首页 > 最新文献

International Journal of Sediment Research最新文献

英文 中文
An energy conservation model for the temporal evolution of local scour depth at bridge piers during floods 洪水期间桥墩局部冲刷深度时间演变的能量守恒模型
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.05.001

Local scour at piers is one of the primary causes of bridge failures. The prediction method for the temporal evolution of local scour depth at bridge piers during floods was investigated based on the law of conservation of energy. The energy transfer process between water flow and sediment during the local scour process at bridge piers was theoretically analyzed based on the current understanding of the mechanism of local scour. The results show that there is a dynamic equilibrium relation between the energy loss of water flow and the energy gain of eroded sediment during the local scour process. This relation is applied to establish a mathematical model for predicting the temporal evolution of scour depth. This model has only one parameter, which is the energy transfer efficiency between the water flow and the eroded sediment. The energy transfer coefficient is mainly determined by the flow intensity under clear-water scour conditions, and an empirical formula for calculating it is obtained. The proposed model was evaluated using measured data of local scour depth under both well-controlled flows and natural floods. The results show that the model is able to provide satisfactory predictions and its performance can be further improved by including more sophisticated methods for determining the critical velocity for incipient scour. Meanwhile, the performance of the model is insensitive to the possible uncertainties introduced when determining the energy transfer coefficient. The research results indicate that it is feasible to establish a theoretical prediction model for accurately forecasting the local scour depth at bridge piers.

桥墩局部冲刷是桥梁垮塌的主要原因之一。根据能量守恒定律,研究了洪水期间桥墩局部冲刷深度时间演变的预测方法。根据目前对局部冲刷机理的理解,从理论上分析了桥墩局部冲刷过程中水流与沉积物之间的能量传递过程。结果表明,在局部冲刷过程中,水流的能量损失与侵蚀沉积物的能量获得之间存在动态平衡关系。应用这种关系建立了一个数学模型,用于预测冲刷深度的时间演变。该模型只有一个参数,即水流与侵蚀沉积物之间的能量传递效率。能量传递系数主要由清水冲刷条件下的水流强度决定,并获得了计算该系数的经验公式。利用控制水流和自然洪水条件下局部冲刷深度的实测数据,对所提出的模型进行了评估。结果表明,该模型能够提供令人满意的预测结果,而且通过采用更复杂的方法来确定初期冲刷的临界速度,其性能还能进一步提高。同时,该模型的性能对确定能量传递系数时可能引入的不确定性并不敏感。研究结果表明,建立一个理论预测模型来准确预测桥墩局部冲刷深度是可行的。
{"title":"An energy conservation model for the temporal evolution of local scour depth at bridge piers during floods","authors":"","doi":"10.1016/j.ijsrc.2024.05.001","DOIUrl":"10.1016/j.ijsrc.2024.05.001","url":null,"abstract":"<div><p>Local scour at piers is one of the primary causes of bridge failures. The prediction method for the temporal evolution of local scour depth at bridge piers during floods was investigated based on the law of conservation of energy. The energy transfer process between water flow and sediment during the local scour process at bridge piers was theoretically analyzed based on the current understanding of the mechanism of local scour. The results show that there is a dynamic equilibrium relation between the energy loss of water flow and the energy gain of eroded sediment during the local scour process. This relation is applied to establish a mathematical model for predicting the temporal evolution of scour depth. This model has only one parameter, which is the energy transfer efficiency between the water flow and the eroded sediment. The energy transfer coefficient is mainly determined by the flow intensity under clear-water scour conditions, and an empirical formula for calculating it is obtained. The proposed model was evaluated using measured data of local scour depth under both well-controlled flows and natural floods. The results show that the model is able to provide satisfactory predictions and its performance can be further improved by including more sophisticated methods for determining the critical velocity for incipient scour. Meanwhile, the performance of the model is insensitive to the possible uncertainties introduced when determining the energy transfer coefficient. The research results indicate that it is feasible to establish a theoretical prediction model for accurately forecasting the local scour depth at bridge piers.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 654-669"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000544/pdfft?md5=d3c66e8d768679a79889de68c330c602&pid=1-s2.0-S1001627924000544-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of bioturbation induced by Procambarus clarkii on seepage processes in channel levees Procambarus clarkii 引起的生物扰动对河道堤坝渗流过程的影响
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.02.001

