首页 > 最新文献

International Journal of Non-Linear Mechanics最新文献

英文 中文
Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers 基于神经网络的代用建模,用于 MEMS 加速计的高效不确定性量化和校准
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-12 DOI: 10.1016/j.ijnonlinmec.2024.104902
Filippo Zacchei , Francesco Rizzini , Gabriele Gattere , Attilio Frangi , Andrea Manzoni

This paper addresses the computational challenges inherent in the stochastic characterization and uncertainty quantification of Micro-Electro-Mechanical Systems (MEMS) capacitive accelerometers. Traditional methods, such as Markov Chain Monte Carlo (MCMC) algorithms, are often constrained by the computational intensity required for high-fidelity (e.g., finite element) simulations. To overcome these limitations, we propose to use supervised learning-based surrogate models, specifically artificial neural networks, to effectively approximate the response of MEMS capacitive accelerometers. Our approach involves training the surrogate models with data derived from initial high-fidelity finite element analyses (FEA), providing rich datasets to be generated in an offline phase. The surrogate models replicate the FEA accuracy in predicting the behavior of the accelerometer under a wide range of fabrication parameters, thereby reducing the online computational cost without compromising accuracy. This enables extensive and efficient stochastic analyses of complex MEMS devices, offering a flexible framework for their characterization. A key application of our framework is demonstrated in estimating the sensitivity of an accelerometer, accounting for unknown mechanical offsets, over-etching, and thickness variations. We employ an MCMC approach to estimate the posterior distribution of the device’s unknown fabrication parameters, informed by its response to transient voltage signals. The integration of surrogate models for mapping fabrication parameters to device responses, and subsequently to sensitivity measures, greatly enhances both backward and forward uncertainty quantification, yielding accurate results while significantly improving the efficiency and effectiveness of the characterization process. This process allows for the reconstruction of device sensitivity using only voltage signals, without the need for direct mechanical acceleration stimuli.

本文探讨了微机电系统(MEMS)电容式加速度计的随机表征和不确定性量化所固有的计算挑战。马尔可夫链蒙特卡罗 (MCMC) 算法等传统方法往往受到高保真(如有限元)模拟所需的计算强度的限制。为了克服这些限制,我们建议使用基于监督学习的代理模型,特别是人工神经网络,来有效地近似 MEMS 电容式加速度计的响应。我们的方法包括利用从初始高保真有限元分析 (FEA) 中获得的数据来训练代用模型,从而在离线阶段生成丰富的数据集。代用模型复制了有限元分析在各种制造参数下预测加速度计行为的精度,从而在不影响精度的情况下降低了在线计算成本。这样就能对复杂的 MEMS 设备进行广泛而高效的随机分析,为其特性分析提供灵活的框架。在估算加速度计的灵敏度时,我们展示了该框架的一个关键应用,其中考虑到了未知的机械偏移、过蚀和厚度变化。我们采用 MCMC 方法,根据器件对瞬态电压信号的响应,估计器件未知制造参数的后验分布。代用模型可将制造参数映射到器件响应,进而映射到灵敏度测量,这种集成极大地增强了后向和前向不确定性量化,在获得精确结果的同时,显著提高了表征过程的效率和有效性。这一过程允许仅使用电压信号重建器件灵敏度,而无需直接的机械加速度刺激。
{"title":"Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers","authors":"Filippo Zacchei ,&nbsp;Francesco Rizzini ,&nbsp;Gabriele Gattere ,&nbsp;Attilio Frangi ,&nbsp;Andrea Manzoni","doi":"10.1016/j.ijnonlinmec.2024.104902","DOIUrl":"10.1016/j.ijnonlinmec.2024.104902","url":null,"abstract":"<div><p>This paper addresses the computational challenges inherent in the stochastic characterization and uncertainty quantification of Micro-Electro-Mechanical Systems (MEMS) capacitive accelerometers. Traditional methods, such as Markov Chain Monte Carlo (MCMC) algorithms, are often constrained by the computational intensity required for high-fidelity (e.g., finite element) simulations. To overcome these limitations, we propose to use supervised learning-based surrogate models, specifically artificial neural networks, to effectively approximate the response of MEMS capacitive accelerometers. Our approach involves training the surrogate models with data derived from initial high-fidelity finite element analyses (FEA), providing rich datasets to be generated in an offline phase. The surrogate models replicate the FEA accuracy in predicting the behavior of the accelerometer under a wide range of fabrication parameters, thereby reducing the online computational cost without compromising accuracy. This enables extensive and efficient stochastic analyses of complex MEMS devices, offering a flexible framework for their characterization. A key application of our framework is demonstrated in estimating the sensitivity of an accelerometer, accounting for unknown mechanical offsets, over-etching, and thickness variations. We employ an MCMC approach to estimate the posterior distribution of the device’s unknown fabrication parameters, informed by its response to transient voltage signals. The integration of surrogate models for mapping fabrication parameters to device responses, and subsequently to sensitivity measures, greatly enhances both backward and forward uncertainty quantification, yielding accurate results while significantly improving the efficiency and effectiveness of the characterization process. This process allows for the reconstruction of device sensitivity using only voltage signals, without the need for direct mechanical acceleration stimuli.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104902"},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020746224002671/pdfft?md5=d3c229018b2515fd00c03dfc0eaf811b&pid=1-s2.0-S0020746224002671-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Static analysis using flexibility disassembly perturbation for material nonlinear problem with uncertainty 利用柔性拆卸扰动对具有不确定性的材料非线性问题进行静态分析
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-11 DOI: 10.1016/j.ijnonlinmec.2024.104901
X. Peng , Q.W. Yang , H.F. Cao

