首页 > 最新文献

Journal of Classification最新文献

英文 中文
Editorial: Journal of Classification Vol. 39-1 社论:分类杂志Vol. 39-1
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-03-01 DOI: 10.1007/s00357-023-09436-0
P. McNicholas
{"title":"Editorial: Journal of Classification Vol. 39-1","authors":"P. McNicholas","doi":"10.1007/s00357-023-09436-0","DOIUrl":"https://doi.org/10.1007/s00357-023-09436-0","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"1 - 2"},"PeriodicalIF":2.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41570792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Journal of Classification Vol. 39-1 社论:分类杂志Vol. 39-1
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-03-01 DOI: 10.1007/s00357-022-09410-2
Paul D. McNicholas
{"title":"Editorial: Journal of Classification Vol. 39-1","authors":"Paul D. McNicholas","doi":"10.1007/s00357-022-09410-2","DOIUrl":"https://doi.org/10.1007/s00357-022-09410-2","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"71 1","pages":"1-2"},"PeriodicalIF":2.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Assessments of Agreement Between Fuzzy Partitions 模糊分区间一致性的评价
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-02-28 DOI: 10.1007/s00357-021-09407-3
J. Andrews, R. Browne, Chelsey D. Hvingelby
{"title":"On Assessments of Agreement Between Fuzzy Partitions","authors":"J. Andrews, R. Browne, Chelsey D. Hvingelby","doi":"10.1007/s00357-021-09407-3","DOIUrl":"https://doi.org/10.1007/s00357-021-09407-3","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"326 - 342"},"PeriodicalIF":2.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45000845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supervised Classification for Link Prediction in Facebook Ego Networks With Anonymized Profile Information 带有匿名个人资料信息的Facebook自我网络链接预测的监督分类
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-02-03 DOI: 10.1007/s00357-021-09408-2
R. Giubilei, P. Brutti
{"title":"Supervised Classification for Link Prediction in Facebook Ego Networks With Anonymized Profile Information","authors":"R. Giubilei, P. Brutti","doi":"10.1007/s00357-021-09408-2","DOIUrl":"https://doi.org/10.1007/s00357-021-09408-2","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"302 - 325"},"PeriodicalIF":2.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44759366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering 加法重叠分割聚类中确定最优重叠簇数的模型选择策略
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-01-17 DOI: 10.1007/s00357-021-09409-1
Julian Rossbroich, Jeffrey Durieux, Tom F. Wilderjans

In various scientific fields, researchers make use of partitioning methods (e.g., K-means) to disclose the structural mechanisms underlying object by variable data. In some instances, however, a grouping of objects into clusters that are allowed to overlap (i.e., assigning objects to multiple clusters) might lead to a better representation of the underlying clustering structure. To obtain an overlapping object clustering from object by variable data, Mirkin’s ADditive PROfile CLUStering (ADPROCLUS) model may be used. A major challenge when performing ADPROCLUS is to determine the optimal number of overlapping clusters underlying the data, which pertains to a model selection problem. Up to now, however, this problem has not been systematically investigated and almost no guidelines can be found in the literature regarding appropriate model selection strategies for ADPROCLUS. Therefore, in this paper, several existing model selection strategies for K-means (a.o., CHull, the Caliński-Harabasz, Krzanowski-Lai, Average Silhouette Width and Dunn Index and information-theoretic measures like AIC and BIC) and two cross-validation based strategies are tailored towards an ADPROCLUS context and are compared to each other in an extensive simulation study. The results demonstrate that CHull outperforms all other model selection strategies and this especially when the negative log-likelihood, which is associated with a minimal stochastic extension of ADPROCLUS, is used as (mis)fit measure. The analysis of a post hoc AIC-based model selection strategy revealed that better performance may be obtained when a different—more appropriate—definition of model complexity for ADPROCLUS is used.

