Abstract To estimate or test the treatment effect in randomized clinical trials, it is important to adjust for the potential influence of covariates that are likely to affect the association between the treatment or control group and the response. If these covariates are known at the start of the trial, random assignment of the treatment within each stratum would be considered. On the other hand, if these covariates are not clear at the start of the trial, or if it is difficult to allocate the treatment within each stratum, completely randomized assignment of the treatment would be performed. In both sampling structures, the use of a stratified adjusted test is a useful way to evaluate the significance of the overall treatment effect by reducing the variance and/or bias of the result. If the trial has a binary endpoint, the Cochran and Mantel-Haenszel tests are generally used. These tests are constructed based on the assumption that the number of patients within a stratum is fixed. However, in practice, the stratum sizes are not fixed at the start of the trial in many situations, and are instead allowed to vary. Therefore, there is a risk that using these tests under such situations would result in an error in the estimated variation of the test statistics. To handle the problem, we propose new test statistics under both sampling structures based on multinomial distributions. Our proposed approach is based on the Cochran test, and the difference between the two tests tends to have similar values in the case of a large number of patients. When the total number of patients is small, our approach yields a more conservative result. Through simulation studies, we show that the new approach could correctly maintain the type I error better than the traditional approach.
{"title":"On Stratified Adjusted Tests by Binomial Trials","authors":"Asanao Shimokawa, E. Miyaoka","doi":"10.1515/ijb-2016-0047","DOIUrl":"https://doi.org/10.1515/ijb-2016-0047","url":null,"abstract":"Abstract To estimate or test the treatment effect in randomized clinical trials, it is important to adjust for the potential influence of covariates that are likely to affect the association between the treatment or control group and the response. If these covariates are known at the start of the trial, random assignment of the treatment within each stratum would be considered. On the other hand, if these covariates are not clear at the start of the trial, or if it is difficult to allocate the treatment within each stratum, completely randomized assignment of the treatment would be performed. In both sampling structures, the use of a stratified adjusted test is a useful way to evaluate the significance of the overall treatment effect by reducing the variance and/or bias of the result. If the trial has a binary endpoint, the Cochran and Mantel-Haenszel tests are generally used. These tests are constructed based on the assumption that the number of patients within a stratum is fixed. However, in practice, the stratum sizes are not fixed at the start of the trial in many situations, and are instead allowed to vary. Therefore, there is a risk that using these tests under such situations would result in an error in the estimated variation of the test statistics. To handle the problem, we propose new test statistics under both sampling structures based on multinomial distributions. Our proposed approach is based on the Cochran test, and the difference between the two tests tends to have similar values in the case of a large number of patients. When the total number of patients is small, our approach yields a more conservative result. Through simulation studies, we show that the new approach could correctly maintain the type I error better than the traditional approach.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2017-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44587325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The generalized odds ratio (GOR) for paired sample is considered to measure the relative treatment effect on patient responses in ordinal data. Under a three-treatment two-period incomplete block crossover design, both asymptotic and exact procedures are developed for testing equality between treatments with ordinal responses. Monte Carlo simulation is employed to evaluate and compare the finite-sample performance of these test procedures. A discussion on advantages and disadvantages of the proposed test procedures based on the GOR versus those based on Wald’s tests under the normal random effects proportional odds model is provided. The data taken as a part of a crossover trial studying the effects of low and high doses of an analgesic versus a placebo for the relief of pain in primary dysmenorrhea over the first two periods are applied to illustrate the use of these test procedures.
{"title":"Testing Equality of Treatments under an Incomplete Block Crossover Design with Ordinal Responses","authors":"K. Lui","doi":"10.1515/ijb-2016-0069","DOIUrl":"https://doi.org/10.1515/ijb-2016-0069","url":null,"abstract":"Abstract The generalized odds ratio (GOR) for paired sample is considered to measure the relative treatment effect on patient responses in ordinal data. Under a three-treatment two-period incomplete block crossover design, both asymptotic and exact procedures are developed for testing equality between treatments with ordinal responses. Monte Carlo simulation is employed to evaluate and compare the finite-sample performance of these test procedures. A discussion on advantages and disadvantages of the proposed test procedures based on the GOR versus those based on Wald’s tests under the normal random effects proportional odds model is provided. The data taken as a part of a crossover trial studying the effects of low and high doses of an analgesic versus a placebo for the relief of pain in primary dysmenorrhea over the first two periods are applied to illustrate the use of these test procedures.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2017-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44878724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Asafu-Adjei, M. Tadesse, B. Coull, R. Balasubramanian, M. Lev, L. Schwamm, R. Betensky
Abstract Matched case-control designs are currently used in many biomedical applications. To ensure high efficiency and statistical power in identifying features that best discriminate cases from controls, it is important to account for the use of matched designs. However, in the setting of high dimensional data, few variable selection methods account for matching. Bayesian approaches to variable selection have several advantages, including the fact that such approaches visit a wider range of model subsets. In this paper, we propose a variable selection method to account for case-control matching in a Bayesian context and apply it using simulation studies, a matched brain imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular biomarker study conducted by the High Risk Plaque Initiative.