Nonlinear finite element analysis of large-scale structures usually requires a lot of calculation cost, because it is necessary to repeatedly inverse the modified stiffness matrix caused by nonlinearity in the calculation process. When considering the uncertainty in materials, the calculation of the nonlinear analysis will be more unbearable. To improve the computational efficiency, this work develops a new method for nonlinear analysis with material uncertainty based on flexibility disassembly perturbation (FDP) approach. The FDP is an algorithm that can quickly calculate the inverse of a stiffness matrix. The basic idea of the proposed method is to introduce the FDP formula into Newton-Raphson iteration method to accelerate the nonlinear iterative calculation. Three numerical examples, one statically determinate structure and two statically indeterminate structures, are used to verify the accuracy and efficiency of the proposed method. The results show that the calculation time of the proposed method is far less than that of the existing complete analysis and combined approximation algorithms. In terms of computational accuracy, for statically determinate structures, the proposed algorithm can obtain exact solutions that are identical to the complete analysis results, while for statically indeterminate structures, the proposed algorithm can obtain approximate solutions that are very close to the complete analysis results.

大型结构的非线性有限元分析通常需要大量的计算费用,因为在计算过程中需要反复反演由非线性引起的修正刚度矩阵。如果考虑到材料的不确定性,非线性分析的计算将更加难以承受。为了提高计算效率,本研究基于柔性分解扰动(FDP)方法,开发了一种新的材料不确定性非线性分析方法。FDP 是一种可以快速计算刚度矩阵逆的算法。所提方法的基本思想是将 FDP 公式引入牛顿-拉夫逊迭代法,以加速非线性迭代计算。我们使用了三个数值实例(一个静定结构和两个静不定结构)来验证所提方法的准确性和效率。结果表明,建议方法的计算时间远远少于现有的完整分析和组合近似算法。在计算精度方面,对于静定结构,建议的算法可以获得与完整分析结果完全一致的精确解,而对于静不定结构,建议的算法可以获得与完整分析结果非常接近的近似解。
{"title":"Static analysis using flexibility disassembly perturbation for material nonlinear problem with uncertainty","authors":"X. Peng ,&nbsp;Q.W. Yang ,&nbsp;H.F. Cao","doi":"10.1016/j.ijnonlinmec.2024.104901","DOIUrl":"10.1016/j.ijnonlinmec.2024.104901","url":null,"abstract":"<div><p>Nonlinear finite element analysis of large-scale structures usually requires a lot of calculation cost, because it is necessary to repeatedly inverse the modified stiffness matrix caused by nonlinearity in the calculation process. When considering the uncertainty in materials, the calculation of the nonlinear analysis will be more unbearable. To improve the computational efficiency, this work develops a new method for nonlinear analysis with material uncertainty based on flexibility disassembly perturbation (FDP) approach. The FDP is an algorithm that can quickly calculate the inverse of a stiffness matrix. The basic idea of the proposed method is to introduce the FDP formula into Newton-Raphson iteration method to accelerate the nonlinear iterative calculation. Three numerical examples, one statically determinate structure and two statically indeterminate structures, are used to verify the accuracy and efficiency of the proposed method. The results show that the calculation time of the proposed method is far less than that of the existing complete analysis and combined approximation algorithms. In terms of computational accuracy, for statically determinate structures, the proposed algorithm can obtain exact solutions that are identical to the complete analysis results, while for statically indeterminate structures, the proposed algorithm can obtain approximate solutions that are very close to the complete analysis results.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104901"},"PeriodicalIF":2.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric identification of multi-degree-of-freedom nonlinear systems from partially measured responses under uncertain dynamic excitations 在不确定的动态激励下,根据部分测量响应对多自由度非线性系统进行非参数识别
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-10 DOI: 10.1016/j.ijnonlinmec.2024.104903
Ye Zhao , Bin Xu , Genda Chen

With the rapid advent of new materials and novel structures, it becomes difficult, if not impossible, to accurately model and simulate the nonlinear response of complex systems under uncertain dynamic excitations based on close-formed nonlinear functions and parametric identification. In this study, a two-step structural nonlinearity localization and identification approach for multi-degree-of-freedom (MDOF) nonlinear systems under uncertain dynamic excitations is developed by integrating an extended Kalman filter with unknown inputs into the equivalent linearized systems. In the first step, unmeasured responses and excitations are estimated as well as unknown structural parameters and nonlinearity locations are identified by fusing acceleration with displacement time histories at the observed degrees of freedom (DOFs). In the second step, the nonlinear restoring force of the detected nonlinear structural members is identified nonparametrically using three polynomial models, including a power series polynomial model (PSPM), a double Chebyshev polynomial model (DCPM), and a Legendre polynomial model (LPM). Linear multi-story shear frames controlled by nonlinear magnetorheological (MR) dampers are modelled computationally to demonstrate the generality of the proposed methodology. The multi-source uncertainties considered in these representative examples include the location and the type of nonlinearities represented by a Bingham model and a modified Dahl model of the dampers, the location of response measurements, the location and intensity of dynamic excitations, the level of measurement noise, and the initial assignment of structural parameters. The acceleration, velocity, and displacement time histories of structures can be evaluated accurately with a maximum error of 2.62% even with the presence of 8% measurement noise, while the external excitations can be estimated within an error of 1.77%. The location of nonlinear elements can be detected correctly. The structural parameters, the NRFs provided by MR dampers and the corresponding energy dissipation can be identified with a maximum error of 2.08%, 1.19% and 0.39%, respectively, even 8% measurement noise and very rough initial assignment of structure parameters (−70%) are considered. Moreover, the numerical results change little (<0.20%) even the initial assignment of structural parameters varies from 50% to 30% of their original values, no matter which nonparametric model is employed. Results indicate that the presented algorithm can effectively identify unmeasured dynamic responses, structural parameters, unknown excitations, nonlinear locations, and NRF of nonlinear elements in a nonparametric way.