在各个科学领域,研究者利用划分方法(如K-means)通过变量数据揭示对象背后的结构机制。然而,在某些情况下,将对象分组到允许重叠的集群中(即,将对象分配给多个集群)可能会更好地表示底层集群结构。为了通过变量数据从目标中获得重叠目标聚类,可以使用Mirkin的ADditive PROfile clustering (ADPROCLUS)模型。执行ADPROCLUS时的一个主要挑战是确定数据基础上重叠簇的最佳数量,这涉及到一个模型选择问题。然而,到目前为止,这个问题还没有系统的研究,几乎没有在文献中找到关于ADPROCLUS合适的模型选择策略的指导方针。因此,在本文中,现有的几种K-means模型选择策略(a.o、CHull、Caliński-Harabasz、Krzanowski-Lai、平均轮廓宽度和Dunn指数以及信息论措施如AIC和BIC)和两种基于交叉验证的策略针对ADPROCLUS环境进行了定制,并在广泛的模拟研究中相互比较。结果表明,CHull优于所有其他模型选择策略,特别是当使用与ADPROCLUS的最小随机扩展相关的负对数似然作为(误)拟合度量时。对一种基于事后aic的模型选择策略的分析表明,当使用不同的(更合适的)ADPROCLUS模型复杂度定义时,可以获得更好的性能。
{"title":"Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering","authors":"Julian Rossbroich, Jeffrey Durieux, Tom F. Wilderjans","doi":"10.1007/s00357-021-09409-1","DOIUrl":"https://doi.org/10.1007/s00357-021-09409-1","url":null,"abstract":"<p>In various scientific fields, researchers make use of partitioning methods (e.g., <i>K</i>-means) to disclose the structural mechanisms underlying object by variable data. In some instances, however, a grouping of objects into clusters that are allowed to overlap (i.e., assigning objects to multiple clusters) might lead to a better representation of the underlying clustering structure. To obtain an overlapping object clustering from object by variable data, Mirkin’s ADditive PROfile CLUStering (ADPROCLUS) model may be used. A major challenge when performing ADPROCLUS is to determine the optimal number of overlapping clusters underlying the data, which pertains to a model selection problem. Up to now, however, this problem has not been systematically investigated and almost no guidelines can be found in the literature regarding appropriate model selection strategies for ADPROCLUS. Therefore, in this paper, several existing model selection strategies for <i>K</i>-means (a.o., CHull, the Caliński-Harabasz, Krzanowski-Lai, Average Silhouette Width and Dunn Index and information-theoretic measures like AIC and BIC) and two cross-validation based strategies are tailored towards an ADPROCLUS context and are compared to each other in an extensive simulation study. The results demonstrate that CHull outperforms all other model selection strategies and this especially when the negative log-likelihood, which is associated with a minimal stochastic extension of ADPROCLUS, is used as (mis)fit measure. The analysis of a post hoc AIC-based model selection strategy revealed that better performance may be obtained when a different—more appropriate—definition of model complexity for ADPROCLUS is used.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"28 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Similarity-Reduced Diversities: the Effective Entropy and the Reduced Entropy. 相似-减少多样性:有效熵和减少熵。
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2022-01-01 Epub Date: 2021-09-08 DOI: 10.1007/s00357-021-09395-4
François Bavaud

The paper presents and analyzes the properties of a new diversity index, the effective entropy, which lowers Shannon entropy by taking into account the presence of similarities between items. Similarities decrease exponentially with the item dissimilarities, with a freely adjustable discriminability parameter controlling various diversity regimes separated by phase transitions. Effective entropies are determined iteratively, and turn out to be concave and subadditive, in contrast to the reduced entropy, proposed in Ecology for similar purposes. Two data sets are used to illustrate the formalism, and underline the role played by the dissimilarity types.