River levees are subject to bioturbation by various animals which can actively excavate into earthen structures producing an internal erosion that, during the passage of a flood, can grow in time making the levee unstable. This phenomenon can lead to river levee breaching and, as a consequence, collapse, even for relatively minor flood events. A well-known animal burrower is represented by the North American crayfish Procambarus clarkii (P. clarkii), an invasive species in Europe, mainly introduced for commercial purposes, causing a decline in biodiversity and profound habitat changes. The physical damages caused by P. clarkii on levees and banks, such as in rice fields, irrigation ditches, and small channels, have not been fully studied and behavioral components underlying this impact are mostly occasional. To understand the impact of burrowing activity on the seepage process, a field survey was done in a drainage channel in Tuscany, Italy, to evaluate the density and geometry of the internal burrows that were excavated by the crayfish. Based on these observations and some previous laboratory experiments, three dimensional (3D) numerical simulations of the seepage processes were done inside burrowed levees. Numerical results allowed the increase in the hydraulic vulnerability of levees to the process of internal seepage to be disclosed. In particular, for a given river water level, the reduction of the time scale for the phreatic line to reach the levee field side appears to be a function of a quantity here defined as the burrow hydraulic gradient. This quantity is here defined as the ratio between the hydraulic head inside the burrow and the horizontal distance from its end to the field side of the levee. Moreover, a comparison between the 3D with the analogous more common two dimensional (2D) numerical simulations illustrated the schematization which is better suited for describing the seepage processes when animal burrows, not only by crayfish, are present.

河堤会受到各种动物的生物扰动,这些动物会主动挖掘土质结构,产生内部侵蚀,在洪水经过时,这种侵蚀会逐渐加剧,使河堤变得不稳定。这种现象会导致河堤溃决,甚至在相对较小的洪水事件中也会造成坍塌。北美螯虾(.)是一种众所周知的穴居动物,它是欧洲的入侵物种,主要是出于商业目的而引进,造成生物多样性减少和栖息地的深刻变化。.对堤坝和河岸(如稻田、灌溉沟渠和小水渠)造成的物理破坏尚未得到充分研究,这种影响背后的行为因素大多是偶然的。为了了解穴居活动对渗流过程的影响,我们在意大利托斯卡纳的一条排水沟进行了实地调查,以评估小龙虾挖掘的内部洞穴的密度和几何形状。根据这些观察结果和之前的一些实验室实验,对洞穴堤坝内的渗流过程进行了三维(3D)数值模拟。数值结果揭示了堤坝在内部渗流过程中水力脆弱性的增加。特别是,在给定河水水位的情况下,相渗线到达堤坝实地一侧的时间尺度的缩短似乎是一个在此被定义为洞穴水力梯度的量的函数。这里的水力坡度是指洞穴内的水力压头与洞穴末端到堤坝田边的水平距离之比。此外,三维数值模拟与更常见的二维数值模拟进行了比较,结果表明三维数值模拟更适合描述动物洞穴(不仅仅是小龙虾洞穴)的渗流过程。
{"title":"Implications of bioturbation induced by Procambarus clarkii on seepage processes in channel levees","authors":"","doi":"10.1016/j.ijsrc.2024.02.001","DOIUrl":"10.1016/j.ijsrc.2024.02.001","url":null,"abstract":"<div><p>River levees are subject to bioturbation by various animals which can actively excavate into earthen structures producing an internal erosion that, during the passage of a flood, can grow in time making the levee unstable. This phenomenon can lead to river levee breaching and, as a consequence, collapse, even for relatively minor flood events. A well-known animal burrower is represented by the North American crayfish <em>Procambarus clarkii</em> (<em>P</em>. <em>clarkii</em>), an invasive species in Europe, mainly introduced for commercial purposes, causing a decline in biodiversity and profound habitat changes. The physical damages caused by <em>P</em>. <em>clarkii</em> on levees and banks, such as in rice fields, irrigation ditches, and small channels, have not been fully studied and behavioral components underlying this impact are mostly occasional. To understand the impact of burrowing activity on the seepage process, a field survey was done in a drainage channel in Tuscany, Italy, to evaluate the density and geometry of the internal burrows that were excavated by the crayfish. Based on these observations and some previous laboratory experiments, three dimensional (3D) numerical simulations of the seepage processes were done inside burrowed levees. Numerical results allowed the increase in the hydraulic vulnerability of levees to the process of internal seepage to be disclosed. In particular, for a given river water level, the reduction of the time scale for the phreatic line to reach the levee field side appears to be a function of a quantity here defined as the burrow hydraulic gradient. This quantity is here defined as the ratio between the hydraulic head inside the burrow and the horizontal distance from its end to the field side of the levee. Moreover, a comparison between the 3D with the analogous more common two dimensional (2D) numerical simulations illustrated the schematization which is better suited for describing the seepage processes when animal burrows, not only by crayfish, are present.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 552-559"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000143/pdfft?md5=6ad9730c79efb8529f04394cd7499f54&pid=1-s2.0-S1001627924000143-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of river regime and waterway downstream of a cascade of reservoirs on the upper Yangtze River 长江上游梯级水库下游河流水系和航道的变化
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.05.005

The Xiangjiaba and Xiluodu reservoirs, located on the upper Yangtze River, have been operational and the changes in the downstream river regime and waterway conditions have attracted great attention. A two-dimensional horizontal (2DH) flow–sediment mathematical model of the Shuifu to Lanjiatuo reach (Shuilan reach) downstream of the Xiangjiaba Dam was developed. The spatio-temporal characteristics of sediment scouring and siltation after completion of the cascade of reservoirs were simulated using the model, and then the river regime changes in several typical reaches as well as their possible impacts on navigation channels were analyzed. The results show that, after operation of the cascade of reservoirs, the downstream channel is in the state of scour. The general change of the river regime is that the flow in curved reaches tends to be straight though the river pattern still remains curved. Sub-branches tend to experience deposition, while the main channel will be scoured deeper, which can help to increase the navigation depth in the shoals in the transition sections. Deposition in some sections could result in new shoals. In addition, the bottom elevation difference between floodplains and channels will increase, which could aggravate local adverse flow patterns; therefore, navigation conditions in torrential shoals will tend to deteriorate.

