首页 > 最新文献

Journal of Classification最新文献

英文 中文
Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features 超高维离散特征分类中的交互识别与团块筛选
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-09-11 DOI: 10.1007/s00357-021-09399-0
An, Baiguo, Feng, Guozhong, Guo, Jianhua

Interactions have greatly influenced recent scientific discoveries, but the identification of interactions is challenging in ultra-high dimensions. In this study, we propose an interaction identification method for classification with ultra-high dimensional discrete features. We utilize clique sets to capture interactions among features, where features in a common clique have interactions that can be used for classification. The number of features related to the interaction is the size of the clique. Hence, our method can consider interactions caused by more than two feature variables. We propose a Kullback-Leibler divergence-based approach to correctly identify the clique sets with a probability that tends to 1 as the sample size tends to infinity. A clique screening method is then proposed to filter out clique sets that are useless for classification, and the strong sure screening property can be guaranteed. Finally, a clique naïve Bayes classifier is proposed for classification. Numerical studies demonstrate that our proposed approach performs very well.

相互作用极大地影响了最近的科学发现,但在超高维度中确定相互作用是具有挑战性的。在本研究中,我们提出了一种用于具有超高维离散特征的分类的交互识别方法。我们利用团集来捕获特征之间的交互,其中公共团中的特征具有可用于分类的交互。与交互相关的特征的数量就是团的大小。因此,我们的方法可以考虑由两个以上特征变量引起的相互作用。我们提出了一种基于Kullback-Leibler散度的方法来正确识别当样本量趋于无穷大时概率趋于1的团集。在此基础上,提出了一种团团筛选方法,过滤掉对分类无用的团团集,保证了强可靠筛选的特性。最后,提出了一种团naïve贝叶斯分类器进行分类。数值研究表明,该方法具有良好的性能。
{"title":"Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features","authors":"An, Baiguo, Feng, Guozhong, Guo, Jianhua","doi":"10.1007/s00357-021-09399-0","DOIUrl":"https://doi.org/10.1007/s00357-021-09399-0","url":null,"abstract":"<p>Interactions have greatly influenced recent scientific discoveries, but the identification of interactions is challenging in ultra-high dimensions. In this study, we propose an interaction identification method for classification with ultra-high dimensional discrete features. We utilize clique sets to capture interactions among features, where features in a common clique have interactions that can be used for classification. The number of features related to the interaction is the size of the clique. Hence, our method can consider interactions caused by more than two feature variables. We propose a Kullback-Leibler divergence-based approach to correctly identify the clique sets with a probability that tends to 1 as the sample size tends to infinity. A clique screening method is then proposed to filter out clique sets that are useless for classification, and the strong sure screening property can be guaranteed. Finally, a clique naïve Bayes classifier is proposed for classification. Numerical studies demonstrate that our proposed approach performs very well.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"8 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Spatial Representation of Consumer Dispersion Patterns via a New Multi-level Latent Class Methodology 基于一种新的多层次潜在类方法的消费者分散模式的空间表示
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-09-08 DOI: 10.1007/s00357-021-09398-1
Sunghoon Kim, Ashley Stadler Blank, W. DeSarbo, J. Vermunt
{"title":"The Spatial Representation of Consumer Dispersion Patterns via a New Multi-level Latent Class Methodology","authors":"Sunghoon Kim, Ashley Stadler Blank, W. DeSarbo, J. Vermunt","doi":"10.1007/s00357-021-09398-1","DOIUrl":"https://doi.org/10.1007/s00357-021-09398-1","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"218 - 239"},"PeriodicalIF":2.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42586415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing Boosting and Bagging for Decision Trees of Rankings 排名决策树的Boosting和Bagging比较
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-09-03 DOI: 10.1007/s00357-021-09397-2
Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza

Decision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference data. In this paper, we extend decision trees, and in the following also ensemble methods to ranking data. In particular, we propose a theoretical and computational definition of bagging and boosting, two of the best known ensemble methods. In an experimental study using simulated data and real-world datasets, our results confirm that known results from classification, such as that boosting outperforms bagging, could be successfully carried over to the ranking case.

