Technological advances in industry have made it possible to install many connected sensors, generating a great amount of observations at high rate. The advent of Industry 4.0 requires analysis capabilities of heterogeneous data in form of related multivariate time series. However, missing data can degrade processing and lead to bias and misunderstandings or even wrong decision-making. In this paper, a recurrent neural network-based denoising autoencoder is proposed for gap imputation in related multivariate time series, i.e., series that exhibit spatio-temporal correlations. The denoising autoencoder (DAE) is able to reproduce input missing data by learning to remove intentionally added gaps, while the recurrent neural network (RNN) captures temporal patterns and relationships among variables. For that reason, different unidirectional (simple RNN, GRU, LSTM) and bidirectional (BiSRNN, BiGRU, BiLSTM) architectures are compared with each other and to state-of-the-art methods using three different datasets in the experiments. The implementation with BiGRU layers outperforms the others, effectively filling gaps with a low reconstruction error. The use of this approach is appropriate for complex scenarios where several variables contain long gaps. However, extreme scenarios with very short gaps in one variable or no available data should be avoided.
In this paper, we propose a new method of representing images using highly compressed features for classification and image content retrieval – called PCA-ResFeats. They are obtained by fusing high- and low-level features from the outputs of ResNet-50 residual blocks and applying to them principal component analysis, which leads to a significant reduction in dimensionality. Further on, by applying a floating-point compression, we are able to reduce the memory required to store a single image by up to 1,200 times compared to jpg images and 220 times compared to features obtained by simple output fusion of ResNet-50. As a result, the representation of a single image from the dataset can be as low as 35 bytes on average. In comparison with the classification results on features from fusion of the last ResNet-50 residual block, we achieve a comparable accuracy (no worse than five percentage points), while preserving two orders of magnitude data compression. We also tested our method in the content-based image retrieval task, achieving better results than other known methods using sparse features. Moreover, our method enables the creation of concise summaries of image content, which can find numerous applications in databases.
The development of smart homes, equipped with devices connected to the Internet of Things (IoT), has opened up new possibilities to monitor and control energy consumption. In this context, non-intrusive load monitoring (NILM) techniques have emerged as a promising solution for the disaggregation of total energy consumption into the consumption of individual appliances. The classification of electrical appliances in a smart home remains a challenging task for machine learning algorithms. In the present study, we propose comparing and evaluating the performance of two different algorithms, namely Multi-Label K-Nearest Neighbors (MLkNN) and Convolutional Neural Networks (CNN), for NILM in two different scenarios: without and with data augmentation (DAUG). Our results show how the classification results can be better interpreted by generating a scalogram image from the power consumption signal data and processing it with CNNs. The results indicate that the CNN model with the proposed data augmentation performed significantly higher, obtaining a mean F1-score of 0.484 (an improvement of