位于长江上游的向家坝水库和溪洛渡水库投入运行后,下游河势和河道条件的变化引起了人们的高度关注。本研究建立了向家坝下游水富至兰家沱段(水兰段)的二维水平(2DH)流沙数学模型。利用该模型模拟了梯级水库建成后泥沙冲淤的时空特征,并分析了几个典型河段的河势变化及其对航道可能产生的影响。结果表明,梯级水库运行后,下游河道处于冲刷状态。河道流态的总体变化是,弯曲河段的水流趋于平直,但河道形态仍保持弯曲。支流往往会出现沉积,而主河道则会被冲刷得更深,这有助于增加过渡段浅滩的通航深度。某些地段的沉积可能会形成新的浅滩。此外,洪泛区和航道之间的底高差将增大,这可能会加剧局部的不利流态;因此,激流滩涂的航行条件将趋于恶化。
{"title":"Changes of river regime and waterway downstream of a cascade of reservoirs on the upper Yangtze River","authors":"","doi":"10.1016/j.ijsrc.2024.05.005","DOIUrl":"10.1016/j.ijsrc.2024.05.005","url":null,"abstract":"<div><p>The Xiangjiaba and Xiluodu reservoirs, located on the upper Yangtze River, have been operational and the changes in the downstream river regime and waterway conditions have attracted great attention. A two-dimensional horizontal (2DH) flow–sediment mathematical model of the Shuifu to Lanjiatuo reach (Shuilan reach) downstream of the Xiangjiaba Dam was developed. The spatio-temporal characteristics of sediment scouring and siltation after completion of the cascade of reservoirs were simulated using the model, and then the river regime changes in several typical reaches as well as their possible impacts on navigation channels were analyzed. The results show that, after operation of the cascade of reservoirs, the downstream channel is in the state of scour. The general change of the river regime is that the flow in curved reaches tends to be straight though the river pattern still remains curved. Sub-branches tend to experience deposition, while the main channel will be scoured deeper, which can help to increase the navigation depth in the shoals in the transition sections. Deposition in some sections could result in new shoals. In addition, the bottom elevation difference between floodplains and channels will increase, which could aggravate local adverse flow patterns; therefore, navigation conditions in torrential shoals will tend to deteriorate.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 615-628"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100162792400060X/pdfft?md5=4a0efe18f34488f952d6c299ca90e980&pid=1-s2.0-S100162792400060X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in ecohydraulics, sediment transport and morphodynamics: Introduction to the special issue 生态水力学、沉积物输运和形态动力学的进展:特刊导言
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.07.004
Hongbo Ma
{"title":"Advances in ecohydraulics, sediment transport and morphodynamics: Introduction to the special issue","authors":"Hongbo Ma","doi":"10.1016/j.ijsrc.2024.07.004","DOIUrl":"10.1016/j.ijsrc.2024.07.004","url":null,"abstract":"","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 495-496"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000775/pdfft?md5=516594e570ecaf93882e7db1894a1d02&pid=1-s2.0-S1001627924000775-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migration and release potential of nitrogen at the sediment–water interface in lakes in cold and arid regions 寒冷和干旱地区湖泊沉积物-水界面的氮迁移和释放潜力
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.04.009

Lake eutrophication in cold and arid regions is showing a deepening trend in recent years, posing a serious threat to the regional ecological environment. The occurrence characteristics, bioavailability, sorption–desorption characteristics, and release risk of sediment nitrogen in the Ulanor Wetland, located in the Hulun Lake basin of China, were investigated by combining field investigation, laboratory simulation experiments, and multiple technologies, including diffusive gradients in thin films and high-resolution dialysis technology. The total nitrogen (TN) in the water overlying the sediment bed (i.e., overlying water) ranged from 1.44 to 2.65 mg/L. Dissolved inorganic nitrogen was the main form of TN in overlying water, and ammonia nitrogen (NH4+–N) in the pore water at the sediment–water interface was higher than that in the overlying water. Surface sediment TN content ranged from 695.37 to 2,344.77 mg/kg, with acid-dissolved nitrogen as the main component, and can cause the lowest level of ecotoxic effect. The maximum and equilibrium adsorption amounts of sediment NH4+–N ranged from 0.269 to 1.017 mg/g and 0.0132–0.0382 mg/g, respectively. The bioavailability and transport capacity of sediment nitrogen were relatively weak, but a release risk was still observed.