随着新材料和新结构的快速出现,基于近似非线性函数和参数识别来精确建模和模拟复杂系统在不确定动态激励下的非线性响应变得十分困难,甚至是不可能。在本研究中,通过将带有未知输入的扩展卡尔曼滤波器集成到等效线性化系统中,开发了一种在不确定动态激励下多自由度(MDOF)非线性系统的两步结构非线性定位和识别方法。第一步,估算未测量的响应和激励,以及未知的结构参数,并通过融合加速度和观测自由度(DOF)的位移时间历程来确定非线性位置。第二步,使用三种多项式模型(包括幂级数多项式模型 (PSPM)、双切比雪夫多项式模型 (DCPM) 和勒让德多项式模型 (LPM))对检测到的非线性结构构件的非线性恢复力进行非参数识别。对由非线性磁流变(MR)阻尼器控制的线性多层剪力框架进行了计算建模,以证明所提方法的通用性。在这些具有代表性的例子中考虑的多源不确定性包括:由宾汉模型和改进的达尔模型所代表的阻尼器非线性的位置和类型、响应测量的位置、动态激励的位置和强度、测量噪声水平以及结构参数的初始分配。即使存在 8%的测量噪声,也能准确评估结构的加速度、速度和位移时间历程,最大误差为 2.62%,而外部激励的估计误差为 1.77%。非线性元素的位置可以正确检测。即使考虑 8%的测量噪声和非常粗糙的结构参数初始分配(-70%),结构参数、MR 阻尼器提供的 NRFs 和相应的能量耗散也能识别,最大误差分别为 2.08%、1.19% 和 0.39%。此外,无论采用哪种非参数模型,即使结构参数的初始分配从原始值的 50%到 30%不等,数值结果的变化也很小(<0.20%)。结果表明,所提出的算法能以非参数方式有效识别未测量的动态响应、结构参数、未知激励、非线性位置和非线性元素的 NRF。
{"title":"Nonparametric identification of multi-degree-of-freedom nonlinear systems from partially measured responses under uncertain dynamic excitations","authors":"Ye Zhao ,&nbsp;Bin Xu ,&nbsp;Genda Chen","doi":"10.1016/j.ijnonlinmec.2024.104903","DOIUrl":"10.1016/j.ijnonlinmec.2024.104903","url":null,"abstract":"<div><p>With the rapid advent of new materials and novel structures, it becomes difficult, if not impossible, to accurately model and simulate the nonlinear response of complex systems under uncertain dynamic excitations based on close-formed nonlinear functions and parametric identification. In this study, a two-step structural nonlinearity localization and identification approach for multi-degree-of-freedom (MDOF) nonlinear systems under uncertain dynamic excitations is developed by integrating an extended Kalman filter with unknown inputs into the equivalent linearized systems. In the first step, unmeasured responses and excitations are estimated as well as unknown structural parameters and nonlinearity locations are identified by fusing acceleration with displacement time histories at the observed degrees of freedom (DOFs). In the second step, the nonlinear restoring force of the detected nonlinear structural members is identified nonparametrically using three polynomial models, including a power series polynomial model (PSPM), a double Chebyshev polynomial model (DCPM), and a Legendre polynomial model (LPM). Linear multi-story shear frames controlled by nonlinear magnetorheological (MR) dampers are modelled computationally to demonstrate the generality of the proposed methodology. The multi-source uncertainties considered in these representative examples include the location and the type of nonlinearities represented by a Bingham model and a modified Dahl model of the dampers, the location of response measurements, the location and intensity of dynamic excitations, the level of measurement noise, and the initial assignment of structural parameters. The acceleration, velocity, and displacement time histories of structures can be evaluated accurately with a maximum error of 2.62% even with the presence of 8% measurement noise, while the external excitations can be estimated within an error of 1.77%. The location of nonlinear elements can be detected correctly. The structural parameters, the NRFs provided by MR dampers and the corresponding energy dissipation can be identified with a maximum error of 2.08%, 1.19% and 0.39%, respectively, even 8% measurement noise and very rough initial assignment of structure parameters (−70%) are considered. Moreover, the numerical results change little (&lt;0.20%) even the initial assignment of structural parameters varies from 50% to 30% of their original values, no matter which nonparametric model is employed. Results indicate that the presented algorithm can effectively identify unmeasured dynamic responses, structural parameters, unknown excitations, nonlinear locations, and NRF of nonlinear elements in a nonparametric way.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104903"},"PeriodicalIF":2.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-linear filtration model with splitting front 具有分裂前沿的非线性过滤模型
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-10 DOI: 10.1016/j.ijnonlinmec.2024.104905
Liudmila I. Kuzmina , Yuri V. Osipov , Artem R. Pesterev

