Cameron B. de Wet, Elizabeth M. Griffith, Andrea M. Erhardt, Jessica L. Oster
Variations in speleothem calcium isotope ratios (δ44Ca) are thought to be uniquely controlled by prior carbonate precipitation (PCP) above a drip site and, when calibrated with modern data, show promise as a semi-quantitative proxy for paleorainfall. However, few monitoring studies have focused on δ44Ca in modern cave systems. We present a multi-year comparative study of δ44Ca, carbon isotopes (δ13C), and trace elemental ratios from cave drip waters, modern calcite, and host rocks from two cave systems in California—White Moon Cave (WMC) and Lake Shasta Caverns (LSC). Drip water and calcite δ44Ca from both caves indicate PCP-driven enrichment, and we used a simple Rayleigh fractionation model to quantify PCP variability over the monitoring period. Modern calcite trace element and δ44Ca data positively correlate at WMC, but not at LSC, indicating a shared PCP control on these proxies at WMC but not at LSC. At both WMC and LSC, we observe an inverse relationship between PCP and rainfall amounts, though this relationship is variable across individual drip sites. Our modeled data suggest that WMC experiences ∼20% more PCP than LSC, consistent with the fact that WMC receives less annual rainfall. This work supports speleothem δ44Ca as an independent constraint on PCP that can aid in the interpretation of other hydrologically sensitive proxies and provide quantitative estimates of paleorainfall. Additional, long-term monitoring studies from a variety of climate settings will be key for understanding δ44Ca variability in cave systems more fully and better constraining the relationship between PCP and rainfall.
{"title":"A Comparative Study of Cave System Calcium Isotope Ratios: Implications for Quantitative Reconstruction of Paleorainfall From Speleothems","authors":"Cameron B. de Wet, Elizabeth M. Griffith, Andrea M. Erhardt, Jessica L. Oster","doi":"10.1029/2024GC011691","DOIUrl":"https://doi.org/10.1029/2024GC011691","url":null,"abstract":"<p>Variations in speleothem calcium isotope ratios (δ<sup>44</sup>Ca) are thought to be uniquely controlled by prior carbonate precipitation (PCP) above a drip site and, when calibrated with modern data, show promise as a semi-quantitative proxy for paleorainfall. However, few monitoring studies have focused on δ<sup>44</sup>Ca in modern cave systems. We present a multi-year comparative study of δ<sup>44</sup>Ca, carbon isotopes (δ<sup>13</sup>C), and trace elemental ratios from cave drip waters, modern calcite, and host rocks from two cave systems in California—White Moon Cave (WMC) and Lake Shasta Caverns (LSC). Drip water and calcite δ<sup>44</sup>Ca from both caves indicate PCP-driven enrichment, and we used a simple Rayleigh fractionation model to quantify PCP variability over the monitoring period. Modern calcite trace element and δ<sup>44</sup>Ca data positively correlate at WMC, but not at LSC, indicating a shared PCP control on these proxies at WMC but not at LSC. At both WMC and LSC, we observe an inverse relationship between PCP and rainfall amounts, though this relationship is variable across individual drip sites. Our modeled data suggest that WMC experiences ∼20% more PCP than LSC, consistent with the fact that WMC receives less annual rainfall. This work supports speleothem δ<sup>44</sup>Ca as an independent constraint on PCP that can aid in the interpretation of other hydrologically sensitive proxies and provide quantitative estimates of paleorainfall. Additional, long-term monitoring studies from a variety of climate settings will be key for understanding δ<sup>44</sup>Ca variability in cave systems more fully and better constraining the relationship between PCP and rainfall.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011691","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Masis, Maureen D. Long, Paul Karabinos, James Bourke
Previous geophysical studies in the New England Appalachians identified a ∼15 km offset in crustal thickness near the surface boundary between Laurentia and the accreted terranes. Here, we investigate crustal structure using data from a denser array: New England Seismic Transects experiment, which deployed stations spaced ∼10 km apart across the Laurentia-Moretown terrane suture in northwestern Massachusetts. We used receiver function (RF) analysis to detect P to SV converted waves and identified multiple interfaces beneath the transect. We also implemented a harmonic decomposition analysis to identify features at or near the Moho with dipping and/or anisotropic character. Beneath the Laurentian margin, the Ps converted phase from the Moho arrives almost 5.5 s after the initial P wave, whereas beneath the Appalachian terranes, the pulse arrives at 3.5 s, corresponding to ∼48 and ∼31 km depth, respectively. The character of the RF traces beneath stations in the middle of our array suggests a complex transitional zone with dipping and/or anisotropic boundaries extending at least ∼30 km. This extension is measured in our profiles and perpendicular to the suture. We propose one possible crustal geometry model that is consistent with our observations and results from previous studies.
{"title":"Lithospheric Structure in the Northern Appalachian Mountains: A Detailed Examination of the Abrupt Change in Crustal Thickness in Northwestern Massachusetts","authors":"Roberto Masis, Maureen D. Long, Paul Karabinos, James Bourke","doi":"10.1029/2024GC011570","DOIUrl":"https://doi.org/10.1029/2024GC011570","url":null,"abstract":"<p>Previous geophysical studies in the New England Appalachians identified a ∼15 km offset in crustal thickness near the surface boundary between Laurentia and the accreted terranes. Here, we investigate crustal structure using data from a denser array: New England Seismic Transects experiment, which deployed stations spaced ∼10 km apart across the Laurentia-Moretown terrane suture in northwestern Massachusetts. We used receiver function (RF) analysis to detect <i>P</i> to <i>SV</i> converted waves and identified multiple interfaces beneath the transect. We also implemented a harmonic decomposition analysis to identify features at or near the Moho with dipping and/or anisotropic character. Beneath the Laurentian margin, the Ps converted phase from the Moho arrives almost 5.5 s after the initial <i>P</i> wave, whereas beneath the Appalachian terranes, the pulse arrives at 3.5 s, corresponding to ∼48 and ∼31 km depth, respectively. The character of the RF traces beneath stations in the middle of our array suggests a complex transitional zone with dipping and/or anisotropic boundaries extending at least ∼30 km. This extension is measured in our profiles and perpendicular to the suture. We propose one possible crustal geometry model that is consistent with our observations and results from previous studies.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}