The emerging multi-access edge computing (MEC) technology effectively enhances the wireless streaming performance of 360-degree videos. By connecting a user's head-mounted device (HMD) to a smart MEC platform, the edge server (ES) can efficiently perform adaptive tile-based video streaming to improve the user's viewing experience. Under constrained wireless channel capacity, the ES can predict the user's field of view (FoV) and transmit to the HMD high-resolution video tiles only within the predicted FoV. In practice, the video streaming performance is challenged by the random FoV prediction error and wireless channel fading effects. For this, we propose in this paper a novel two-stage adaptive 360-degree video streaming scheme that maximizes the user's quality of experience (QoE) to attain stable and high-resolution video playback. Specifically, we divide the video file into groups of pictures (GOPs) of fixed playback interval, where each GOP consists of a number of video frames. At the beginning of each GOP (i.e., the inter-GOP stage), the ES predicts the FoV of the next GOP and allocates an encoding bitrate for transmitting (precaching) the video tiles within the predicted FoV. Then, during the real-time video playback of the current GOP (i.e., the intra-GOP stage), the ES observes the user's true FoV of each frame and transmits the missing tiles to compensate for the FoV prediction errors. To maximize the user's QoE under random variations of FoV and wireless channel, we propose a double-agent deep reinforcement learning framework, where the two agents operate in different time scales to decide the bitrates of inter- and intra-GOP stages, respectively. Experiments based on real-world measurements show that the proposed scheme can effectively mitigate FoV prediction errors and maintain stable QoE performance under different scenarios, achieving over 22.1% higher QoE than some representative benchmark methods.
{"title":"A Two-Stage Deep Reinforcement Learning Framework for MEC-Enabled Adaptive 360-Degree Video Streaming","authors":"Suzhi Bi;Haoguo Chen;Xian Li;Shuoyao Wang;Yuan Wu;Liping Qian","doi":"10.1109/TMC.2024.3443200","DOIUrl":"https://doi.org/10.1109/TMC.2024.3443200","url":null,"abstract":"The emerging multi-access edge computing (MEC) technology effectively enhances the wireless streaming performance of 360-degree videos. By connecting a user's head-mounted device (HMD) to a smart MEC platform, the edge server (ES) can efficiently perform adaptive tile-based video streaming to improve the user's viewing experience. Under constrained wireless channel capacity, the ES can predict the user's field of view (FoV) and transmit to the HMD high-resolution video tiles only within the predicted FoV. In practice, the video streaming performance is challenged by the random FoV prediction error and wireless channel fading effects. For this, we propose in this paper a novel two-stage adaptive 360-degree video streaming scheme that maximizes the user's quality of experience (QoE) to attain stable and high-resolution video playback. Specifically, we divide the video file into groups of pictures (GOPs) of fixed playback interval, where each GOP consists of a number of video frames. At the beginning of each GOP (i.e., the inter-GOP stage), the ES predicts the FoV of the next GOP and allocates an encoding bitrate for transmitting (precaching) the video tiles within the predicted FoV. Then, during the real-time video playback of the current GOP (i.e., the intra-GOP stage), the ES observes the user's true FoV of each frame and transmits the missing tiles to compensate for the FoV prediction errors. To maximize the user's QoE under random variations of FoV and wireless channel, we propose a double-agent deep reinforcement learning framework, where the two agents operate in different time scales to decide the bitrates of inter- and intra-GOP stages, respectively. Experiments based on real-world measurements show that the proposed scheme can effectively mitigate FoV prediction errors and maintain stable QoE performance under different scenarios, achieving over 22.1% higher QoE than some representative benchmark methods.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1109/TMC.2024.3442809
Longji Zhang;Kwan-Wu Chin
This paper studies virtual network function (VNF) scheduling in energy harvesting virtualized Internet of Things (IoT) networks. Unlike prior works, sensor devices leverage imprecise computation to vary their computational workload to conserve energy at the expense of computation quality. In this respect, an optimization problem of interest is to maximize the minimum VNF computation/execution quality. To this end, this paper presents the first mixed integer linear program (MILP) that optimizes i) the VNFs executed by each sensor device, ii) the computational resources allocated to VNFs, iii) sampling rate or amount of data supplied by sensor devices to VNFs, iv) the routing of samples to VNFs and forwarding of computation results, and v) link scheduling. In addition, this paper also proposes a heuristic, called sampling control and computation scheduling (SCACS), for large-scale networks. The simulation results show that SCACS reaches 81.66% of the optimal quality. In addition, the application completion rate when using SCACS is at most 39% higher than a benchmark that randomly selects nodes to sample targets and execute VNFs.