We consider filtration of a suspension in a homogeneous porous medium which is described by a macroscopic 1-D model including the mass exchange equation and the kinetic equation for deposit growth. The standard model assumes that suspended particles move at the same speed as the carrier fluid. However, in some experiments, a lag between the front boundary of suspended particles and the front of the carrier fluid was observed. This article proposes a modification of the standard model that provides a description of the separation between the fluid front and the particle front. For this purpose, a non-smooth non-linear function depending on the concentration of the suspension is introduced into the deposit growth equation. In case of a non-smooth suspension function, the concentration of suspended particles at the front decreases to zero in a finite time. At this moment the united front splits into the front of pure injected water and the front of suspended and retained particles. The particle front moves slower than the pure water front. In case of a linear filtration function (Langmuir coefficient), an exact solution is constructed in a closed form. For the filtration problem with a suspension function in the form of a square root, explicit analytical formulae are obtained. In case of a non-smooth filtration function, the filtration time is finite. The curvilinear boundary separates the filtration domain, where concentrations increase with time, from the stabilization domain, where the concentrations of suspended and retained particles have reached their limits. The limit speeds of the stabilization border and of the particle front coincide.

我们考虑了均质多孔介质中悬浮液的过滤问题,该介质由宏观一维模型描述,包括质量交换方程和沉积物生长动力学方程。标准模型假定悬浮颗粒的运动速度与载流体相同。然而,在一些实验中,观察到悬浮颗粒的前边界与载流体的前边界之间存在滞后。本文建议对标准模型进行修改,以描述流体前沿与颗粒前沿之间的分离情况。为此,在沉积物生长方程中引入了一个与悬浮液浓度有关的非光滑非线性函数。在非平滑悬浮函数的情况下,前沿的悬浮颗粒浓度会在有限的时间内降至零。此时,联合前沿分裂为纯注入水前沿和悬浮颗粒及保留颗粒前沿。颗粒前沿的移动速度比纯水前沿慢。在线性过滤函数(朗缪尔系数)的情况下,可以用封闭形式构建精确解。对于悬浮函数为平方根形式的过滤问题,可以得到明确的解析公式。在过滤函数不光滑的情况下,过滤时间是有限的。曲线边界将浓度随时间增加的过滤域与悬浮颗粒和滞留颗粒浓度达到极限的稳定域分开。稳定边界和颗粒前沿的极限速度是重合的。
{"title":"Non-linear filtration model with splitting front","authors":"Liudmila I. Kuzmina ,&nbsp;Yuri V. Osipov ,&nbsp;Artem R. Pesterev","doi":"10.1016/j.ijnonlinmec.2024.104905","DOIUrl":"10.1016/j.ijnonlinmec.2024.104905","url":null,"abstract":"<div><p>We consider filtration of a suspension in a homogeneous porous medium which is described by a macroscopic 1-D model including the mass exchange equation and the kinetic equation for deposit growth. The standard model assumes that suspended particles move at the same speed as the carrier fluid. However, in some experiments, a lag between the front boundary of suspended particles and the front of the carrier fluid was observed. This article proposes a modification of the standard model that provides a description of the separation between the fluid front and the particle front. For this purpose, a non-smooth non-linear function depending on the concentration of the suspension is introduced into the deposit growth equation. In case of a non-smooth suspension function, the concentration of suspended particles at the front decreases to zero in a finite time. At this moment the united front splits into the front of pure injected water and the front of suspended and retained particles. The particle front moves slower than the pure water front. In case of a linear filtration function (Langmuir coefficient), an exact solution is constructed in a closed form. For the filtration problem with a suspension function in the form of a square root, explicit analytical formulae are obtained. In case of a non-smooth filtration function, the filtration time is finite. The curvilinear boundary separates the filtration domain, where concentrations increase with time, from the stabilization domain, where the concentrations of suspended and retained particles have reached their limits. The limit speeds of the stabilization border and of the particle front coincide.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104905"},"PeriodicalIF":2.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Koopman–Hill stability computation of periodic orbits in polynomial dynamical systems using a real-valued quadratic harmonic balance formulation 利用实值二次谐波平衡公式计算多项式动力系统周期轨道的库普曼-希尔稳定性
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-10 DOI: 10.1016/j.ijnonlinmec.2024.104894
Fabia Bayer , Remco I. Leine , Olivier Thomas , Aurélien Grolet

In this paper, we generalize the Koopman–Hill projection method, which was recently introduced for the numerical stability analysis of periodic solutions, to be included immediately in classical real-valued harmonic balance (HBM) formulations. We incorporate it into the Asymptotic Numerical Method (ANM) continuation framework, providing a numerically efficient stability analysis tool for frequency response curves obtained through HBM. The Hill matrix, which carries stability information and follows as a by-product of the HBM solution procedure, is often computationally challenging to analyze with traditional methods. To address this issue, we generalize the Koopman–Hill projection stability method, which extracts the monodromy matrix from the Hill matrix using a matrix exponential, from complex-valued to real-valued formulations. In addition, we propose a differential recast procedure, which makes this real-valued Hill matrix immediately available within the ANM continuation framework. Using as an example a nonlinear von Kármán beam, we demonstrate that these modifications improve computational efficiency in the stability analysis of frequency response curves.