近年来,寒冷干旱地区湖泊富营养化呈加深趋势,对区域生态环境构成严重威胁。通过野外调查、实验室模拟实验以及薄膜扩散梯度和高分辨率透析技术等多种技术手段,研究了中国呼伦湖流域乌兰诺尔湿地沉积氮的发生特征、生物利用率、吸附解吸特征和释放风险。沉积床上覆水体(即上覆水体)的总氮(TN)在 1.44 至 2.65 mg/L 之间。溶解无机氮是上覆水中 TN 的主要形式,沉积物-水界面孔隙水中的氨氮(NH-N)高于上覆水中的氨氮(NH-N)。表层沉积物中的 TN 含量介于 695.37 至 2,344.77 mg/kg 之间,以酸性溶解氮为主,对生态毒害的影响程度最低。沉积物 NH-N 的最大吸附量和平衡吸附量分别为 0.269-1.017 mg/g 和 0.0132-0.0382 mg/g。沉积氮的生物利用率和迁移能力相对较弱,但仍有释放风险。
{"title":"Migration and release potential of nitrogen at the sediment–water interface in lakes in cold and arid regions","authors":"","doi":"10.1016/j.ijsrc.2024.04.009","DOIUrl":"10.1016/j.ijsrc.2024.04.009","url":null,"abstract":"<div><p>Lake eutrophication in cold and arid regions is showing a deepening trend in recent years, posing a serious threat to the regional ecological environment. The occurrence characteristics, bioavailability, sorption–desorption characteristics, and release risk of sediment nitrogen in the Ulanor Wetland, located in the Hulun Lake basin of China, were investigated by combining field investigation, laboratory simulation experiments, and multiple technologies, including diffusive gradients in thin films and high-resolution dialysis technology. The total nitrogen (TN) in the water overlying the sediment bed (i.e., overlying water) ranged from 1.44 to 2.65 mg/L. Dissolved inorganic nitrogen was the main form of TN in overlying water, and ammonia nitrogen (NH<sub>4</sub><sup>+</sup>–N) in the pore water at the sediment–water interface was higher than that in the overlying water. Surface sediment TN content ranged from 695.37 to 2,344.77 mg/kg, with acid-dissolved nitrogen as the main component, and can cause the lowest level of ecotoxic effect. The maximum and equilibrium adsorption amounts of sediment NH<sub>4</sub><sup>+</sup>–N ranged from 0.269 to 1.017 mg/g and 0.0132–0.0382 mg/g, respectively. The bioavailability and transport capacity of sediment nitrogen were relatively weak, but a release risk was still observed.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 576-585"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000520/pdfft?md5=ea652b00c35966d17f1f1b9641d1e396&pid=1-s2.0-S1001627924000520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOC 技术选择委员会
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/S1001-6279(24)00070-2
{"title":"TOC","authors":"","doi":"10.1016/S1001-6279(24)00070-2","DOIUrl":"10.1016/S1001-6279(24)00070-2","url":null,"abstract":"","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages ii-iii"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000702/pdfft?md5=bc326faa37ab965a0c27bcc82e51f6a9&pid=1-s2.0-S1001627924000702-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the mesoscale saltmarsh accretion on the tropical barrier estuarine regime: A case study from the Chandipur Saltmarsh, India 揭示热带屏障河口系统的中尺度盐沼增生:印度 Chandipur 盐沼案例研究
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.03.007

Coastal wetlands are seen as efficient coastal stabilizers and provide an optimal natural ecosystem for the sequestration and storage of carbon. Thus, it is critically important for scientists and environmental managers to understand the future dynamics of coastal wetlands. The understanding of yearly to decadal development in coastal ecosystems can assist in the coastal management activity, to sustain biodiversity. In the current study, high-resolution granulometric analysis of a back-barrier salt-marsh deposit of tropical barrier estuary environments at Chandipur, India, is utilized to provide an overview of the mesoscale geomorphic processes and history of changing sediment dynamics. The multivariate statistical examination with coefficients of probability density functions and compositional data analysis helps to determine the four lithofacies of the deposit. Granulometric analysis combined with satellite image analysis reveals that relatively coarser facies were deposited during the incipient stage of the barrier development, when the marshland vegetation was relatively less dense as suggested by the lower normalized difference vegetation index (NDVI) and the saline sea water easily drowned the area and saline sediment was deposited. After rapid marsh accretion, the flow dynamics shifted to a negligible flow component in the final stage when finer facies were deposited in vegetated marshland, and the organic carbon concentration increased up to 3.5%. As plant organic matter and sediment continuously accumulates in this marshland, elevation capital grows and the marsh continues to develop and expand, reaching a densely vegetated marsh with a considerable increase in NDVI values. The findings of this multiproxy study, in conjunction with multivariate statistical analysis, provide valuable insight into the characteristics of accretion in a tropical saltmarsh, which is unique in such a geological setting.