{"title":"VNF Scheduling and Sampling Rate Maximization in Energy Harvesting IoT Networks","authors":"Longji Zhang;Kwan-Wu Chin","doi":"10.1109/TMC.2024.3442809","DOIUrl":"https://doi.org/10.1109/TMC.2024.3442809","url":null,"abstract":"This paper studies virtual network function (VNF) scheduling in energy harvesting virtualized Internet of Things (IoT) networks. Unlike prior works, sensor devices leverage imprecise computation to vary their computational workload to conserve energy at the expense of computation quality. In this respect, an optimization problem of interest is to maximize the minimum VNF computation/execution quality. To this end, this paper presents the first mixed integer linear program (MILP) that optimizes i) the VNFs executed by each sensor device, ii) the computational resources allocated to VNFs, iii) sampling rate or amount of data supplied by sensor devices to VNFs, iv) the routing of samples to VNFs and forwarding of computation results, and v) link scheduling. In addition, this paper also proposes a heuristic, called sampling control and computation scheduling (SCACS), for large-scale networks. The simulation results show that SCACS reaches 81.66% of the optimal quality. In addition, the application completion rate when using SCACS is at most 39% higher than a benchmark that randomly selects nodes to sample targets and execute VNFs.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1109/TMC.2024.3442933
Ningbin Yang;Chunming Tang;Tianqi Zong;Zhikang Zeng;Zehui Xiong;Debiao He
Vehicular ad hoc networks (VANETs) establish wireless connections among all vehicles, enabling seamless mobile communication. However, existing conditional privacy protection VANETs authentication schemes fail to address the issue of potential key-exposure and do not provide accelerated vehicle authentication. In this paper, we propose a reputation incentive committee-based secure conditional dual authentication scheme for VANETs called RIC-SDA. Our proposed scheme incorporates dual authentication of the consensus committee and vehicle-to-vehicle (V2V) communication. It enables the rapid provision of dynamic vehicle epoch-key from consensus committee authentication for V2V authentication through our designed reputation incentive mechanism. To mitigate the potential key-exposure problem, we introduce a novel concept of secure vehicle epoch communication, which means V2V authentication is valid for only one epoch blockchain unit time. The proposed scheme achieves lightweight computation and incurs minimal communication overheads, with the signature size being just 137 bytes. The RIC-SDA scheme supports fast batch verification. We prove that our proposed scheme is unforgeable security under random oracle and demonstrate its feasibility by implementing it in a test network based on Ethereum Sepolia. The results demonstrate that our RIC-SDA solution outperforms the existing state-of-the-art authentication VANET schemes regarding efficiency and communication costs.
{"title":"RIC-SDA: A Reputation Incentive Committee-Based Secure Conditional Dual Authentication Scheme for VANETs","authors":"Ningbin Yang;Chunming Tang;Tianqi Zong;Zhikang Zeng;Zehui Xiong;Debiao He","doi":"10.1109/TMC.2024.3442933","DOIUrl":"https://doi.org/10.1109/TMC.2024.3442933","url":null,"abstract":"Vehicular ad hoc networks (VANETs) establish wireless connections among all vehicles, enabling seamless mobile communication. However, existing conditional privacy protection VANETs authentication schemes fail to address the issue of potential key-exposure and do not provide accelerated vehicle authentication. In this paper, we propose a reputation incentive committee-based secure conditional dual authentication scheme for VANETs called RIC-SDA. Our proposed scheme incorporates dual authentication of the consensus committee and vehicle-to-vehicle (V2V) communication. It enables the rapid provision of dynamic vehicle epoch-key from consensus committee authentication for V2V authentication through our designed reputation incentive mechanism. To mitigate the potential key-exposure problem, we introduce a novel concept of secure vehicle epoch communication, which means V2V authentication is valid for only one epoch blockchain unit time. The proposed scheme achieves lightweight computation and incurs minimal communication overheads, with the signature size being just 137 bytes. The RIC-SDA scheme supports fast batch verification. We prove that our proposed scheme is unforgeable security under random oracle and demonstrate its feasibility by implementing it in a test network based on Ethereum Sepolia. The results demonstrate that our RIC-SDA solution outperforms the existing state-of-the-art authentication VANET schemes regarding efficiency and communication costs.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":null,"pages":null},"PeriodicalIF":7.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1109/TMC.2024.3442430
Mengwei Xu;Daliang Xu;Chiheng Lou;Li Zhang;Gang Huang;Xin Jin;Xuanzhe Liu
In the realm of industrial edge computing, a novel server architecture known as SoC-Cluster, characterized by its aggregation of numerous mobile systems-on-chips (SoCs), has emerged as a promising solution owing to its enhanced energy efficiency and seamless integration with prevalent mobile applications. Despite its advantages, the utilization of SoC-Cluster servers remains unsatisfactory, primarily attributed to the tidal patterns of user-initiated workloads. To address such inefficiency, we introduce SoCFlow+