在本文中,我们将最近为周期解的数值稳定性分析而引入的 Koopman-Hill 投影法推广到经典的实值谐波平衡 (HBM) 公式中。我们将其纳入渐近数值方法(ANM)延续框架,为通过 HBM 获得的频率响应曲线提供了一种高效的数值稳定性分析工具。希尔矩阵承载着稳定性信息,是 HBM 求解过程的副产品,用传统方法分析希尔矩阵往往具有计算上的挑战性。为了解决这个问题,我们将 Koopman-Hill 投影稳定性方法从复值公式推广到实值公式,该方法使用矩阵指数从希尔矩阵中提取单调矩阵。此外,我们还提出了一种差分重铸程序,使实值希尔矩阵在 ANM 延续框架内立即可用。以非线性 von Kármán 梁为例,我们证明了这些修改提高了频率响应曲线稳定性分析的计算效率。
{"title":"Koopman–Hill stability computation of periodic orbits in polynomial dynamical systems using a real-valued quadratic harmonic balance formulation","authors":"Fabia Bayer ,&nbsp;Remco I. Leine ,&nbsp;Olivier Thomas ,&nbsp;Aurélien Grolet","doi":"10.1016/j.ijnonlinmec.2024.104894","DOIUrl":"10.1016/j.ijnonlinmec.2024.104894","url":null,"abstract":"<div><p>In this paper, we generalize the Koopman–Hill projection method, which was recently introduced for the numerical stability analysis of periodic solutions, to be included immediately in classical real-valued harmonic balance (HBM) formulations. We incorporate it into the Asymptotic Numerical Method (ANM) continuation framework, providing a numerically efficient stability analysis tool for frequency response curves obtained through HBM. The Hill matrix, which carries stability information and follows as a by-product of the HBM solution procedure, is often computationally challenging to analyze with traditional methods. To address this issue, we generalize the Koopman–Hill projection stability method, which extracts the monodromy matrix from the Hill matrix using a matrix exponential, from complex-valued to real-valued formulations. In addition, we propose a differential recast procedure, which makes this real-valued Hill matrix immediately available within the ANM continuation framework. Using as an example a nonlinear von Kármán beam, we demonstrate that these modifications improve computational efficiency in the stability analysis of frequency response curves.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104894"},"PeriodicalIF":2.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020746224002592/pdfft?md5=cc371eb9d58aadca32cce4e7eedc4d4b&pid=1-s2.0-S0020746224002592-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prescribed performance control guaranteeing anti-lock braking for nonlinear uncertain electro-booster 保证非线性不确定电助力器防抱死制动的规定性能控制
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-06 DOI: 10.1016/j.ijnonlinmec.2024.104899
Bangji Zhang , Jiaojiao Liu , Liujie Li , Zheshuo Zhang

Control of electro-booster is crucial for vehicle safety. Traffic accidents occur due to unmanageable control errors in the electro-booster system and tire lock-up caused by excessive braking force. Achieving consistent prescribed performance and anti-lock braking presents a challenge due to the system nonlinearity and time-varying uncertainties. In this context, this study introduces a constrained prescribed performance control (CPPC) approach for the electro-booster. We formulate the prescribed performance and the anti-lock braking as constraints of control error and input, respectively. A diffeomorphism approach is proposed to establish a mapping between an unconstrained system and the electro-booster system with constraints. No linearization are invoked in the control design and no extra anti-braking system is needed. Experiments and simulations have demonstrated that the desired braking actions can be accurately executed under uncertainties, while guaranteeing both prescribed performance and anti-lock braking.

电动助力器的控制对车辆安全至关重要。交通事故的发生是由于电动助力器系统无法控制的控制误差和制动力过大导致的轮胎锁死。由于系统的非线性和时变不确定性,实现一致的规定性能和防抱死制动是一项挑战。在这种情况下,本研究为电动助力器引入了一种受约束的规定性能控制(CPPC)方法。我们将规定性能和防抱死制动分别表述为控制误差约束和输入约束。我们提出了一种差分同构方法,在无约束系统和有约束的电动助力器系统之间建立映射。控制设计中不需要线性化,也不需要额外的防抱死系统。实验和模拟证明,在不确定的情况下,可以准确执行所需的制动操作,同时保证规定的性能和防抱死制动。
{"title":"Prescribed performance control guaranteeing anti-lock braking for nonlinear uncertain electro-booster","authors":"Bangji Zhang ,&nbsp;Jiaojiao Liu ,&nbsp;Liujie Li ,&nbsp;Zheshuo Zhang","doi":"10.1016/j.ijnonlinmec.2024.104899","DOIUrl":"10.1016/j.ijnonlinmec.2024.104899","url":null,"abstract":"<div><p>Control of electro-booster is crucial for vehicle safety. Traffic accidents occur due to unmanageable control errors in the electro-booster system and tire lock-up caused by excessive braking force. Achieving consistent prescribed performance and anti-lock braking presents a challenge due to the system nonlinearity and time-varying uncertainties. In this context, this study introduces a constrained prescribed performance control (CPPC) approach for the electro-booster. We formulate the prescribed performance and the anti-lock braking as constraints of control error and input, respectively. A diffeomorphism approach is proposed to establish a mapping between an unconstrained system and the electro-booster system with constraints. No linearization are invoked in the control design and no extra anti-braking system is needed. Experiments and simulations have demonstrated that the desired braking actions can be accurately executed under uncertainties, while guaranteeing both prescribed performance and anti-lock braking.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104899"},"PeriodicalIF":2.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of relative phase of loose tie rods on nonlinear dynamic behavior of rod-fastening rotor-bearing-seal system 松动拉杆的相对相位对拉杆紧固转子轴承密封系统非线性动态行为的影响
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-09-03 DOI: 10.1016/j.ijnonlinmec.2024.104888
Xianglin Wu, Xiaohui Gu