{"title":"Bayesian Variable Selection Methods for Matched Case-Control Studies","authors":"J. Asafu-Adjei, M. Tadesse, B. Coull, R. Balasubramanian, M. Lev, L. Schwamm, R. Betensky","doi":"10.1515/ijb-2016-0043","DOIUrl":"https://doi.org/10.1515/ijb-2016-0043","url":null,"abstract":"Abstract Matched case-control designs are currently used in many biomedical applications. To ensure high efficiency and statistical power in identifying features that best discriminate cases from controls, it is important to account for the use of matched designs. However, in the setting of high dimensional data, few variable selection methods account for matching. Bayesian approaches to variable selection have several advantages, including the fact that such approaches visit a wider range of model subsets. In this paper, we propose a variable selection method to account for case-control matching in a Bayesian context and apply it using simulation studies, a matched brain imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular biomarker study conducted by the High Risk Plaque Initiative.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46449881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqi Chen, Wensheng Guo, P. Kotanko, L. Usvyat, Yuedong Wang
Abstract: Modeling hospitalization is complicated because the follow-up time can be censored due to death. In this paper, we propose a shared frailty joint model for survival time and hospitalization. A random effect semi-parametric proportional hazard model is assumed for the survival time and conditional on the follow-up time, hospital admissions or total length of stay is modeled by a generalized linear model with a nonparametric offset function of the follow-up time. We assume that the hospitalization and the survival time are correlated through a latent subject-specific random frailty. The proposed model can be implemented using existing software such as SAS Proc NLMIXED. We demonstrate the feasibility through simulations. We apply our methods to study hospital admissions and total length of stay in a cohort of patients on hemodialysis. We identify age, albumin, neutrophil to lymphocyte ratio (NLR) and vintage as significant risk factors for mortality, and age, gender, race, albumin, NLR, pre-dialysis systolic blood pressure (preSBP), interdialytic weight gain (IDWG) and equilibrated Kt/V (eKt/V) as significant risk factors for both hospital admissions and total length of stay. In addition, hospitalization admissions is positively associated with vintage.
{"title":"Joint Model for Mortality and Hospitalization","authors":"Yuqi Chen, Wensheng Guo, P. Kotanko, L. Usvyat, Yuedong Wang","doi":"10.1515/ijb-2016-0002","DOIUrl":"https://doi.org/10.1515/ijb-2016-0002","url":null,"abstract":"Abstract: Modeling hospitalization is complicated because the follow-up time can be censored due to death. In this paper, we propose a shared frailty joint model for survival time and hospitalization. A random effect semi-parametric proportional hazard model is assumed for the survival time and conditional on the follow-up time, hospital admissions or total length of stay is modeled by a generalized linear model with a nonparametric offset function of the follow-up time. We assume that the hospitalization and the survival time are correlated through a latent subject-specific random frailty. The proposed model can be implemented using existing software such as SAS Proc NLMIXED. We demonstrate the feasibility through simulations. We apply our methods to study hospital admissions and total length of stay in a cohort of patients on hemodialysis. We identify age, albumin, neutrophil to lymphocyte ratio (NLR) and vintage as significant risk factors for mortality, and age, gender, race, albumin, NLR, pre-dialysis systolic blood pressure (preSBP), interdialytic weight gain (IDWG) and equilibrated Kt/V (eKt/V) as significant risk factors for both hospital admissions and total length of stay. In addition, hospitalization admissions is positively associated with vintage.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66988069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Besides being mainly used for analyzing clustered or longitudinal data, generalized linear mixed models can also be used for smoothing via restricting changes in the fit at the knots in regression splines. The resulting models are usually called semiparametric mixed models (SPMMs). We investigate the effect of smoothing using SPMMs on the correlation and variance parameter estimates for serially correlated longitudinal normal, Poisson and binary data. Through simulations, we compare the performance of SPMMs to other simpler methods for estimating the nonlinear association such as fractional polynomials, and using a parametric nonlinear function. Simulation results suggest that, in general, the SPMMs recover the true curves very well and yield reasonable estimates of the correlation and variance parameters. However, for binary outcomes, SPMMs produce biased estimates of the variance parameters for high serially correlated data. We apply these methods to a dataset investigating the association between CD4 cell count and time since seroconversion for HIV infected men enrolled in the Multicenter AIDS Cohort Study.
