalue of can only be achieved by at most four irreducible representations of , and we determine further the multiplicity of this eigenvalue in several special cases. As a corollary, in the case when I contains neither nor n we know exactly when has the Aldous property, namely the strictly second largest eigenvalue is attained by the standard representation of , and we obtain that does not have the Aldous property whenever . As another corollary of our main results, we prove a recent conjecture on the second largest eigenvalue of where .
我们研究了对称群 Sn 上的正则 Cayley 图 Cay(Sn,C(n,I)),其中 I⊆{2,3,...,n},C(n,I) 是 Sn 中长度在 I 中的所有循环的集合。我们证明了 Cay(Sn,C(n,I)) 的严格第二大特征值最多只能由 Sn 的四个不可还原表示来实现,并进一步确定了该特征值在几种特殊情况下的多重性。作为一个推论,在 I 既不包含 n-1 也不包含 n 的情况下,我们可以准确地知道 Cay(Sn,C(n,I)) 何时具有阿尔多斯性质,即严格意义上的第二大特征值是由 Sn 的标准表示达到的,并且我们得到,只要 n∈I ,Cay(Sn,C(n,I)) 就不具有阿尔多斯性质。作为我们主要结果的另一个推论,我们证明了最近关于 Cay(Sn,C(n,{k}))第二大特征值的猜想,其中 2≤k≤n-2.
{"title":"The second largest eigenvalue of normal Cayley graphs on symmetric groups generated by cycles","authors":"Yuxuan Li, Binzhou Xia, Sanming Zhou","doi":"10.1016/j.jcta.2024.105885","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105885","url":null,"abstract":"<div><p>We study the normal Cayley graphs <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> on the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>I</mi><mo>⊆</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo></math></span> is the set of all cycles in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with length in <em>I</em>. We prove that the strictly second largest eigenvalue of <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> can only be achieved by at most four irreducible representations of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and we determine further the multiplicity of this eigenvalue in several special cases. As a corollary, in the case when <em>I</em> contains neither <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> nor <em>n</em> we know exactly when <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> has the Aldous property, namely the strictly second largest eigenvalue is attained by the standard representation of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and we obtain that <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>)</mo></math></span> does not have the Aldous property whenever <span><math><mi>n</mi><mo>∈</mo><mi>I</mi></math></span>. As another corollary of our main results, we prove a recent conjecture on the second largest eigenvalue of <span><math><mrow><mi>Cay</mi></mrow><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>C</mi><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>k</mi><mo>}</mo><mo>)</mo><mo>)</mo></math></span> where <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105885"},"PeriodicalIF":1.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000244/pdfft?md5=f945a709cc7931a6640e76d02ea647ea&pid=1-s2.0-S0097316524000244-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1016/j.jcta.2024.105883
Nishu Kumari
In a recent paper (arXiv:2301.09744), Erickson and Hunziker consider partitions in which the arm–leg difference is an arbitrary constant m. In previous works, these partitions are called -asymmetric partitions. Regarding these partitions and their conjugates as highest weights, they prove an identity yielding an infinite family of dimension equalities between and modules. Their proof proceeds by the manipulations of the hook content formula. We give a simple combinatorial proof of their result.
在最近的一篇论文(arXiv:2301.09744)中,埃里克森和亨兹克考虑了手脚差为任意常数 m 的分区。将这些分区及其共轭作为最高权重,他们证明了一个特性,即在 gln 和 gln+m 模块之间产生了一个无限维相等的系列。他们的证明是通过对勾股定理公式的操作进行的。我们给出了他们结果的简单组合证明。
{"title":"A short combinatorial proof of dimension identities of Erickson and Hunziker","authors":"Nishu Kumari","doi":"10.1016/j.jcta.2024.105883","DOIUrl":"https://doi.org/10.1016/j.jcta.2024.105883","url":null,"abstract":"<div><p>In a recent paper (<span>arXiv:2301.09744</span><svg><path></path></svg>), Erickson and Hunziker consider partitions in which the arm–leg difference is an arbitrary constant <em>m</em>. In previous works, these partitions are called <span><math><mo>(</mo><mo>−</mo><mi>m</mi><mo>)</mo></math></span>-asymmetric partitions. Regarding these partitions and their conjugates as highest weights, they prove an identity yielding an infinite family of dimension equalities between <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub></math></span> modules. Their proof proceeds by the manipulations of the hook content formula. We give a simple combinatorial proof of their result.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"205 ","pages":"Article 105883"},"PeriodicalIF":1.1,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1016/j.jcta.2024.105875
Ljuben Mutafchiev , Steven Finch
Let be the set of all mappings . The corresponding graph of T is a union of disjoint connected unicyclic components. We assume that each is chosen uniformly at random (i.e., with probability ). The cycle of T contained within its largest component is called the deepest one. For any , let denote the length of this cycle. In this paper, we establish the convergence in distribution of and find the limits of its expectation and variance as . For n large enough, we also show that nearly 55% of all cyclic vertices of a random mapping lie in its deepest cycle and that a vertex from the longest cycle of T does not belong to its largest component with approximate probability 0.075.
{"title":"On the deepest cycle of a random mapping","authors":"Ljuben Mutafchiev , Steven Finch","doi":"10.1016/j.jcta.2024.105875","DOIUrl":"10.1016/j.jcta.2024.105875","url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of all mappings <span><math><mi>T</mi><mo>:</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. The corresponding graph of <em>T</em> is a union of disjoint connected unicyclic components. We assume that each <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is chosen uniformly at random (i.e., with probability <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></math></span>). The cycle of <em>T</em> contained within its largest component is called the <em>deepest</em> one. For any <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, let <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denote the length of this cycle. In this paper, we establish the convergence in distribution of <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and find the limits of its expectation and variance as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. For <em>n</em> large enough, we also show that nearly 55% of all cyclic vertices of a random mapping <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> lie in its deepest cycle and that a vertex from the longest cycle of <em>T</em> does not belong to its largest component with approximate probability 0.075.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105875"},"PeriodicalIF":1.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139937806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}