Loosening of multiple tie rods in a circumferential rod-fastening rotor caused by thermal deformation and centrifugal loads is very common in engineering. The relative position of loose tie rods in the circumferential direction will also have an important impact on rotor dynamics. The relevant research has not been done yet. In this paper, a contact model of the rough machined surface is firstly established by combining the probability functions describing rough surfaces and fractal contact theory of asperities, then the contact stiffness model between disks is established based on the contact model. Finally, the dynamic model of the circumferential rod-fastening rotor-bearing-seal system is established and solved. The effect of relative phase of loose tie rods on the nonlinear dynamic characteristics of rod-fastening rotor-bearing-sealing system is studied. It can be concluded that relative phase of the loose tie rod has an important influence on the frequency, bifurcation, and periodic motion of the rotor system. At lower speed, the anisotropy of contact stiffness caused by loose tie rods has little effect on the rotor trajectory, while the generalized bending moment has a greater influence on dynamics of the system. At higher speed, the anisotropy of contact stiffness has a great influence on the axis rail of the rod-fastening rotor.

由热变形和离心载荷引起的圆周拉杆紧固转子中的多根拉杆松动在工程中非常常见。松动拉杆在圆周方向上的相对位置也会对转子动力学产生重要影响。相关研究尚未完成。本文首先结合描述粗糙表面的概率函数和分形接触理论,建立了粗糙加工表面的接触模型,然后根据接触模型建立了圆盘间的接触刚度模型。最后,建立并求解了圆周拉杆-紧固转子-轴承-密封系统的动态模型。研究了松动拉杆的相对相位对拉杆紧固转子-轴承密封系统非线性动态特性的影响。结果表明,松拉杆的相对相位对转子系统的频率、分岔和周期运动有重要影响。在较低转速下,松动拉杆引起的接触刚度各向异性对转子轨迹的影响很小,而广义弯矩对系统动力学的影响较大。在较高转速下,接触刚度的各向异性对拉杆固定转子的轴轨迹影响很大。
{"title":"Effect of relative phase of loose tie rods on nonlinear dynamic behavior of rod-fastening rotor-bearing-seal system","authors":"Xianglin Wu,&nbsp;Xiaohui Gu","doi":"10.1016/j.ijnonlinmec.2024.104888","DOIUrl":"10.1016/j.ijnonlinmec.2024.104888","url":null,"abstract":"<div><p>Loosening of multiple tie rods in a circumferential rod-fastening rotor caused by thermal deformation and centrifugal loads is very common in engineering. The relative position of loose tie rods in the circumferential direction will also have an important impact on rotor dynamics. The relevant research has not been done yet. In this paper, a contact model of the rough machined surface is firstly established by combining the probability functions describing rough surfaces and fractal contact theory of asperities, then the contact stiffness model between disks is established based on the contact model. Finally, the dynamic model of the circumferential rod-fastening rotor-bearing-seal system is established and solved. The effect of relative phase of loose tie rods on the nonlinear dynamic characteristics of rod-fastening rotor-bearing-sealing system is studied. It can be concluded that relative phase of the loose tie rod has an important influence on the frequency, bifurcation, and periodic motion of the rotor system. At lower speed, the anisotropy of contact stiffness caused by loose tie rods has little effect on the rotor trajectory, while the generalized bending moment has a greater influence on dynamics of the system. At higher speed, the anisotropy of contact stiffness has a great influence on the axis rail of the rod-fastening rotor.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104888"},"PeriodicalIF":2.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of micromorphic continuum based on a heterogeneous microscale 基于异质微尺度的微形态连续体建模
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-31 DOI: 10.1016/j.ijnonlinmec.2024.104881
Pamela D.N. Reges, Roque L.S. Pitangueira, Leandro L. Silva

Generalized continuum theories have emerged as a promising solution for the limitations of traditional continuum mechanics in fully describing the behavior of materials in which the influence of the microstructure is not negligible. The macroscopic response of quasi-brittle material, for example, is closely tied to its heterogeneous microstructure and the simplifying hypothesis of classical theory is insufficient to address all the phenomena involved. By incorporating a length scale associated to the microscale, generalized continua can handle localization issues in quasi-brittle materials represented as elastic-degrading media. An important drawback that greatly limits the applicability of such generalized models is the definition of the numerous elastic parameters. Taking into account the micromorphic theory, 18 constants are required for the description of an isotropic medium. In this paper, a numerical approach for determining the micromorphic constitutive relations, previously applied only for a homogeneous medium, is detailed based on the homogenization of a heterogeneous microscale. The microstructure formed by aggregates and matrix considered in the finer-scale is generated by the take-and-place algorithm and its behavior is described by a classical continuum. An analysis is here conducted in order to understand the effect of different characteristics of the finer-scale, as mesh, microcontinuum size, and heterogeneity distribution, on the resulting macroscopic micromorphic constitutive relations. Afterwards, a simulation is presented wherein the localization phenomenon is detected and a damage model specifically proposed for the micromorphic continuum is employed. This work could lead to models that are able to capture the microstructure influence, often disregarded when modeling quasi-brittle media, within the framework of generalized continuum theory, while also addressing the challenge of defining the elastic parameters.