{"title":"Effect of Smoothing in Generalized Linear Mixed Models on the Estimation of Covariance Parameters for Longitudinal Data","authors":"M. Mullah, A. Benedetti","doi":"10.1515/ijb-2015-0026","DOIUrl":"https://doi.org/10.1515/ijb-2015-0026","url":null,"abstract":"Abstract Besides being mainly used for analyzing clustered or longitudinal data, generalized linear mixed models can also be used for smoothing via restricting changes in the fit at the knots in regression splines. The resulting models are usually called semiparametric mixed models (SPMMs). We investigate the effect of smoothing using SPMMs on the correlation and variance parameter estimates for serially correlated longitudinal normal, Poisson and binary data. Through simulations, we compare the performance of SPMMs to other simpler methods for estimating the nonlinear association such as fractional polynomials, and using a parametric nonlinear function. Simulation results suggest that, in general, the SPMMs recover the true curves very well and yield reasonable estimates of the correlation and variance parameters. However, for binary outcomes, SPMMs produce biased estimates of the variance parameters for high serially correlated data. We apply these methods to a dataset investigating the association between CD4 cell count and time since seroconversion for HIV infected men enrolled in the Multicenter AIDS Cohort Study.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"59 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We present an integer-valued ARCH model which can be used for modeling time series of counts with under-, equi-, or overdispersion. The introduced model has a conditional binomial distribution, and it is shown to be strictly stationary and ergodic. The unknown parameters are estimated by three methods: conditional maximum likelihood, conditional least squares and maximum likelihood type penalty function estimation. The asymptotic distributions of the estimators are derived. A real application of the novel model to epidemic surveillance is briefly discussed. Finally, a generalization of the introduced model is considered by introducing an integer-valued GARCH model.
{"title":"A Binomial Integer-Valued ARCH Model","authors":"M. Ristić, C. Weiß, Ana D Janjić","doi":"10.1515/ijb-2015-0051","DOIUrl":"https://doi.org/10.1515/ijb-2015-0051","url":null,"abstract":"Abstract We present an integer-valued ARCH model which can be used for modeling time series of counts with under-, equi-, or overdispersion. The introduced model has a conditional binomial distribution, and it is shown to be strictly stationary and ergodic. The unknown parameters are estimated by three methods: conditional maximum likelihood, conditional least squares and maximum likelihood type penalty function estimation. The asymptotic distributions of the estimators are derived. A real application of the novel model to epidemic surveillance is briefly discussed. Finally, a generalization of the introduced model is considered by introducing an integer-valued GARCH model.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In randomized clinical trials, we often encounter ordinal categorical responses with repeated measurements. We propose a model-free approach with using the generalized odds ratio (GOR) to measure the relative treatment effect. We develop procedures for testing equality of treatment effects and derive interval estimators for the GOR. We further develop a simple procedure for testing the treatment-by-period interaction. To illustrate the use of test procedures and interval estimators developed here, we consider two real-life data sets, one studying the gender effect on pain scores on an ordinal scale after hip joint resurfacing surgeries, and the other investigating the effect of an active hypnotic drug in insomnia patients on ordinal categories of time to falling asleep.
{"title":"Testing Equality in Ordinal Data with Repeated Measurements: A Model-Free Approach","authors":"K. Lui","doi":"10.1515/ijb-2015-0075","DOIUrl":"https://doi.org/10.1515/ijb-2015-0075","url":null,"abstract":"Abstract In randomized clinical trials, we often encounter ordinal categorical responses with repeated measurements. We propose a model-free approach with using the generalized odds ratio (GOR) to measure the relative treatment effect. We develop procedures for testing equality of treatment effects and derive interval estimators for the GOR. We further develop a simple procedure for testing the treatment-by-period interaction. To illustrate the use of test procedures and interval estimators developed here, we consider two real-life data sets, one studying the gender effect on pain scores on an ordinal scale after hip joint resurfacing surgeries, and the other investigating the effect of an active hypnotic drug in insomnia patients on ordinal categories of time to falling asleep.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66988065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Interval estimation of the proportion parameter in the analysis of binary outcome data arising in cluster studies is often an important problem in many biomedical applications. In this paper, we propose two approaches based on the profile likelihood and Wilson score. We compare them with two existing methods recommended for complex survey data and some other methods that are simple extensions of well-known methods such as the likelihood, the generalized estimating equation of Zeger and Liang and the ratio estimator approach of Rao and Scott. An extensive simulation study is conducted for a variety of parameter combinations for the purposes of evaluating and comparing the performance of these methods in terms of coverage and expected lengths. Applications to biomedical data are used to illustrate the proposed methods.