沿海湿地被视为高效的海岸稳定器,为碳的固存和储存提供了最佳的自然生态系统。因此,对于科学家和环境管理者来说,了解沿岸湿地的未来动态至关重要。了解沿岸生态系统每年到每十年的发展情况,有助于开展沿岸管理活动,维持生物多 样性。本研究对印度 Chandipur 热带屏障河口环境的后屏障盐沼沉积物进行了高分辨率粒度分析,以概述中尺度地貌 过程和沉积物动态变化的历史。利用概率密度函数系数和成分数据分析进行的多元统计分析有助于确定沉积物的四种岩相。粒度分析结合卫星图像分析表明,相对较粗的岩相沉积于屏障发展的萌芽阶段,当时沼泽植被密度相对较低,归一化差异植被指数(NDVI)较低,盐碱海水容易淹没该区域,盐碱沉积物沉积下来。沼泽迅速增生后,在最后阶段,当植被茂盛的沼泽地沉积了较细的面层时,水流动力学转变为可忽略不计的水流成分,有机碳浓度增加到 3.5%。随着沼泽地中植物有机质和沉积物的不断积累,海拔资本不断增加,沼泽地不断发展壮大,最终形成植被茂密的沼泽地,NDVI 值也显著增加。这项多代理研究的结果与多元统计分析相结合,为我们深入了解热带盐沼的增生特征提供了宝贵的资料,这在这样的地质环境中是独一无二的。
{"title":"Unravelling the mesoscale saltmarsh accretion on the tropical barrier estuarine regime: A case study from the Chandipur Saltmarsh, India","authors":"","doi":"10.1016/j.ijsrc.2024.03.007","DOIUrl":"10.1016/j.ijsrc.2024.03.007","url":null,"abstract":"<div><p>Coastal wetlands are seen as efficient coastal stabilizers and provide an optimal natural ecosystem for the sequestration and storage of carbon. Thus, it is critically important for scientists and environmental managers to understand the future dynamics of coastal wetlands. The understanding of yearly to decadal development in coastal ecosystems can assist in the coastal management activity, to sustain biodiversity. In the current study, high-resolution granulometric analysis of a back-barrier salt-marsh deposit of tropical barrier estuary environments at Chandipur, India, is utilized to provide an overview of the mesoscale geomorphic processes and history of changing sediment dynamics. The multivariate statistical examination with coefficients of probability density functions and compositional data analysis helps to determine the four lithofacies of the deposit. Granulometric analysis combined with satellite image analysis reveals that relatively coarser facies were deposited during the incipient stage of the barrier development, when the marshland vegetation was relatively less dense as suggested by the lower normalized difference vegetation index (NDVI) and the saline sea water easily drowned the area and saline sediment was deposited. After rapid marsh accretion, the flow dynamics shifted to a negligible flow component in the final stage when finer facies were deposited in vegetated marshland, and the organic carbon concentration increased up to 3.5%. As plant organic matter and sediment continuously accumulates in this marshland, elevation capital grows and the marsh continues to develop and expand, reaching a densely vegetated marsh with a considerable increase in NDVI values. The findings of this multiproxy study, in conjunction with multivariate statistical analysis, provide valuable insight into the characteristics of accretion in a tropical saltmarsh, which is unique in such a geological setting.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 560-575"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000325/pdfft?md5=92a6299a241d255efdb97cc3c39729e4&pid=1-s2.0-S1001627924000325-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal and spatial evolution characteristics of the current tail channel of the Yellow River: Processes and mechanisms 黄河尾流河道时空演变特征:过程与机制
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.04.007

The Qingshuigou Channel, as the current tail channel of the Yellow River, formed by the diversion of the Diaokou River in 1976, has undergone a particularly dramatic spatio-temporal evolution, and its evolution processes and the underlying mechanisms are still unclear. On the basis of the flood season cross section data for the river downstream of the Lijin Hydrological Station from 1976 to 2017, the current study calculated the main channel morphological characteristics of the tail channel in different reaches using a reach-scale morphological parameter calculation method and K-means clustering analysis. An elevated riverbed index was proposed to identify the elevated riverbed situation of the river channel. The results show that from 1976 to 2017, the bankfull area experienced repeated processes of decrease and increase, and the main channel morphology gradually changed from wide and shallow to narrow and deep over time. For most of the time period, the conveyance capacity of the main channel gradually decreased from upstream to downstream. The elevated riverbed situation gradually became more severe along the river reach from 0 to 85 km away from Lijin, but was less severe in the reach more than 85 km downstream of Lijin. The most severe elevated riverbed situation appeared mainly in the range of 71–83 km below Lijin in 1991–1995. When the sediment-carrying capacity of the water flow was strong, the bankfull area of the main channel increased, and the elevated riverbed situation was alleviated. River channel projects have helped to maintain the narrow and deep shape of the main channel, but the installation of farm dikes have aggravated the elevated riverbed situation. At the same time, extension and diversion of the tail channel have changed the erosion base level, greatly affecting the evolution of the channel morphology. The current study has provided a typical case for exploring the processes and mechanisms of tail channel evolution.