传统连续介质力学在全面描述微观结构影响不容忽视的材料行为方面存在局限性,而广义连续介质理论则有望解决这一问题。例如,准脆性材料的宏观响应与其异质微观结构密切相关,而经典理论的简化假设不足以解决所有相关现象。通过加入与微观尺度相关的长度尺度,广义连续体可以处理以弹性降解介质表示的准脆性材料中的局部化问题。极大限制此类广义模型适用性的一个重要缺点是众多弹性参数的定义。考虑到微形态理论,描述各向同性介质需要 18 个常数。本文详细介绍了一种确定微形态构成关系的数值方法,该方法以前仅适用于均质介质,现在则基于异质微尺度的均质化。由聚集体和基质形成的微观结构在较细尺度下通过取放算法生成,其行为由经典连续体描述。本文进行了分析,以了解细尺度的不同特征(如网格、微连续尺寸和异质性分布)对所产生的宏观微观形态构成关系的影响。随后,介绍了一种模拟,其中检测了局部化现象,并采用了专门针对微观连续体提出的损伤模型。这项工作可以在广义连续介质理论的框架内建立能够捕捉微观结构影响的模型,而微观结构的影响在建立准脆性介质模型时往往被忽视,同时还能解决定义弹性参数的难题。
{"title":"Modeling of micromorphic continuum based on a heterogeneous microscale","authors":"Pamela D.N. Reges,&nbsp;Roque L.S. Pitangueira,&nbsp;Leandro L. Silva","doi":"10.1016/j.ijnonlinmec.2024.104881","DOIUrl":"10.1016/j.ijnonlinmec.2024.104881","url":null,"abstract":"<div><p>Generalized continuum theories have emerged as a promising solution for the limitations of traditional continuum mechanics in fully describing the behavior of materials in which the influence of the microstructure is not negligible. The macroscopic response of quasi-brittle material, for example, is closely tied to its heterogeneous microstructure and the simplifying hypothesis of classical theory is insufficient to address all the phenomena involved. By incorporating a length scale associated to the microscale, generalized continua can handle localization issues in quasi-brittle materials represented as elastic-degrading media. An important drawback that greatly limits the applicability of such generalized models is the definition of the numerous elastic parameters. Taking into account the micromorphic theory, 18 constants are required for the description of an isotropic medium. In this paper, a numerical approach for determining the micromorphic constitutive relations, previously applied only for a homogeneous medium, is detailed based on the homogenization of a heterogeneous microscale. The microstructure formed by aggregates and matrix considered in the finer-scale is generated by the take-and-place algorithm and its behavior is described by a classical continuum. An analysis is here conducted in order to understand the effect of different characteristics of the finer-scale, as mesh, microcontinuum size, and heterogeneity distribution, on the resulting macroscopic micromorphic constitutive relations. Afterwards, a simulation is presented wherein the localization phenomenon is detected and a damage model specifically proposed for the micromorphic continuum is employed. This work could lead to models that are able to capture the microstructure influence, often disregarded when modeling quasi-brittle media, within the framework of generalized continuum theory, while also addressing the challenge of defining the elastic parameters.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104881"},"PeriodicalIF":2.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indentation of a stiff membrane on an incompressible elastic halfspace 不可压缩弹性半空间上的硬膜压痕
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-31 DOI: 10.1016/j.ijnonlinmec.2024.104886
M. Ciavarella , J.R. Barber

Indentation of a very stiff membrane (like graphene) on an incompressible elastic material has been suggested as a method to measure the elastic modulus of the membrane, but so far the method is less explored than that based on indentation of a free-standing membrane clamped on the outer boundary, which relies on analytical solutions. However, we analyse the problem rigorously with an energy minimization in the Rayleigh sense with a one term approximation of the vertical displacement, and show that in the fully non-linear regime, the load F has a single term solution increasing as the power 5/3 of the indentation Δ. The solution is corrected only in the prefactor by extensive FEM investigation using a concentrated load resulting finally in F=1.45×4π384π1/3μs2/3Em1/3Δ5/3h1/3, where μs is the substrate shear modulus, h the membrane thickness, and Em its elastic modulus. We also find the effect of a finite membrane outer radius analytically, so that this method is also based entirely on analytical solutions. Comparison with experimental results seems very promising.

在不可压缩的弹性材料上对非常坚硬的膜(如石墨烯)进行压痕处理被认为是测量膜的弹性模量的一种方法,但到目前为止,这种方法的探索还不如对夹在外边界上的独立膜进行压痕处理的方法,因为后者依赖于分析解。不过,我们采用雷利意义上的能量最小化方法,以垂直位移的单项近似值对问题进行了严格分析,结果表明,在完全非线性状态下,载荷 F 的单项解随压痕 Δ 的 5/3 次方而增加。通过使用集中载荷进行广泛的有限元分析,仅对前因子进行修正,最终得出 F=1.45×4π384π1/3μs2/3Em1/3Δ5/3h1/3 的结果,其中 μs 为基体剪切模量,h 为薄膜厚度,Em 为弹性模量。我们还通过分析找到了有限膜外半径的影响,因此该方法也完全基于分析解法。与实验结果的比较似乎很有希望。
{"title":"Indentation of a stiff membrane on an incompressible elastic halfspace","authors":"M. Ciavarella ,&nbsp;J.R. Barber","doi":"10.1016/j.ijnonlinmec.2024.104886","DOIUrl":"10.1016/j.ijnonlinmec.2024.104886","url":null,"abstract":"<div><p>Indentation of a very stiff membrane (like graphene) on an incompressible elastic material has been suggested as a method to measure the elastic modulus of the membrane, but so far the method is less explored than that based on indentation of a free-standing membrane clamped on the outer boundary, which relies on analytical solutions. However, we analyse the problem rigorously with an energy minimization in the Rayleigh sense with a one term approximation of the vertical displacement, and show that in the fully non-linear regime, the load <span><math><mi>F</mi></math></span> has a single term solution increasing as the power 5/3 of the indentation <span><math><mi>Δ</mi></math></span>. The solution is corrected only in the prefactor by extensive FEM investigation using a concentrated load resulting finally in <span><math><mrow><mi>F</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>4</mn><mi>π</mi></mrow><mrow><msup><mrow><mfenced><mrow><mn>384</mn><mi>π</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></mfrac><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msubsup><msubsup><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msubsup><msup><mrow><mi>Δ</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>h</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is the substrate shear modulus, <span><math><mi>h</mi></math></span> the membrane thickness, and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> its elastic modulus. We also find the effect of a finite membrane outer radius analytically, so that this method is also based entirely on analytical solutions. Comparison with experimental results seems very promising.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104886"},"PeriodicalIF":2.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020746224002518/pdfft?md5=0a86cdb514503e261f5e104685d836f2&pid=1-s2.0-S0020746224002518-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear stability analysis of the viscoelastic Navier–Stokes–Voigt fluid model through Brinkman porous media: Modal and non-modal approaches 通过布林克曼多孔介质的粘弹性 Navier-Stokes-Voigt 流体模型的线性稳定性分析:模态和非模态方法
IF 2.8 3区 工程技术 Q2 MECHANICS Pub Date : 2024-08-30 DOI: 10.1016/j.ijnonlinmec.2024.104885
D.L. Shivaraj Kumar, M.S. Basavaraj, A.S. Aruna

