A modified generalized harmonic function perturbation method is proposed in this paper. Compared with the classical version of this method, the modified version can execute its procedures pure symbolically without the need to assign any system parameters even for some complicated nonlinear oscillators. This means that the relations between amplitude of limit cycles and system parameters can be derived analytically from the proposed method. Meanwhile, the analytical expression of characteristic quantity of limit cycles can be also obtained. Via these analytical expressions, the evolutional process of limit cycles can be studied quantitatively in amplitude domain. It demonstrates the entire live period of each limit cycle from its generation to bifurcation to destination. To show the feasibility of the proposed method, a complicated oscillator named generalized Duffing–Harmonic–Rayleigh–Liénard oscillator is investigated in this paper. First, the two analytical expressions mentioned above are derived and the global evolution of its limit cycles are analyzed quantitatively. Second, the critical value of homoclinic and heteroclinic bifurcation parameters are also predicted via this two analytical expressions. Moreover, the analytical approximate solutions of both limit cycles and homo-heteroclinic orbits are calculated. To prove the accuracy, all the above results obtained via the proposed methods are confirmed by the Runge–Kutta method, which show a good accordance. Therefore, the proposed method can be considered as an effective modification for a classical perturbation method. It provides another feasible and reliable analytical quantitative method for analyzing global dynamics of strongly nonlinear oscillators.