清水沟河道作为1976年刁口河改道形成的现状黄河尾闾河道,其时空演化过程尤为剧烈,其演化过程及其内在机理尚不清楚。本研究以利津水文站下游河道 1976~2017 年汛期断面资料为基础,采用河段尺度形态参数计算方法和均值聚类分析,计算了不同河段尾水河道的主槽形态特征。提出了高程河床指数来识别河道的高程河床情况。结果表明,从 1976 年到 2017 年,河岸满滩面积经历了反复的减少和增加过程,主河道形态随着时间的推移逐渐由宽、浅变为窄、深。在大部分时间段内,主河道的输送能力从上游到下游逐渐下降。在距离利津 0 至 85 公里的河段,河床抬高情况逐渐严重,但在利津下游 85 公里以上的河段,河床抬高情况较轻。1991-1995 年,最严重的河床抬高情况主要出现在利津下游 71-83 公里范围内。当水流挟带泥沙能力较强时,主河道满滩面积增大,河床抬高情况有所缓解。河道工程有助于保持主河道窄而深的形状,但农田堤坝的设置加剧了河床抬高的情况。同时,尾水河道的延伸和改道改变了侵蚀基面,极大地影响了河道形态的演变。本次研究为探索尾水河道演变过程和机制提供了一个典型案例。
{"title":"Temporal and spatial evolution characteristics of the current tail channel of the Yellow River: Processes and mechanisms","authors":"","doi":"10.1016/j.ijsrc.2024.04.007","DOIUrl":"10.1016/j.ijsrc.2024.04.007","url":null,"abstract":"<div><p>The Qingshuigou Channel, as the current tail channel of the Yellow River, formed by the diversion of the Diaokou River in 1976, has undergone a particularly dramatic spatio-temporal evolution, and its evolution processes and the underlying mechanisms are still unclear. On the basis of the flood season cross section data for the river downstream of the Lijin Hydrological Station from 1976 to 2017, the current study calculated the main channel morphological characteristics of the tail channel in different reaches using a reach-scale morphological parameter calculation method and <em>K</em>-means clustering analysis. An elevated riverbed index was proposed to identify the elevated riverbed situation of the river channel. The results show that from 1976 to 2017, the bankfull area experienced repeated processes of decrease and increase, and the main channel morphology gradually changed from wide and shallow to narrow and deep over time. For most of the time period, the conveyance capacity of the main channel gradually decreased from upstream to downstream. The elevated riverbed situation gradually became more severe along the river reach from 0 to 85 km away from Lijin, but was less severe in the reach more than 85 km downstream of Lijin. The most severe elevated riverbed situation appeared mainly in the range of 71–83 km below Lijin in 1991–1995. When the sediment-carrying capacity of the water flow was strong, the bankfull area of the main channel increased, and the elevated riverbed situation was alleviated. River channel projects have helped to maintain the narrow and deep shape of the main channel, but the installation of farm dikes have aggravated the elevated riverbed situation. At the same time, extension and diversion of the tail channel have changed the erosion base level, greatly affecting the evolution of the channel morphology. The current study has provided a typical case for exploring the processes and mechanisms of tail channel evolution.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 643-653"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100162792400043X/pdfft?md5=0b015bf468d944098dbd0217e55fa59d&pid=1-s2.0-S100162792400043X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-resolution water quality model coupled sediment and suspended sediment module 高分辨率水质模型耦合沉积物和悬浮沉积物模块
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 DOI: 10.1016/j.ijsrc.2024.05.004

Water environment numerical models considering detailed hydrodynamic processes are effective tools to better understand the pollutant transport and transformation mechanisms and the influences of sediment and suspended sediment on pollutants in rivers in complex terrain. However, these models can hardly achieve simultaneous high-efficiency and high-accuracy simulation of large-area rivers in complex terrain. Therefore, a high-resolution water quality model was developed coupled with a sediment and suspended sediment module (GAST). The Compute Unified Device Architecture (CUDA) parallel computing architecture and robust model algorithms were used, and the model performance and functionality were improved. This model was based on detailed physical processes, while water environment parameter spatial heterogeneity also was considered. A simulation function of multiphase pollutant transport and mutual transformation was established by solving the pollution adsorption kinetic equation applicable to high-resolution terrain. The transport and mutual transformation processes of multiphase pollutants in still water and steady uniform flow were verified by considering the Nash–Sutcliffe efficiency (NSE) coefficient which exceeded 0.99. The validated high-resolution water quality model was applied to simulate a river network water environment in a sulfurous iron ore area, and the numerical results for the sulfate ion concentration spatial distribution and pollution sources of sulfate ions in the sediment and water phases were explored. The results show that the concentration of sulfate ions in the Xiaowenyu River varies between 120 and 180 mg/L. The contribution rates of the 5 tributaries with slag heaps in the lower reaches to the sulfate ion load in the Xiaowenyu River followed the order of Guojiagou (15.7%) > Baoquansi (14.6%) > Zhuyuangou (9.2%) > Qingshigou (2.8%) > Sunjiagou (1.4%). On an RTX30700d computer, only 0.55 h was needed to simulate the hydrodynamic and water quality evolution process involving 653,112 cells for a 6-h model setting. The model attained a high computational efficiency and high operation speed. This study provides a reliable tool for further study of river pollution mechanisms and river water environmental management.