本文提出并分析了一种新的多样性指标——有效熵的性质,该指标考虑了项目之间存在的相似性,从而降低了Shannon熵。相似度随项目不相似度呈指数下降,可自由调节的判别参数控制由相变分离的各种多样性机制。有效熵是迭代确定的,结果是凹的和次加性的,与在生态学中为类似目的提出的减少熵相反。使用两个数据集来说明形式主义,并强调不同类型所起的作用。
{"title":"Similarity-Reduced Diversities: the Effective Entropy and the Reduced Entropy.","authors":"François Bavaud","doi":"10.1007/s00357-021-09395-4","DOIUrl":"https://doi.org/10.1007/s00357-021-09395-4","url":null,"abstract":"<p><p>The paper presents and analyzes the properties of a new diversity index, the effective entropy, which lowers Shannon entropy by taking into account the presence of similarities between items. Similarities decrease exponentially with the item dissimilarities, with a freely adjustable discriminability parameter controlling various diversity regimes separated by phase transitions. Effective entropies are determined iteratively, and turn out to be concave and subadditive, in contrast to the reduced entropy, proposed in Ecology for similar purposes. Two data sets are used to illustrate the formalism, and underline the role played by the dissimilarity types.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"100-121"},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40305236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: The Spatial Representation of Consumer Dispersion Patterns via a New Multi-level Latent Class Methodology 勘误表:通过一种新的多层次潜在类方法对消费者分散模式的空间表示
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-12-28 DOI: 10.1007/s00357-021-09405-5
Sunghoon Kim, Ashley Stadler Blank, W. DeSarbo, J. Vermunt
{"title":"Erratum to: The Spatial Representation of Consumer Dispersion Patterns via a New Multi-level Latent Class Methodology","authors":"Sunghoon Kim, Ashley Stadler Blank, W. DeSarbo, J. Vermunt","doi":"10.1007/s00357-021-09405-5","DOIUrl":"https://doi.org/10.1007/s00357-021-09405-5","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"240 - 240"},"PeriodicalIF":2.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45578789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chimeral Clustering Chimeral集群
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-10-02 DOI: 10.1007/s00357-021-09396-3
Jason Hou-Liu, R. Browne
{"title":"Chimeral Clustering","authors":"Jason Hou-Liu, R. Browne","doi":"10.1007/s00357-021-09396-3","DOIUrl":"https://doi.org/10.1007/s00357-021-09396-3","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"171 - 190"},"PeriodicalIF":2.0,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51951605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MatTransMix: an R Package for Matrix Model-Based Clustering and Parsimonious Mixture Modeling MatTransMix:一个基于矩阵模型的聚类和简约混合建模的R包
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-09-22 DOI: 10.1007/s00357-021-09401-9
Zhu, Xuwen, Sarkar, Shuchismita, Melnykov, Volodymyr

Finite mixture modeling, expanded to matrix-valued data, faces several challenges. One of the major concerns is overparameterization resulting from the high number of parameters involved in a matrix mixture. In addition, an appropriate power transformation is very useful if the data are skewed. The R package MatTransMix is a new piece of software devoted to parsimonious models, based on spectral decomposition of covariance matrices, developed for fitting heterogeneous matrix-valued data providing model-based clustering results. The package implements a variety of parsimonious models obtained from various combinations of spectral decomposition and skewness parameters. The paper discusses some methodological foundations of the proposed models and elaborates the functions available in this package on carefully chosen examples.

有限混合建模,扩展到矩阵值数据,面临着几个挑战。一个主要的问题是过度参数化,这是由大量的参数所导致的。此外,如果数据偏斜,适当的功率转换是非常有用的。R软件包MatTransMix是一款致力于简化模型的新软件,基于协方差矩阵的谱分解,用于拟合异构矩阵值数据,提供基于模型的聚类结果。该包实现了从光谱分解和偏度参数的各种组合获得的各种简约模型。本文讨论了所提出的模型的一些方法基础,并通过精心选择的例子详细阐述了该包中可用的功能。
{"title":"MatTransMix: an R Package for Matrix Model-Based Clustering and Parsimonious Mixture Modeling","authors":"Zhu, Xuwen, Sarkar, Shuchismita, Melnykov, Volodymyr","doi":"10.1007/s00357-021-09401-9","DOIUrl":"https://doi.org/10.1007/s00357-021-09401-9","url":null,"abstract":"<p>Finite mixture modeling, expanded to matrix-valued data, faces several challenges. One of the major concerns is overparameterization resulting from the high number of parameters involved in a matrix mixture. In addition, an appropriate power transformation is very useful if the data are skewed. The R package MatTransMix is a new piece of software devoted to parsimonious models, based on spectral decomposition of covariance matrices, developed for fitting heterogeneous matrix-valued data providing model-based clustering results. The package implements a variety of parsimonious models obtained from various combinations of spectral decomposition and skewness parameters. The paper discusses some methodological foundations of the proposed models and elaborates the functions available in this package on carefully chosen examples.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"15 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Erratum to: On Finite Mixture Modeling of Change-Point Processes 对:关于变化点过程的有限混合建模的勘误
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-09-16 DOI: 10.1007/s00357-021-09400-w
Xuwen Zhu, Yana Melnykov
{"title":"Erratum to: On Finite Mixture Modeling of Change-Point Processes","authors":"Xuwen Zhu, Yana Melnykov","doi":"10.1007/s00357-021-09400-w","DOIUrl":"https://doi.org/10.1007/s00357-021-09400-w","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"23 - 23"},"PeriodicalIF":2.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51951640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Classification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1