The linear stability analysis of a viscoelastic Navier-Stokes-Voigt fluid flow, or the Kelvin-Voigt fluid of zero order in a Brinkman porous medium, is investigated using both modal and non-modal analysis. The numerical solution is obtained using the Chebyshev collocation method. The combined effects of the medium's porosity, represented by the porous parameter, the fluid viscosity, represented by the ratio of effective viscosity to fluid viscosity, and the fluid elasticity, represented by the Kelvin-Voigt parameter are investigated using both modal and non-modal analysis. The modal analysis describes the long-term behavior of the system, obtained through plotting the eigenspectrum, eigenfunctions, growth rate curves, neutral stability curves, and streamline plots, along with accurate values of critical triplets. In non-modal analysis, the pseudospectrum of the Orr-Sommerfeld operator, transient energy growth curves, and regions of stability, instability, and potential instability are depicted. The results obtained from modal analysis indicate that the porous parameter, Kelvin-Voigt parameter, and the ratio of effective viscosity to fluid viscosity act as stabilizing agents. However, using non-modal analysis, it is observed that while the porous parameter and the ratio of effective viscosity to fluid viscosity act as stabilizing agents, the Kelvin-Voigt parameter acts as a destabilizing agent over shorter periods.

通过模态和非模态分析,研究了布林克曼多孔介质中粘弹性纳维-斯托克斯-沃伊特流体或零阶开尔文-沃伊特流体流动的线性稳定性分析。数值求解采用切比雪夫配位法。采用模态和非模态分析方法研究了以多孔参数表示的介质孔隙率、以有效粘度与流体粘度之比表示的流体粘度以及以开尔文-沃依格参数表示的流体弹性的综合影响。模态分析描述了系统的长期行为,通过绘制特征谱、特征函数、增长率曲线、中性稳定性曲线和流线图,以及临界三元组的精确值获得。在非模态分析中,描绘了 Orr-Sommerfeld 算子的伪谱、瞬态能量增长曲线以及稳定、不稳定和潜在不稳定区域。模态分析得出的结果表明,多孔参数、开尔文-沃伊特参数以及有效粘度与流体粘度之比起到了稳定作用。然而,通过非模态分析可以发现,虽然多孔参数和有效粘度与流体粘度之比起到了稳定作用,但开尔文-沃依格参数在较短时间内起到了破坏稳定的作用。
{"title":"Linear stability analysis of the viscoelastic Navier–Stokes–Voigt fluid model through Brinkman porous media: Modal and non-modal approaches","authors":"D.L. Shivaraj Kumar,&nbsp;M.S. Basavaraj,&nbsp;A.S. Aruna","doi":"10.1016/j.ijnonlinmec.2024.104885","DOIUrl":"10.1016/j.ijnonlinmec.2024.104885","url":null,"abstract":"<div><p>The linear stability analysis of a viscoelastic Navier-Stokes-Voigt fluid flow, or the Kelvin-Voigt fluid of zero order in a Brinkman porous medium, is investigated using both modal and non-modal analysis. The numerical solution is obtained using the Chebyshev collocation method. The combined effects of the medium's porosity, represented by the porous parameter, the fluid viscosity, represented by the ratio of effective viscosity to fluid viscosity, and the fluid elasticity, represented by the Kelvin-Voigt parameter are investigated using both modal and non-modal analysis. The modal analysis describes the long-term behavior of the system, obtained through plotting the eigenspectrum, eigenfunctions, growth rate curves, neutral stability curves, and streamline plots, along with accurate values of critical triplets. In non-modal analysis, the pseudospectrum of the Orr-Sommerfeld operator, transient energy growth curves, and regions of stability, instability, and potential instability are depicted. The results obtained from modal analysis indicate that the porous parameter, Kelvin-Voigt parameter, and the ratio of effective viscosity to fluid viscosity act as stabilizing agents. However, using non-modal analysis, it is observed that while the porous parameter and the ratio of effective viscosity to fluid viscosity act as stabilizing agents, the Kelvin-Voigt parameter acts as a destabilizing agent over shorter periods.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104885"},"PeriodicalIF":2.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Non-Linear Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1