考虑详细水动力过程的水环境数值模型是更好地理解复杂地形河流中污染物迁移和转化机理以及泥沙和悬浮泥沙对污染物影响的有效工具。然而,这些模型很难同时实现对复杂地形下大面积河流的高效率、高精度模拟。因此,我们开发了一种与泥沙和悬浮泥沙模块(GAST)相结合的高分辨率水质模型。采用计算统一设备架构(CUDA)并行计算架构和强大的模型算法,提高了模型的性能和功能。该模型基于详细的物理过程,同时还考虑了水环境参数的空间异质性。通过求解适用于高分辨率地形的污染吸附动力学方程,建立了多相污染物迁移和相互转化的模拟函数。通过考虑超过 0.99 的 Nash-Sutcliffe 效率(NSE)系数,验证了静水和稳定匀速流中多相污染物的迁移和相互转化过程。应用验证后的高分辨率水质模型模拟硫铁矿区河网水环境,探讨了泥沙和水体中硫酸根离子浓度空间分布和污染源的数值结果。结果表明,小汶峪河的硫酸根离子浓度在 120 至 180 mg/L 之间变化。下游有渣堆的 5 条支流对小温榆河硫酸根离子负荷的贡献率依次为郭家沟(15.7%)>宝泉寺(14.6%)>竹园沟(9.2%)>青石沟(2.8%)>孙家沟(1.4%)。在 RTX30700d 计算机上,以 6 小时为模型设定时间,模拟 653 112 个单元的水动力和水质演变过程仅需 0.55 小时。该模型具有较高的计算效率和运行速度。这项研究为进一步研究河流污染机理和河流水环境管理提供了可靠的工具。
{"title":"A high-resolution water quality model coupled sediment and suspended sediment module","authors":"","doi":"10.1016/j.ijsrc.2024.05.004","DOIUrl":"10.1016/j.ijsrc.2024.05.004","url":null,"abstract":"<div><p>Water environment numerical models considering detailed hydrodynamic processes are effective tools to better understand the pollutant transport and transformation mechanisms and the influences of sediment and suspended sediment on pollutants in rivers in complex terrain. However, these models can hardly achieve simultaneous high-efficiency and high-accuracy simulation of large-area rivers in complex terrain. Therefore, a high-resolution water quality model was developed coupled with a sediment and suspended sediment module (GAST). The Compute Unified Device Architecture (CUDA) parallel computing architecture and robust model algorithms were used, and the model performance and functionality were improved. This model was based on detailed physical processes, while water environment parameter spatial heterogeneity also was considered. A simulation function of multiphase pollutant transport and mutual transformation was established by solving the pollution adsorption kinetic equation applicable to high-resolution terrain. The transport and mutual transformation processes of multiphase pollutants in still water and steady uniform flow were verified by considering the Nash–Sutcliffe efficiency (NSE) coefficient which exceeded 0.99. The validated high-resolution water quality model was applied to simulate a river network water environment in a sulfurous iron ore area, and the numerical results for the sulfate ion concentration spatial distribution and pollution sources of sulfate ions in the sediment and water phases were explored. The results show that the concentration of sulfate ions in the Xiaowenyu River varies between 120 and 180 mg/L. The contribution rates of the 5 tributaries with slag heaps in the lower reaches to the sulfate ion load in the Xiaowenyu River followed the order of Guojiagou (15.7%) &gt; Baoquansi (14.6%) &gt; Zhuyuangou (9.2%) &gt; Qingshigou (2.8%) &gt; Sunjiagou (1.4%). On an RTX30700d computer, only 0.55 h was needed to simulate the hydrodynamic and water quality evolution process involving 653,112 cells for a 6-h model setting. The model attained a high computational efficiency and high operation speed. This study provides a reliable tool for further study of river pollution mechanisms and river water environmental management.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 4","pages":"Pages 670-682"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000593/pdfft?md5=53671953f9cc38a4ff89708eb4faafc3&pid=1-s2.0-S1001627924000593-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution, sources, and burial flux of black carbon in sediment of Daye lake, central China 中国中部大冶湖沉积物中黑碳的分布、来源和埋藏通量
IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-07-29 DOI: 10.1016/j.ijsrc.2024.07.005
Changlin Zhan , Yongming Han , Jiaquan Zhang , Shan Liu , Hongxia Liu , Wensheng Xiao , Junji Cao