{"title":"A Comparison of Some Approximate Confidence Intervals for a Single Proportion for Clustered Binary Outcome Data","authors":"Krishna K. Saha, Daniel Miller, Suojin Wang","doi":"10.1515/ijb-2015-0024","DOIUrl":"https://doi.org/10.1515/ijb-2015-0024","url":null,"abstract":"Abstract Interval estimation of the proportion parameter in the analysis of binary outcome data arising in cluster studies is often an important problem in many biomedical applications. In this paper, we propose two approaches based on the profile likelihood and Wilson score. We compare them with two existing methods recommended for complex survey data and some other methods that are simple extensions of well-known methods such as the likelihood, the generalized estimating equation of Zeger and Liang and the ratio estimator approach of Rao and Scott. An extensive simulation study is conducted for a variety of parameter combinations for the purposes of evaluating and comparing the performance of these methods in terms of coverage and expected lengths. Applications to biomedical data are used to illustrate the proposed methods.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"37 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Schatzkin et al. and other authors demonstrated that the ratios of some conditional statistics such as the true positive fraction are equal to the ratios of unconditional statistics, such as disease detection rates, and therefore we can calculate these ratios between two screening tests on the same population even if negative test patients are not followed with a reference procedure and the true and false negative rates are unknown. We demonstrate that this same property applies to an expected utility metric. We also demonstrate that while simple estimates of relative specificities and relative areas under ROC curves (AUC) do depend on the unknown negative rates, we can write these ratios in terms of disease prevalence, and the dependence of these ratios on a posited prevalence is often weak particularly if that prevalence is small or the performance of the two screening tests is similar. Therefore we can estimate relative specificity or AUC with little loss of accuracy, if we use an approximate value of disease prevalence.
{"title":"Using Relative Statistics and Approximate Disease Prevalence to Compare Screening Tests","authors":"Samuel Frank, Abigail Craig","doi":"10.1515/IJB-2016-0017","DOIUrl":"https://doi.org/10.1515/IJB-2016-0017","url":null,"abstract":"Schatzkin et al. and other authors demonstrated that the ratios of some conditional statistics such as the true positive fraction are equal to the ratios of unconditional statistics, such as disease detection rates, and therefore we can calculate these ratios between two screening tests on the same population even if negative test patients are not followed with a reference procedure and the true and false negative rates are unknown. We demonstrate that this same property applies to an expected utility metric. We also demonstrate that while simple estimates of relative specificities and relative areas under ROC curves (AUC) do depend on the unknown negative rates, we can write these ratios in terms of disease prevalence, and the dependence of these ratios on a posited prevalence is often weak particularly if that prevalence is small or the performance of the two screening tests is similar. Therefore we can estimate relative specificity or AUC with little loss of accuracy, if we use an approximate value of disease prevalence.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"1-9"},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/IJB-2016-0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66988126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract: The Bland–Altman method has been widely used for assessing agreement between two methods of measurement. However, it remains unsolved about sample size estimation. We propose a new method of sample size estimation for Bland–Altman agreement assessment. According to the Bland–Altman method, the conclusion on agreement is made based on the width of the confidence interval for LOAs (limits of agreement) in comparison to predefined clinical agreement limit. Under the theory of statistical inference, the formulae of sample size estimation are derived, which depended on the pre-determined level of α, β, the mean and the standard deviation of differences between two measurements, and the predefined limits. With this new method, the sample sizes are calculated under different parameter settings which occur frequently in method comparison studies, and Monte-Carlo simulation is used to obtain the corresponding powers. The results of Monte-Carlo simulation showed that the achieved powers could coincide with the pre-determined level of powers, thus validating the correctness of the method. The method of sample size estimation can be applied in the Bland–Altman method to assess agreement between two methods of measurement.
{"title":"Sample Size for Assessing Agreement between Two Methods of Measurement by Bland−Altman Method","authors":"Mengfei Lu, Weihua Zhong, Yu-xiu Liu, Hua-zhang Miao, Yong-Chang Li, Mu-Huo Ji","doi":"10.1515/ijb-2015-0039","DOIUrl":"https://doi.org/10.1515/ijb-2015-0039","url":null,"abstract":"Abstract: The Bland–Altman method has been widely used for assessing agreement between two methods of measurement. However, it remains unsolved about sample size estimation. We propose a new method of sample size estimation for Bland–Altman agreement assessment. According to the Bland–Altman method, the conclusion on agreement is made based on the width of the confidence interval for LOAs (limits of agreement) in comparison to predefined clinical agreement limit. Under the theory of statistical inference, the formulae of sample size estimation are derived, which depended on the pre-determined level of α, β, the mean and the standard deviation of differences between two measurements, and the predefined limits. With this new method, the sample sizes are calculated under different parameter settings which occur frequently in method comparison studies, and Monte-Carlo simulation is used to obtain the corresponding powers. The results of Monte-Carlo simulation showed that the achieved powers could coincide with the pre-determined level of powers, thus validating the correctness of the method. The method of sample size estimation can be applied in the Bland–Altman method to assess agreement between two methods of measurement.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66987760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}