决策树学习是最流行和最传统的机器学习算法家族之一。虽然这些技术在相当直观和可解释方面表现出色,但它们也存在不稳定性:训练数据中的小扰动可能导致预测的大变化。所谓的集成方法将多个树的输出组合在一起,使决策更加可靠和稳定。它们主要应用于数值预测问题和分类任务。在过去的几年中,文献中有一些将集成方法扩展到有序数据的尝试,但没有提供针对偏好数据的具体方法。在本文中,我们将决策树,以及随后的集成方法扩展到排序数据。特别地,我们提出了bagging和boosting这两种最著名的系综方法的理论和计算定义。在一项使用模拟数据和真实世界数据集的实验研究中,我们的结果证实了分类的已知结果,例如提升优于套袋,可以成功地延续到排名案例中。
{"title":"Comparing Boosting and Bagging for Decision Trees of Rankings","authors":"Plaia, Antonella, Buscemi, Simona, Fürnkranz, Johannes, Mencía, Eneldo Loza","doi":"10.1007/s00357-021-09397-2","DOIUrl":"https://doi.org/10.1007/s00357-021-09397-2","url":null,"abstract":"<p>Decision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference data. In this paper, we extend decision trees, and in the following also ensemble methods to ranking data. In particular, we propose a theoretical and computational definition of bagging and boosting, two of the best known ensemble methods. In an experimental study using simulated data and real-world datasets, our results confirm that known results from classification, such as that boosting outperforms bagging, could be successfully carried over to the ranking case.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"135 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Partition of Interval-Valued Observations Using Regression 区间值观测值的回归分割
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-08-28 DOI: 10.1007/s00357-021-09394-5
Fei Liu, L. Billard
{"title":"Partition of Interval-Valued Observations Using Regression","authors":"Fei Liu, L. Billard","doi":"10.1007/s00357-021-09394-5","DOIUrl":"https://doi.org/10.1007/s00357-021-09394-5","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"55 - 77"},"PeriodicalIF":2.0,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09394-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51951585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models 诊断分类模型的具有单调性约束的Gibbs采样算法
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-07-31 DOI: 10.1007/s00357-021-09392-7
K. Yamaguchi, J. Templin
{"title":"A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models","authors":"K. Yamaguchi, J. Templin","doi":"10.1007/s00357-021-09392-7","DOIUrl":"https://doi.org/10.1007/s00357-021-09392-7","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"24 - 54"},"PeriodicalIF":2.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09392-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44749155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models 线性聚类加权模型下最大似然估计的协方差矩阵估计
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-07-31 DOI: 10.1007/s00357-021-09390-9
Gabriele Soffritti
{"title":"Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models","authors":"Gabriele Soffritti","doi":"10.1007/s00357-021-09390-9","DOIUrl":"https://doi.org/10.1007/s00357-021-09390-9","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"594 - 625"},"PeriodicalIF":2.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09390-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47103588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial: Journal of Classification Vol. 38-2 社论:分类杂志第38-2卷
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-07-01 DOI: 10.1007/s00357-021-09393-6
P. McNicholas
{"title":"Editorial: Journal of Classification Vol. 38-2","authors":"P. McNicholas","doi":"10.1007/s00357-021-09393-6","DOIUrl":"https://doi.org/10.1007/s00357-021-09393-6","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"187 - 187"},"PeriodicalIF":2.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09393-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49474837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bayesian Analysis of Parsimonious Gaussian Mixture Models 朴素高斯混合模型的贝叶斯分析
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-06-04 DOI: 10.1007/s00357-021-09391-8
Xiang Lu, Yaoxiang Li, Tanzy M. T. Love
{"title":"On Bayesian Analysis of Parsimonious Gaussian Mixture Models","authors":"Xiang Lu, Yaoxiang Li, Tanzy M. T. Love","doi":"10.1007/s00357-021-09391-8","DOIUrl":"https://doi.org/10.1007/s00357-021-09391-8","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"576 - 593"},"PeriodicalIF":2.0,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09391-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46001887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering 基于惩罚模型的聚类中的群收缩估计
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-05-17 DOI: 10.1007/s00357-022-09421-z
A. Casa, A. Cappozzo, Michael Fop
{"title":"Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering","authors":"A. Casa, A. Cappozzo, Michael Fop","doi":"10.1007/s00357-022-09421-z","DOIUrl":"https://doi.org/10.1007/s00357-022-09421-z","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"648-674"},"PeriodicalIF":2.0,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44074402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Model-Free Subject Selection Method for Active Learning Classification Procedures 一种用于主动学习分类程序的无模型主题选择方法
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-05-10 DOI: 10.1007/s00357-021-09388-3
Bo-Shiang Ke, Y. Chang
{"title":"A Model-Free Subject Selection Method for Active Learning Classification Procedures","authors":"Bo-Shiang Ke, Y. Chang","doi":"10.1007/s00357-021-09388-3","DOIUrl":"https://doi.org/10.1007/s00357-021-09388-3","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"544 - 555"},"PeriodicalIF":2.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09388-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41851801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Classification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1