Black carbon (BC), primarily originating from fossil fuel and biomass combustion, holds significance for global carbon cycling, climate change, and human health. Despite a lake's role as a carbon sink, detailed information about BC sedimentary burial flux and sink in its sediment remains insufficiently explored. The current study investigates the distribution, sources, and burial flux of BC and its subtypes (char and soot) in the surface sediment of Daye Lake, the largest lake in Huangshi City, central China. BC concentrations in the sediment ranged from 0.10 to 3.60 mg/g, corresponding to 0.40%–17.02% of organic carbon (OC). Higher values of BC and BC/OC observed in the western region suggest direct terrestrial input via river discharge and surface runoff, influenced by anthropogenic activities. In contrast, variations in char/soot ratios reflect diverse combustion sources and hydrological dynamics in different regions. The indications from BC/OC and char/soot ratios imply that fossil fuel combustion is the predominant sources. The weak correlations between BC and OC suggest that they may come from different sources or undergo different processes that affect their distribution in the lake sediment. However, a stronger correlation was observed between BC and soot, as well as between char and soot, indicating potential similarities in their input pathways. The BC burial flux displays notable variations across the lake, ranging from 0.69 to 24.07 g/m2/yr, with elevated values observed in the western region. The BC sink in the sediments of Daye Lake was estimated to be 0.635 Gg/yr. Though locally small, it significantly contributes to the broader picture of BC burial in Chinese lakes and the global distribution of BC in lake ecosystems.

黑碳(BC)主要来源于化石燃料和生物质燃烧,对全球碳循环、气候变化和人类健康具有重要意义。尽管湖泊扮演着碳汇的角色,但有关黑碳在湖泊沉积物中的沉积通量和沉积汇的详细信息仍未得到充分探究。本研究调查了中国中部最大的湖泊黄石市大冶湖表层沉积物中 BC 及其亚型(炭和烟尘)的分布、来源和埋藏通量。沉积物中的 BC 浓度介于 0.10 至 3.60 mg/g 之间,相当于有机碳 (OC) 的 0.40% 至 17.02%。西部地区的 BC 和 BC/OC 值较高,表明受人为活动的影响,BC 和 BC/OC 通过河流排放和地表径流直接输入陆地。相比之下,炭/烟尘比的变化反映了不同地区的不同燃烧源和水文动态。BC/OC 和木炭/烟尘比率表明,化石燃料燃烧是主要来源。BC 和 OC 之间的微弱相关性表明,它们可能来自不同的来源或经历了不同的过程,从而影响了它们在湖泊沉积物中的分布。不过,在 BC 和烟尘以及炭和烟尘之间观察到了较强的相关性,表明它们的输入途径可能具有相似性。整个湖泊的 BC 埋藏通量变化明显,从 0.69 克/米/年到 24.07 克/米/年不等,西部地区的数值较高。据估算,大冶湖沉积物中的 BC 沉降量为 0.635 千兆克/年。大冶湖沉积物中的BC沉降量估计为0.635 Gg/yr,虽然局部沉降量较小,但对更广泛地了解中国湖泊中BC的埋藏情况以及全球湖泊生态系统中BC的分布情况具有重要意义。
{"title":"Distribution, sources, and burial flux of black carbon in sediment of Daye lake, central China","authors":"Changlin Zhan ,&nbsp;Yongming Han ,&nbsp;Jiaquan Zhang ,&nbsp;Shan Liu ,&nbsp;Hongxia Liu ,&nbsp;Wensheng Xiao ,&nbsp;Junji Cao","doi":"10.1016/j.ijsrc.2024.07.005","DOIUrl":"10.1016/j.ijsrc.2024.07.005","url":null,"abstract":"<div><p>Black carbon (BC), primarily originating from fossil fuel and biomass combustion, holds significance for global carbon cycling, climate change, and human health. Despite a lake's role as a carbon sink, detailed information about BC sedimentary burial flux and sink in its sediment remains insufficiently explored. The current study investigates the distribution, sources, and burial flux of BC and its subtypes (char and soot) in the surface sediment of Daye Lake, the largest lake in Huangshi City, central China. BC concentrations in the sediment ranged from 0.10 to 3.60 mg/g, corresponding to 0.40%–17.02% of organic carbon (OC). Higher values of BC and BC/OC observed in the western region suggest direct terrestrial input via river discharge and surface runoff, influenced by anthropogenic activities. In contrast, variations in char/soot ratios reflect diverse combustion sources and hydrological dynamics in different regions. The indications from BC/OC and char/soot ratios imply that fossil fuel combustion is the predominant sources. The weak correlations between BC and OC suggest that they may come from different sources or undergo different processes that affect their distribution in the lake sediment. However, a stronger correlation was observed between BC and soot, as well as between char and soot, indicating potential similarities in their input pathways. The BC burial flux displays notable variations across the lake, ranging from 0.69 to 24.07 g/m<sup>2</sup>/yr, with elevated values observed in the western region. The BC sink in the sediments of Daye Lake was estimated to be 0.635 Gg/yr. Though locally small, it significantly contributes to the broader picture of BC burial in Chinese lakes and the global distribution of BC in lake ecosystems.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 5","pages":"Pages 750-760"},"PeriodicalIF":3.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000799/pdfft?md5=9943760b35832338f3aa00de62268166&pid=1-s2.0-S1001627924000799-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Sediment Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1